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ABSTRACT

Objective: Outcomes are the variables monitored during clinical trials to assess the impact of the
intervention studied on the subjects’ health. Automatic extraction of trial outcomes is essential for
automating systematic review process and for checking the completeness and coherence of reporting
to avoid bias and spin. In this work, we provide an overview of the state-of-the art for outcome
extraction, introduce a new freely available corpus with annotations for two types of outcomes –
declared (primary) and reported – and present a deep learning approach to outcome extraction.
Dataset: We manually annotated a corpus of 2,000 sentences with declared (primary) outcomes and
1,940 sentences with reported outcomes.
Methods: We used deep neural word embeddings derived from the publicly available BERT (Bidirec-
tional Encoder Representations from Transformers) pre-trained language representations to extract
trial outcomes from the section defining the primary outcome and the section reporting reporting the
results for an outcome. We compared a simple fine-tuning approach and an approach using CRF and
Bi-LSTM. We assessed the performance of several pre-trained language models: general domain
(BERT), biomedical (BioBERT) and scientific (SciBERT).
Results: Our algorithm achieved the token-level F-measure of 88.52% for primary outcomes and
79,42% for reported outcomes.
Conclusion: Fine-tuning of language models pre-trained on large domain-specific corpora show
operational performance for automatic outcome extraction.

Keywords Natural Language Processing · Randomized Controlled Trials · Outcome extraction · Deep Neural
Networks · Pre-trained Language Representations
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1 Introduction

Outcomes of clinical trials are the dependent variables monitored during a trial in order to establish how they are
influenced by independent variables such as the intervention taken, dosage, or patient characteristics. Outcomes are a
key element of trial design, reflecting its main goal and determining the trial’s statistical power and sample size.

Previous works have shown that outcome extraction is a difficult task because of the diversity of outcome mentions
and contexts in which they occur. No common textual markers exist (e.g. capitalization, numerical symbols, cue
phrase). Recent research proved that the use of deep language representations pre-trained on large corpora, such
as BERT[1], outperforms the state-of-the-art results for several natural language processing tasks, including entity
extraction. Pre-training on large domain-specific data can further improve the results[2, 3].

We propose a deep learning approach, using language representations pre-trained on general domain corpora and on
domain-specific datasets to extract trial outcomes. We report on creating a publicly available annotated corpus for
outcome extraction.

1.1 Definitions

There are substantial discrepancies in the use of the words “outcome”, “endpoint”, “outcome measure” etc., that we
describe in detail elsewhere. In brief, there is no agreement between researchers as for the differences in the meaning
and usage of these terms, in practice they are often considered to be synonyms. In our work, we follow the common
practice and do not distinguish between these notions. We prefer to use the term “outcome”.

Following the accepted usage3, we define an outcome as a variable (or measure, or parameter) monitored during a
clinical trial. Outcome in this sense is a type of entity, as it is understood by the standard entity recognition task. Our
definition differs from that given by Demner-Fushman and colleagues[4] who defined an outcome as "sentence(s) that
best summarizes the consequences of an intervention". In our definition an outcome is usually shorter than a sentence,
and it does not refer to trial results ("consequences of an intervention"): the results are the values of outcomes. Our
definition is in line with other works on outcome extraction (see the Related Works section), as many applications, such
as summarization of trial results, require extracting outcomes on the entity level to allow for further analysis of data for
each individual outcome, which is not possible if extracting only sentences containing outcomes (cf. [5]).

We introduce here the definitions for two types of outcome mentions that are important for our work: declared and
reported outcomes.

Declared outcomes are the mentions of outcomes that occur in contexts that explicitly state which variables were
measured in a trial, e.g. (outcomes are in bold):

The primary outcome of this study was health-related quality of life.

Secondary outcomes included changes in the 6-minute walk distance (6MWD) and adverse events.

In our study, we were most interested in changes in PHQ-9 scores after the 12-week trial.

Declared outcomes can be further classified according to their importance as stated by the authors (primary, secondary,
tertiary, or undefined).

Reported outcomes are the mentions of outcomes that occur in contexts that report the results for the outcomes, e.g.
(outcomes are in bold):

The HRQoL was higher in the experimental group.

The mean incremental QALY of intervention was 0.132 (95% CI: 0.104–0.286).

1.2 Applications

Extraction of trial outcomes is an important part of systematic review process[6], clinical question answering[7],
assessment of an article for distorted reporting practices such as bias[8], outcome switching[9] and spin[10]. For us, the
main application of interest is spin detection.

In general, spin is defined as presenting research results as being more positive than the experiments proved. In
particular, in randomized controlled trials (RCTs) assessing a new intervention, spin consists in exaggerating the
beneficial effects (efficacy and/or safety) of the studied intervention. As RCTs are the main source of information for

3e.g. https://rethinkingclinicaltrials.org/chapters/design/choosing-specifying-end-points-outcomes/choosing-and-specifying-
endpoints-and-outcomes-introduction/
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Evidence-Based Medicine, spin in RCTs presents a serious threat to the quality of healthcare. The presence of spin
makes clinicians overestimate the effects of the treatment in question[11], and provokes spin in health news and press
releases[12, 13], which can affect public expectations regarding the treatment.

One of the most common forms of spin is selective reporting of trial outcomes – reporting only the outcomes that prove
the hypothesis of the authors. To automatically detect this form of spin, declared and reported trial outcomes need to
be extracted, and declared outcomes must be compared to the reported outcomes to check for mismatches: declared
outcomes that are not reported, or reported outcomes that were not declared.

Our current work presents the first step of the algorithm of selective outcome reporting detection and deals with the
extraction of declared and reported outcomes. The second step consists in assessing semantic similarity between pairs
of declared and reported outcomes and will be presented elsewhere.

2 Related work

As the volume of published biomedical articles grows exponentially[14], manual extraction of clinical trial information
becomes infeasible. Several works addressed the extraction of outcome-related information for facilitating systematic
reviews or supporting clinical question-answering systems.

A number of works addressed extraction of information on clinical trials using the PICO - Patient/Problem, Intervention,
Comparison, Outcome - framework[15] or its extensions. The majority of works using the PICO framework treat the
task as sentence classification[16, 17, 18, 19, 20, 21, 22, 23, 24]. F-measure for outcome sentence extraction varies
between 54% and 88% for different methods (see the systematic review[6]).

Demner-Fushman and colleagues[7, 4] also treated the task of outcome extraction as text classification. The authors
trained several classifiers on a dataset of 633 MEDLINE citations. Naive Bayes classifier outperformed linear SVM and
decision-tree classifier. The accuracy of outcome sentence identification ranged from 88% to 93%.

However, for some tasks (including spin detection), identification of relevant sentences is not enough and extracting
outcomes at the entity level is required. This task has been addressed by fewer works than the PICO classification. It is
important to distinguish the works addressing the extraction of declared (primary and secondary) outcomes from those
targeting reported outcomes.

De Bruijn and colleagues[25] aimed at extracting declared (primary and secondary) outcomes and their time points,
along with other elements of trial design. They point out that the outcomes of a trial can be poorly defined by referring
to "main outcomes" instead of primary and secondary ones. The authors also note that it is necessary to analyse the
whole article, not only the abstract, e.g. to find secondary outcomes. The system uses a two-step approach: first,
a classifier is applied to identify sentences containing a given type of information; second, regular expression rules
are used to find text fragments corresponding to the target information. The dataset used in this work consists of 88
randomly selected full-text articles from five medical journals. For primary and secondary outcomes, only the first step
(sentence classification) was implemented. Performance for identification of sentences containing outcomes is reported
to be lower that for the other elements. For the primary outcomes, the sentence classification reaches precision of 87%
and recall of 90%; for secondary outcomes, precision was 57% and recall was 90%.

In their following work[26], the authors further develop their approach and add rules for extracting text fragments
for primary and secondary outcomes. This work used a different dataset: the initial corpus consisted of 78 manually
annotated articles from five clinical journals that were considered to be representative of general medicine, to which
54 articles from a wider selection of journals were added, resulting in a final training set of 132 articles from 22
clinical journals. The test set contained 50 full-text articles reporting RCTs from 25 journals. The results were assessed
at the sentence and fragment levels. The sentence classification performance for outcomes is as follows: precision
was 66%, recall was 69% for primary outcomes; precision was 69% and recall 79% for secondary outcomes. For
fragment extraction, the authors report for primary outcomes a precision and recall of 97% for both overlapping and
exact matches; for secondary outcomes, precision and recall for exact matches are 93% and 88% respectively, and for
overlapping matches, both precision and recall are 100%.

Summerscales and colleagues[27] addressed the task of identifying treatments, patient groups and reported outcomes in
abstracts of medical articles. The authors created a corpus of 100 abstracts of articles published in the BMJ4, extracted
from PubMed5. The corpus of 1,344 sentences contained 1,131 outcomes, 494 out of which were unique. Outcomes
vary in length from 1 to 14 tokens (mean = 3.6). The examples of outcomes given in the article are noun phrases, but
the authors did not specify whether they annotated only noun phrases or included other syntactic constituents (e.g. verb

4https://www.bmj.com/
5http://www.ncbi.nlm.nih.gov/pubmed/
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phrases, adjectives). The authors note that the boundaries of entities are often ambiguous and annotating each variant is
not optimal; thus, they suggest to evaluate both exact and partial matches. The authors trained a Conditional Random
Field (CRF) classifier to label each word, using features such as the word form, its POS tag, corresponding Medical
Subject Heading ID, its semantic tag(s) (anatomy, time, disease, symptom, drug, procedure and measurement terms,
assigned using lists of terms), the title of the enclosing section, and four words to the left and right of the word with their
POS and semantic tags. The token-levels results for outcomes are: precision 75%, recall 62%, and F-measure 68%.

In their following work[28], the authors enlarge their dataset to 263 abstracts of BMJ articles. A first-order linear-chain
CRF classifier on this set yielded a precision of 56%, recall of 34%, and F-measure of 42% for outcome extraction.

Blake and Lucic[29] aimed at extracting noun phrases for three items in comparative sentences: two compared entities
(the agent and the object) and the ground for comparison (endpoint, or outcome). The dataset for this work included
the sentences containing all the three items (agent, object and endpoint), selected from over 2 million sentences from
full-text medical articles. 100 sentences with 656 noun phrases constituted the training set. First the algorithm finds
comparative sentences with the use of a set of adjectives and lexico-syntactic patterns. Then two classifiers - SVM and
Generalized Linear model (GLM) —– are used to predict the roles (agent, object, endpoint) of noun phrases. SVM
showed better results that GLM on the training set (for endpoint, precision=67%, recall=94% and F-measure=78%).
However, on the test set the results were significantly lower: SVM achieved precision of 42%, recall of 64% and
F-measure 51% for endpoint detection. The performance was evaluated separately on shorter sentences (up to 30
words), where it was higher than on longer sentences.

The following work[30] used the information whether the head noun of the candidate noun phrase denotes an amount
or a measure, in order to improve the detection of the first entity and of the endpoint. The annotation of the corpus was
enriched by the corresponding information, which resulted in an improvement of endpoint detection: precision was
56% on longer sentences and 58% on shorter ones; recall was 71% on longer sentences and 74% on shorter ones.

A recent work of Nye et al[31] describes the development of a crowd-sources corpus of nearly 5000 abstracts with
annotations for patients, interventions and outcomes. The authors provide the results of two baseline algorithms
for extracting these entities. A linear CRF model, using current, previous and next tokens, pos-tags, and character
information as features, achieved the precision of 83%; recall of 17% and F-measure of 29%. A neural model, based on
a bi-directional LSTM passing distributed vector representations of input tokens to a CRF, yielded the precision of 69%,
recall of 58% and F-measure of 63%.

3 Dataset

In the course of our work on spin detection, we annotated a corpus of declared and reported outcomes. The reason for
creating this new corpus is the absence of any available resource with the annotation for these two types of outcome
mentions. The only currently available corpus with outcome annotation, to our knowledge, is that introduced by Nye
et al[31], which was not available at the time of the beginning of our work and which does not distinguish between
declared and reported outcomes, while this distinction is of vital importance for our project.

Our corpus is based on a dataset of 3,938 PMC6 articles, selected from a larger corpus (119,339) of PMC articles on the
basis of being assigned the PubMed publication type "Randomized controlled trial". We annotated a corpus of sentences
from full-text articles for two types of entities: declared outcomes and reported outcomes. For declared outcomes,
we annotated only primary outcomes, as they are the most important for our final goal of spin detection (omission or
change of the primary outcome is one of the most common types of spin). The annotation and extraction of secondary
outcomes is one of the directions of future work on this task.

As it proved to be impossible to run a large-scale annotation project with several expert annotators, the annotation was
performed by AK with guidance by domain experts. We developed an annotation tool[32] for the sake of simplicity,
ease of format conversion and customizing. The annotation uses a CoNLL-like representation scheme with B (begin) - I
(inside) - O (outside) elements.

3.1 Declared outcome annotation

Misreporting of the trial outcomes is most often related to the primary outcome of a trial, thus, the primary outcome
presents the highest interest for spin detection. We annotated the declared outcomes only in the contexts that explicitly
state that the outcome was the primary one in the given trial, e.g. (the outcome is in bold):

The primary outcome was the PHQ-9.

6https://www.ncbi.nlm.nih.gov/pmc/
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Information about the primary outcome can sometimes be expressed implicitly, in statements about objectives or
in descriptions of measured variables. For example, in the absence of explicit definition of the primary outcome
(while secondary outcomes are clearly defined), the readers can infer that “the human gastrointestinal microbiota” and
“metabolic markers of health” were the primary outcomes in:

We aimed to assess the impact of walnut consumption on the human gastrointestinal microbiota and metabolic
markers of health. Fecal and blood samples were collected at baseline and at the end of each period to assess
secondary outcomes of the study, including effects of walnut consumption on fecal microbiota and bile acids and
metabolic markers of health.

In the following example “Cognitive functioning” can be interpreted as the trial’s primary outcome as no other outcome
is defined in the abstract:

Cognitive functioning was measured at baseline and after 12 weeks.

To assess the need of including these types of statement in our corpus, we conducted a qualitative corpus study and
consulted our medical advisors (Isabelle Boutron, Patrick Bossuyt and Liz Wager) in the course of the supporting
project (2016-2019). We compared the variables mentioned in the statements on measured variables (“X was measured”,
“We aimed at measuring X”, etc.) to the variables explicitly stated to be the primary outcomes in the same text. Our
corpus study showed that the variables described in this type of statements differ from the explicitly declared primary
outcomes: in particular, statements of objectives usually contain more general description of what was studied (e.g.
"efficacy") compared to outcomes (e.g. "survival" or "quality of life"). Thus, we concluded that these types of statement
do not define a primary outcome. Furthermore, absence of an explicit definition of the trial’s primary outcome does not
conform with good reporting practices[33, 34]. Hence we excluded these types of sentences from our corpus.

To create the corpus for declared primary outcome annotation, we searched the full-text articles for sentences where both
the word “primary” (or its synonyms: “principal”, “main”, etc.) and the word “outcome” (or its synonyms: “end-point”,
“measure”, etc.) occur, the former precedes the latter, and the distance between them is no more than 3 tokens. Regular
expressions were used to search for the terms and Python NLTK library7 was used for sentence splitting. Out of the
sentences corresponding to our criteria, we randomly selected 2,000 sentences, coming from 1,672 articles.

We created two versions of the corpus which differ in annotation of coordinated outcomes. In the first version of
our corpus, we annotated coordinated outcomes as one entity for the sake of simplifying the annotation task. This
version contains 1,253 occurrences of declared primary outcomes. Further, we created a more elaborated version of the
annotation, re-marking coordinated outcomes as separate entities. This second version contains 1,694 occurrences of
declared primary outcomes. This version will be further used in our target application. The two versions serve to assess
the capabilities of our algorithms to correctly analyse coordinated entities.

A definition of a primary outcome can include time points, measurement tool, etc. We annotated the longest continuous
text span containing all the relevant information about the trial’s primary outcome. Declared primary outcomes are
most typically represented by noun phrases, but can also be expressed by verb phrases or clauses:

Our primary outcome measures will be (a) whether the TUPAC guideline recommendations are implemented, and
(b) if implemented, the estimated time used for the counselling.

3.2 Reported outcome annotation

We annotated reported outcomes in the abstracts of the articles for which we annotated the primary outcomes, to allow
for further annotation of spin related to incomplete outcome reporting. We extracted the Results and Conclusions
sections of the corresponding articles (using rules and regular expressions). A number of articles in our corpus are not
RCT reports but trial protocols, thus their abstracts did not contain Results and Conclusions. These abstracts were
excluded from the reported outcomes corpus. The final corpus contains 1,940 sentences from 402 articles. A total of
2,251 reported outcomes was annotated.

The ways of reporting outcomes differ, and the same outcome can be reported in several ways, e.g. the sentence:

Mean total nutrition knowledge score increased by 1.1 in intervention (baseline to follow-up : 28.3 to 29.2) and 0.3 in
control schools (27.3 to 27.6).

can be rewritten as:

The increase in mean total nutrition knowledge score was 1.1 in intervention (baseline to follow-up : 28.3 to 29.2)
and 0.3 in control schools (27.3 to 27.6).

7http://www.nltk.org
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While both sentences report the same outcome, the structure is different, and for the second sentence both "The increase
in mean total nutrition knowledge score" and "mean total nutrition knowledge score" can be considered to represent
the outcome. Besides, there is a choice whether to include the aggregation method ("mean") into the outcome, or
annotate simply "total nutrition knowledge score". In order to preserve uniformity throughout the annotation of reported
outcomes, we decided to annotate the smallest possible text fragment referring to an outcome ("total nutrition knowledge
score" for the given example) as it allows to annotate the same text fragment for all the variants of outcome reporting.

Reported outcomes are characterized by high variability from the syntactic point of view. They can be represented
either by a noun phrase:

Overall response rate was 39.1% and 33.3% in 3-weekly and weekly arms.

a verb phrase:

No patients were reintubated.

or an adjective:

The CSOM and MA appeared less responsive following a GLM-diet.

One of the challenges in annotating reported outcomes is classifying reported variable either as a trial outcome or as a
independent variables or covariates8. We decided to annotate all the mentions of variables (outcomes or not) unless the
context of the sentence or the semantics of the phrase allows to classify it as a non-outcome variable. For example, in
the sentence:

Adjustments for age, gender, and treatment group were performed, but did not change the results.

the context allows to categorize all the variables as covariates.

It should be noted that this annotation decision leads to some counter-intuitive annotations: e.g. it can be expected
that in a set of coordinated entities, either all the entities should be annotated as outcomes, or none of them. However,
consider the following example:

Age, gender and disease status distribution was similar in both groups.

Here “Age” and “gender” are considered to be independent variables due to their semantics, while “disease status” can
be a dependent variable and will be the only entity annotated as outcome in this sentence.

There are a few differences between our corpus and the datasets used in previous works on outcome extraction. We
address both declared (primary) and reported outcomes (annotation and extraction of secondary outcomes has not been
covered yet and is a direction for our future work). We do not limit our dataset in terms of specific types of sentences
(e.g. comparative) or constituents to be annotated (e.g. noun phrases). Our corpus is not limited to specific journals or
topics. Our corpus is publicly available[35].

4 Methods

4.1 Baseline

We developed a simple rule-based baseline system, combining syntactic and sequential rules that cover the most typical
patterns in which declared and reported outcomes can occur. For declared outcomes, sequential rules search for patterns
such as:

DET ADJ outcome was DET ADJ* NN

where DET denotes a determiner, ADJ is an adjective, and NN is a common noun. The sequence matched by “DET
ADJ* NN” here is considered to be the outcome. Sequential rules use the information on tokens, lemmas and pos-tags
of the words in the input text.

Syntactic rules search for similar patterns, but use the syntactic dependency graph (tags and directions of syntactic
relations) instead of sequential information, to capture the cases where the target phrase is separated from the cue phrase
(e.g. “DET ADJ outcome was”) by other words.

Our rule-based baseline was designed to detect the declared outcomes in the first version of the corpus only (coordinated
outcomes annotated as single entity). A simple rule-based approach can hardly be successful in a complex task such

8https://methods.sagepub.com/Reference//encyc-of-research-design/n85.xml

6



A PREPRINT - MARCH 11, 2020

as dividing coordinated entities, hence we did not build a rule-based baseline for the second version of the declared
outcomes corpus.

For reported outcomes, the searched patterns include the expressions with comparative meaning, e.g.:

DET ADJ* NN increased.

DET ADJ* NN was higher in the NN arm.

DET ADJ* NN was NUM,

where NUM denotes a numeral. Fragments matched by the patterns in bold are tagged as reported outcomes.

For pos-tagging and dependency parsing, we used spaCy dependency parser[36].

4.2 Bi-LSTM-CRF-char algorithm

Our second approach is inspired by the work of Ma and Hovy[37] and uses the implementation of this method proposed
by G.Genthial9. First, the model gets character-level representations of words from character embeddings using a
bi-directional LSTM (bi-LSTM). After that, the model combines the character-level representation with a GloVe[38]
word vector representation and passes the combined representations to a bi-LSTM to build contextual representations of
words. Finally, a linear chain CRF is applied to decode the labels. Table 1 shows the values of the parameters used in
the configuration of the model.

Table 1: Training parameters

Parameter Value
dim_word 300
dim_char 100

train_embeddings False
nepochs 15
dropout 0.5

batch_size 20
lr_method "adam"

lr 0.001
lr_decay 0.9

clip -1
nepoch_no_imprv 3
hidden_size_char 100
hidden_size_lstm 300

4.3 BERT-based algorithms: the use of deep pre-trained Language models

Recently, language models pre-trained on large corpora with complex neural network architectures have been shown to
be useful for several downstream NLP tasks such as question answering, named entity recognition, natural language
inference, etc. by ELMO[39], OpenAI’s GPT[40] and Google’s BERT[1]. Intuition is to build a model trained on a
large corpus for a relatively simple task of language modelling, which can further be modified for complex NLP tasks.
There are two approaches to employing these pre-trained models for supervised downstream tasks:

1. feature-based approach (used in ELMO) relies on task-specific architecture, where pre-trained representations
are included as additional features to existing neural network models;

2. fine-tuning approach (used in OpenAI GPT and BERT) does not require extensive task-specific parameters, it
simply fine-tunes the pre-trained parameters on a downstream task.

We compared a number of recent deep pre-trained language models. First, we employed the BERT (Bidirectional
Encoder Representations from Transformers) models which are well documented with openly available pre-trained
weights for the models10. In brief, BERT uses a masked language model (MLM), randomly masking some input tokens,
which allows to pre-train a deep bidirectional Transformer using both left and right contexts. Representation of a token
combines the corresponding token, segment and position embeddings. The advantage of BERT compared to ELMO

9https://github.com/guillaumegenthial/sequence_tagging
10https://github.com/google-research/bert
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and OpenAI GPT is the deep bi-directionality of the representations and the size of the training corpus. We chose to use
BERT because it outperformed ELMO and OpenAI GPT on a number of tasks[1]. There are several versions of BERT
models: cased and uncased models, differing in the preprocessing of the input data (lower-cased vs unchanged); and
base and large models, differing in the model sizes.

BioBERT[2], a domain-specific analogue of BERT, was pre-trained on a large (18B words) biomedical corpus: PubMed
abstracts and PMC full-text articles, in addition to BERT training data. BioBERT is based on the cased BERT base
model. Another domain-specific version of BERT is SciBERT[3], trained on a corpus of scientific texts (3.1B) added to
BERT training data. SciBERT provides both cased and uncased models, with two versions of vocabulary: BaseVocab
(the initial BERT general-domain vocabulary) and SciVocab (the vocabulary built on the scientific corpus). Both
BioBERT and SciBERT outperformed BERT on some tasks of biomedical natural language processing.

Table 2 summarizes the training data of BERT, BioBERT and SciBERT.

Table 2: Training data for BERT/BioBERT/Scibert

BERT SciBERT BioBERT
Training data BooksCorpus

English
Wikipedia

BooksCorpus
English
Wikipedia
+
Semantic Scholar
(Biomedical,
Computer Sci-
ence)

BooksCorpus
English
Wikipedia
+
PubMed Ab-
stracts
PMC Full-text
articles

Volume of
training data
(words)

3.3B 6.4B 21.3B

The models we evaluated in our experiments include: BERT-base models, both cased and uncased; BioBERT model;
SciBERT models, both cased and uncased, with the SciVocab vocabulary (recommended by the authors). We did not
perform experiments with BERT-Large due to the lack of resources.

We explored two approached of employing the BERT-based language models for our sequence labelling task. The first
approach, suggested by the developers of BERT and BioBERT[1, 2], employs a simple fine-tuning of the models on
our annotated datasets. The principle behind this approach is that the pre-trained BERT models can be fine-tuned for
a supervised task with one additional output layer. The one additional layer parameters along with the whole BERT
model parameters are fine-tuned for the intended task. Table 3 summarizes the hyperparameters used for BERT-based
models training and evaluation.

Table 3: BERT/BioBERT/SciBERT hyperparameters

Hyperparameter Value Definition
init_checkpoint None Initial checkpoint (usually from a pre-trained

BERT model)
do_lower_case True/False Whether to lower case the input text
max_seq_length 128 The maximum total input sequence length after

WordPiece tokenization
do_train True Whether to run training
use_tpu False Whether to use TPU or GPU/CPU
train_batch_size 32 Total batch size for training
eval_batch_size 8 Total batch size for eval
predict_batch_size 8 Total batch size for predict
learning_rate 5e-5 The initial learning rate for Adam
num_train_epochs 10.0 Total number of training epochs to perform
warmup_proportion 0.1 Proportion of training to perform linear learning

rate warmup for
save_checkpoints_steps 1000 How often to save the model checkpoint
iterations_per_loop 1000 How many steps to make in each estimator call
master None TensorFlow master URL

8
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The second approach, suggested by the SciBERT developers[3], uses minimal task-specific architecture on top of
BERT-based embeddings. A representation of each token in this model is built by concatenating its BERT embedding
and a CNN-based character embedding. Similarly to the method of Ma and Hovy[37], a multilayer bi-LSTM is applied
to token embeddings, and a CRF is used on top of the bi-LSTM11.

We compared performance of all the models both with unaltered input data and with lower-cased input data. It
is expected that cased models perform better with unaltered input data, while uncased models perform better with
lower-cased data. All the algorithms were evaluated on the token level. Machine-learning algorithms were assessed
using 10-fold cross-validation (train-dev-test split was done in proportion 8:1:1). We report the averaged results. We
used Tensorflow for our experiments.

5 Results and discussion

Tables 4, 5, 6 show the performance of the tested algorithms (all evaluations are done at the token level). The True
value of the do_lower_case flag indicates lower-cased input data. The suffix ”_biLSTM-CRF” for BERT-based model
indicates the results of the approach using CRF on top of bi-LSTM.

Algorithm do_lower_case Precision Recall F1
SciBERT-cased False 89.32 87.87 88.52
BioBERT True 88.83 88.24 88.45
BioBERT False 88.44 88.11 88.2
SciBERT-uncased True 88.74 87.51 88.06
SciBERT-cased True 88.34 87.82 88
BERT-cased False 87.73 86.94 87.23
SciBERT-uncased False 88.05 86.24 87.06
BERT-uncased True 87.19 86.55 86.71
BERT-cased True 88.46 85.12 86.68
BERT-uncased False 86.97 86.08 86.42
SciBERT-uncased_biLSTM-CRF True 85.01 83.76 84.3
SciBERT-cased_biLSTM-CRF True 83.93 83.88 83.88
BioBERT_biLSTM-CRF False 83.43 84.25 83.79
SciBERT-cased_biLSTM-CRF False 83.37 83.64 83.49
BioBERT_biLSTM-CRF True 83.12 83.78 83.42
SciBERT-uncased_biLSTM-CRF False 80.59 81.76 81.15
BERT-uncased_biLSTM-CRF True 80.26 81.52 80.87
BERT-cased_biLSTM-CRF False 80.04 80.87 80.38
BERT-cased_biLSTM-CRF True 78.3 80.97 79.58
BERT-uncased_biLSTM-CRF False 78.49 79.37 78.87
Rule-based - 78.6 68.98 73.51
Bi-LSTM-CRF-char - 59.14 63.41 61.07

Table 4: Primary outcome extraction - version 1: results

5.1 Comparison of approaches

Our rule-based system showed reasonable performance for extracting primary outcomes (on the first version of the
corpus), but not reported outcomes, as the latter are highly diverse and thus rule-based approach is not optimal. The
Bi-LSTM-CRF-char algorithm using character and GloVe token embeddings did not show high performance for our
tasks. All BERT-based models outperformed the Bi-LSTM-CRF-char algorithm and the rule-based baseline with a
large absolute improvement (see Tables 4, 5, 6).

The fine-tuning approach employing BERT-based models consistently showed better performance than the approach
using CRF on top of bi-LSTM with BERT-based embeddings. For all the tasks, even the best results of the model with
CRF were inferior to the lowest results achieved by fine-tuning. This fact shows that a simple architecture (fine-tuning)
can be superior to more complex (bi-LSTM-CRF) architectures for entity extraction task.

11The configuration and hyperparameters used for training the model can be found at:
https://github.com/allenai/scibert/blob/master/allennlp_config/ner.json.
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Algorithm do_lower_case Precision Recall F1
BioBERT False 86.99 90.07 88.42
SciBERT-cased False 87.52 89.07 88.21
SciBERT-uncased True 87.49 88.92 88.1
SciBERT-cased True 87.39 88.64 87.92
BioBERT True 87.01 88.96 87.9
SciBERT-uncased False 86.57 88.3 87.35
BERT-cased False 86.96 87.41 87.14
BERT-uncased True 86.6 87.39 86.91
BERT-uncased False 86.96 86.87 86.84
BERT-cased True 86.71 87.12 86.81
BioBERT_biLSTM-CRF False 78.82 82 80.34
SciBERT-uncased_biLSTM-CRF True 77.52 81.15 79.22
SciBERT-cased_biLSTM-CRF False 77.23 80.89 78.95
BioBERT_biLSTM-CRF True 77.86 80.12 78.9
BERT-cased_biLSTM-CRF False 78.2 78.84 78.47
SciBERT-cased_biLSTM-CRF True 77.05 79.73 78.29
SciBERT-uncased_biLSTM-CRF False 77.54 78.67 78.07
BERT-uncased_biLSTM-CRF True 76.72 78.73 77.63
BERT-cased_biLSTM-CRF True 75.35 77.61 76.41
BERT-uncased_biLSTM-CRF False 75.23 76.62 75.79
Bi-LSTM-CRF-char - 49.16 52.21 50.55

Table 5: Primary outcome extraction - version 2: results

Algorithm do_lower_case Precision Recall F1
SciBERT-uncased True 81.17 78.09 79.42
BioBERT True 80.38 77.85 78.92
BioBERT False 79.61 77.98 78.6
SciBERT-cased False 79.6 77.65 78.38
SciBERT-cased True 79.24 76.61 77.64
SciBERT-uncased False 79.51 75.5 77.26
BERT-uncased True 78.98 74.96 76.7
BERT-cased False 76.63 74.25 75.18
BERT-cased True 76.7 73.97 75.1
BERT-uncased False 77.28 72.25 74.46
SciBERT-uncased_biLSTM-CRF True 68.44 73.47 70.77
BioBERT_biLSTM-CRF False 70.18 71.43 70.63
BioBERT_biLSTM-CRF True 69.09 71.57 70.24
SciBERT-cased_biLSTM-CRF False 67.98 72.52 70.11
SciBERT-cased_biLSTM-CRF True 66.11 71.16 68.37
SciBERT-uncased_biLSTM-CRF False 67.25 69.59 68.18
BERT-cased_biLSTM-CRF False 65.98 65.54 65.64
BERT-uncased_biLSTM-CRF True 64.6 66.73 65.4
BERT-cased_biLSTM-CRF True 64.73 66.49 65.37
BERT-uncased_biLSTM-CRF False 62.07 64.98 63.29
Bi-LSTM-CRF-char - 51.12 44.6 47.52
Rule-based - 26.69 55.73 36.09

Table 6: Reported outcome extraction: results

5.2 Comparison of BERT-based models

Out of all the tested approaches, fine-tuned BioBERT model showed the best performance for the second version of
primary outcome extraction; fine-tuned SciBERT model outperformed other systems for the first version of primary
outcome extraction (cased model) and reported outcome extraction (uncased model).
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As expected, BERT and SciBERT uncased models performed better with lower-cased input, while cased models
performed better with unchanged input data. On the contrary, BioBERT model (cased) performed slightly better with
lower-cased input for two out of three tasks. A possible explanation is that BioBERT has the largest amount of training
data, where the majority of the input is naturally in lower case, thus the learnt representations show similar performance
for lower-cased or unchanged input.

Overall, SciBERT and BioBERT outperformed BERT, supporting the hypothesis that motivated their creation: while
pre-training of language representations on large corpora gives good results, adding domain-specific corpora to the
pre-training data further improves the performance they yield. SciBERT and BioBERT show comparable performance,
demonstrating that addition of domain-specific corpus of 3.1B words to the training data (as done by SciBERT) is
sufficient and leads to similar improvements as adding 18B words (as done by BioBERT).

The performance for the second version of the primary outcomes corpus is very close to the performance of corre-
sponding models for the first version of the task. These results show that deep pre-trained language representations
successfully handle the extraction of coordinated entities, which makes it a promising approach to extraction of
secondary outcomes, most often represented by coordinated syntactic groups.

It is difficult to compare our results directly with the previous works on outcome extraction: all the works used corpora
that vary in volume and that were built on different principles regarding the selection of sentences and text fragments
to annotate; besides, evaluation in different approaches was performed on different level (sentence, entity, token).
Taking into account this limitations, we can still state that our results are better than the reported results in the previous
comparable works[27, 28, 29, 30, 31]. To allow for transparency and reproducibility of outcome extraction, we released
our corpus annotated for declared (primary) and reported outcomes. It has, however, some limitations: e.g., annotating
only explicit definitions of declared primary outcomes; annotating reported outcome in abstracts only; annotation done
by one annotator.

6 Conclusions

Automatic extraction of primary and reported outcomes of clinical trials is a vital task for automating systematic review
process, clinical question answering, and assessment of biomedical articles for bias and spin.

We proposed a deep learning approach to trial outcome extraction and tested a number of pre-trained language
representations. Our results show that language models pre-trained on large general-domain corpora can be successfully
employed for extracting complex and varied entities, even with limited amount of domain specific training data.
Pre-training language models on domain-specific data further improves the performance. Our approach does not require
manual feature engineering or any other task-specific settings.
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