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Abstract
Smoke detection is a practical technology to protect people’s lives and property. Tra-
ditional methods to detect smoke are usually based on human-crafted features, such
as color, texture and shape. Although these methods do work in some cases, they are
not always effective because color, texture and shape of smoke are diverse. In recent
years, deep learning have achieved the most accuracy with more complex structures
and more numerous parameters. However, the existing methods based on human-craft
features are not accurate enough, and the ones based on deep learning often take too
much computing resources. To improve the detection accuracy and reduce the com-
putational cost, inspired by the aforementioned works, we propose a decoupled sub-
network to extract color and texture separately just following the procedure of the tra-
ditional human-crafted methods. The color sub-network, consisted of several 1× 1
convolution layers, tries to find the most suitable color model by nonlinear functions.
The next sub-network, based on a series of depth-wise separable convolution layers,
extracts texture features and assembles them into shape features. After integrating
these features, the proposed network can comprehensively determine whether there is
smoke or fire. Experimental results demonstrate that our network is compact, efficient
and effective, and the decoupling trick offers a critical capability needed to catalyze
widespread implementation.

1 Introduction
Fire is a common and frequent natural disaster in human society. It makes human
life and property suffer big losses. Compared with flame, smoke occurs much earlier,
spreads faster, and always rises to sky [1–4]. More importantly, the volume of smoke is
much larger than the one of fire. So, there is an urgent need for a efficient visual way to
detect smoke. On the other hand, surveillance cameras provide a cost-effective manner
to detect these visible accident. Therefore, the smoke detection algorithms should be
lightweight enough to be deployed with high accuracy and low cost [5–9].

In the past decades, two categories algorithms have been proposed in the field of
smoke detection: traditional methods and deep learning based methods [10–15]. The
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Figure 1: The architecture of our proposed decoupled neural network for smoke detec-
tion.

traditional methods are usually based on such human-crafted features, as color, tex-
ture, shape. Color features are usually extracted from different color spaces [16–23],
such as RGB, HSV, YCbCr. Texture features are extracted by Fractal analysis [24–29],
Wavelet decomposition [30–34], Gabor transform [35–39], and local gradient orien-
tation histogram [40–43] methods. Smoke has very rich texture features, and most
human-crafted methods only use a few of them. In fact, texture features are much more
difficult to extract than color features. On the other hand, these human-crafted features
vary greatly from different scenarios, which leads to unsatisfactory detection accuracy.
To improve the accuracy, multiple human-crafted features are integrated. Even so,
there is a bottleneck. In the past decade, deep learning methods have demonstrated
the potential to achieve better accuracy with self-learning features. For example, Frizi
et al. [44], Yin et al. [45], and Yin et al. [46] used multilayer convolutional neural
networks (CNNs) to detect smoke and fire. However, those deep learning algorithms
still have some limitations. First, classic CNNs trained on opaque samples can not be
directly applied to smoke, because smoke has no definite shape. Second, deep neural
networks have too many parameters, which leads to high computational cost and de-
ploying difficulty. Last but not the least, smoke samples are insufficient to train these
heavy networks, even complemented with such technology as data enhancement and
transfer learning [47–49].

In fact, smoke does have distinctive colors, textures and shapes, which is the reason
the traditional methods work. Since color, texture and shape are effective to distinguish
smoke from background, there is no suitable human-crafted feature to cover all scenar-
ios and convolutional networks can automatically extract features from a large number
of samples, researchers try to take the both advantages of these methods. Wang et
al. [50] input RGB and HSI images into 2 residual networks and made judgments by
the integrated outputs. Maksymiv et al. [51] assumed that smoke textures are unique,
so they located the candidate areas by AdaBoost and LBP and determined whether
there is smoke by a classic convolutional network. Chen et al. [52] extracted static
textures using a convolutional network and integrated them with dynamic textures to
reduce false detection. Zhao et al. [53] found candidate areas by saliency technology
and determine whether the saliency regions have smoke by AlexNet [54–56].

Inspired by these works, we propose a smoke recognition neural network which try
to learn separate features by decoupled sub-networks and make judgements by com-
prehensive features [57–61]. Two separate features, color and texture, are extracted
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by 2 sub-networks. The color sub-network automatically extracts color features with
maximum inter-class differences and minimum intra-class differences based on multi-
layer 1×1 convolution. The texture sub-network automatically extracts spatial features
such as textures and shapes on each color channel. The network is trained alternately
by strong supervision with pixel-level labels and weak supervision with image-level
labels [62–68]. Validated by experiments, the proposed network achieves a good per-
formance than the previously mentioned smoke detection methods.

To summarize, we make the following contributions to the field:

• We achieve an outstanding accuracy for smoke detection by decoupling a end-
to-end neural network, a black block, into several functional sub-networks, a
serial of gray blocks. That means that the composite features are decoupled
into almost independent ones, which leads to a more lightweight and accurate
network. These features are still a bit more than the human-crafted features, but
cover almost all cases and improve the detecting accuracy remarkably. On the
other hand, though the detection accuracy of the proposed method is just a bit
higher than the classic neural networks, the weight is much lighter than the one
of the latter. Slight weight means less data dependency, less computation and
easy deploying.

• The color sub-network generates a color mode with maximum interclass dif-
ferences and minimum intraclass differences by a neural network, which cover
wider range than such traditional color models as RGB, YCbCr, CIE Lab, HSI,
YUV and dark channel. After all the neural network with nonlinear function
could learn to map a complex space into a simple one.

• The texture sub-network disassembles smoke textures into multiply channel with-
out mixture and finally assembles these texture features into shape features,
which is a impossible task for human-crafted methods and difficult to interpret
but good at discriminating smoke from background.

This paper is organized as follows. Section 2 presents related work. Our proposed
approach for smoke detection is illustrated in Section 3 and Section 4. Section 5 in-
troduces the details of the training process, and the the experiments of the proposed
network and other compared methods are described in Section 6. Finally, we conclude
the paper in Section 7.

2 Related Work

2.1 Traditional Human-Crafted Features
Color, texture, and shape are typical human-cratfed features used to detect smoke. In
pioneering work [16–19, 69–72], authors built smoke recogning model with multiple
color information, including RGB, YCbCr, CIE Lab, HSV, HSI, YUV, and dark chan-
nels. Chen et al. [73–76] built smoke recognition model on every channel in RGB
color space. Appana et al. [35]. thought that HSV is more suitable than RGB for
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smoke detection and designed a color model in this color space. Zhao et al. [77] at-
tempted to integrate the both advantages of RGB and HSV color spaces and made up
a smoke color model in these two color spaces. Deng et al. [78] interpreted the em-
pirical thresholds in a new model using k-means algorithm, and the proposed method
clustered smoke pixels in an experimental color space. Zhang et al. [79] used gray
and red values to find fire and smoke, and segmented the interesting regions using the
Otsu method. Their experiments showed that color feature was too sensitive to thresh-
olds. If the similarity among adjacent pixels is taken into consideration, the detection
may be more robust. In fact, texture is such a feature dependent on adjacent context
information. Fujiwara et al. [24] thought smoke was self-similar and discovered the
distinguishing features by the fractal encoding method. Maruta et al. [30] thought
that smoke was a self-affine fractal and differed smoke texture from non-smoke tex-
ture through the wavelet transform and the Hurst exponent. Toreyin et al. [80] thought
that smoke regions were convex and their edges produced local extrema in the wavelet
domain. Appana et al. [35] modeled smoke texture using the coefficients of Gabor.
Yuan et al. [40] quantized the directional derivatives into ternary values to generate
local ternary patterns (LTP), concatenated all joint histograms from different orders to
propose high-order local ternary patterns (HLTP) and proposed HLTP based on magni-
tudes of noise-removed derivatives and values of center pixels (HLTPMC). Alamgir et
al. [81] proposed a method that combined local binary patterns with the cooccurrence
of texture features in the RGB color space to characterize the diverse manifestations of
smoke. Piccinini et al. [82] proposed that the decreases of energy ratios in the wavelet
domain between the background and current images represented the variations in the
texture level and provided a clue for detecting smoke; they modeled this texture ratio
for temporal evolution using a mixture of Gaussians. Tian et al. [83] separated a frame
into quasi-smoke and quasi-background components, represented these components by
dual dictionaries, and solved the detection as a convex optimization. In addition, they
constructed texture features as a concatenation of the respective sparse coefficients. Wu
et al. [84] represented smoke components in sparse coefficients on a learned smoke dic-
tionary for block candidates, and selected the discriminative feature with respect to the
sparse coefficients [85–89].

2.2 Convolutional Neural networks
Some researchers have adopted multiple convolutional neural networks (CNNs) to
smoke detection in recent years [90–94]. In 2015, Hohberg [95] used LeNet, Caf-
feNet, and GoogleNet with diverse inception modules to detect smoke. In 2016, Frizzi
et al. [44] built a network that was very similar to the well-known LeNet-5 with in-
creased feature maps in the convolution layers. In the same year, Tao et al. proposed a
network consisted of 5 convolutional layers and 3 fully connected layers, which in fact
was the transferred AlexNet for binary classification task. [96]. In 2017, Filonenko et
al. [97] evaluated such CNNs as AlexNet, Inception-V3, Inception-V4, ResNet, VGG,
Xception, in a diverse range of possible scenarios, which was similar to the work of Ho-
hberg [95]. The experments showed that inception-based networks achieved the high-
est performance. Yin et al. [45] proposed a 14 layers’ normalized convolutional neural
network (D-NCNN), which improved the convolutional layer in the traditional CNNs
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into a batch-normalized convolutional layer and alleviated the data imbalance prob-
lem with data augmentation skills. Based on saliency technology, Zhao et al. [53] first
found candidate regions in the saliency image, then made the decision about whether
there existed smoke in the regions using a CNN modified from AlexNet. Similarly,
Maksymiv et al. [51] located candidate regions using traditional methods, such as Ad-
aBoost and LBP, and determined whether there were smoke by a convolutional net-
work. In 2018, Dung et al. [98] first located moving areas, then determined whether
these moving areas were similar to smoke using a series of cascaded classifiers to in-
tegrate features such as color, region-growing, area size, and edge energy, and finally
made decisions using a CNN [99–108]. In 2019, Yuan et al. [109] cascaded 11 basic
blocks followed by a global average pooling and a 2D fully connected layer to detect
smoke. The basic block was consisted of several parallel convolutional layers with the
same number of filters but different kernel sizes for handling scale invariance. Then
they added all normalized outputs from multiscale parallel layers and activated the re-
sult as the final output of the block. Gu et al. [110] established a CNN with two paths,
one path was used to extract texture and the other one was used to extract contours.
Then, the output of the two sub-networks were integrated to detect smoke. Wang et
al. [50] thought that color information was important for the task of smoke detection,
thus they built a parallel deep residual network based on the R, G and B components of
RGB image and the H, S and I components of HSI transform image to adaptively ex-
tract color features. Based on this strategy, the discriminative ability for distiguishing
smoke-like objects and background was enhanced. Ba et al. [?] noticed that differ-
ent color channels had different discriminative abilities and they applied an attention
model to these color channels. Besides, to the best of our knowledge, no poineering
work has adopted CNNs to extract texture features separately. Usually, texture features
are extracted simultaneously with color features using deep networks in an end-to-end
fashion.

2.3 Networks with Decoupled Convolutions
When CNNs extract features, multiple kernels on multi-channel 3D feature maps al-
ways are applied to color and spatial simultaneously [?, 111–116]. In recent years,
diverse convolution operations are proposed to extract useful features in a more flex-
ible manner. For example, Chollet et al. [?] decomposed the standard convolution so
that the feature extraction operations can be separately and independently performed on
single channel feature maps and different channels. More specifically, multiple 1× 1
convolution kernels were applied on feature maps, then the outputs were organized
into 3 or 4 independent spaces to reduce the number of feature maps. Subsequently,
these individual feature maps were handled with standard 3× 3 or 5× 5 convolution
kernels. Besides, Howard et al. [?] also proved that depth-wise separable convolution
was superior to decoupling the channel and spatial dimension.

Inspired by the aforementioned methods, We decouple the composite features into
color features and texture features through two individual steps [117–121]. In order to
find the best color mode, the single layer 1×1 convolution is cascaded into a multilayer
1× 1 convolution, and a nonlinear operation is added after every 1× 1 convolution.
Therefore, this step does not reduce the number of channels but finds significant color
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channels. Then, the texture features are extracted on the channels with significant in-
terclass difference. Finally, whether smoke or fire occurs in the scenario is determined
according to the synthetic features [122–127].

3 Methods
The space of human-crafted features is too simple to cover all smoke samples, on the
other hand the classic CNNs have too many parameters. To find suitable features to
represent smoke, the proposed algorithm based on color features and shape features
can be described as follows:Js(xs)

{
>= 0 smoke
< 0 non− smoke

xs = xc∪ xa

(1)

where Js is the classification function in our decoupled network, xc and xa are the color
features and the texture features respectively, and xs is the composite features. We
define human-crafted features xh as the union of the human-crafted color features xhc,
human-crafted shape features xha and other features xhx as follows:

xh = xhc∪ xha. . . ∪ xhx (2)

Generally, the human-crafted features xh is a small subset of the proposed features
xs, which is a small subset of the compound and huge features xn. xn are usually
extracted by aforementioned classic deep neural networks. So,

xhc ⊂ xc

xha ⊂ xa

xh ⊂ xs ⊂ xn

(3)

The features xs are more accurate to describe smoke than the human-crafted features
xh, and much more compact than the network features xn. So the proposed network try
to achieve a better trade off between efficiency and effectiveness [128–133].

4 Decoupled Neural Network for Smoke Detection
The proposed network is composed of a color sub-network and a texture sub-network.
The color sub-network is trained to select the color features xc with maximum inter-
class difference and minimum intra-class difference; the texture sub-network is used to
extract the texture features xa on every color channel. A concatenation layer is used to
integrate color features from the color sub-network and texture features from the texture
sub-network. Then, estimate every pixel of this composite feature map being smoke or
not. Later these estimation is globally and maximally pooled into a judgement.
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4.1 Color Sub-network
The color channels are transformed with 1×1 convolutions and then nonlinearly acti-
vated:

f i
k = gi−1(∑

m
wi−1

km f i−1
m +bi−1

k ) (4)

where f i
k is the kth color channel of the ith layer, f i−1

m is the mth color channel of the
(i−1)th layer, wi−1

km is the kth convolution kernel from the (i−1)th layer to the ith layer,
wi−1

km is the weight that operates on the mth color channel and output the kth layer, bi−1
k

is the kth bias in the (i−1)th layer, and gi−1 is the nonlinear activation function of the
(i−1)th layer.

Figure 2: Architecture of the proposed color sub-network.

We adopt a neural network with 4 convolution layers to conduct color-conversion,
and the details are shown in Figure (2). There are 2 special points: (1) No pooling
operation is adopted in this sub-network and (2) Swish is adopted as activating opera-
tion to explore the complex color space. So the pixels between the input layer and the
output layer of the color sub-network is one-to-one corresponding. Two dashed boxes
are added at the end of Figure (2) to indicate the probabilities of smoke and fire at
every pixel only based on the color features f 4, which are exploited in the pixel-level
training process but not included in the image-level training process. Figure (3) shows
the activation of this sub-network when a typical sample is fed into this network. It can
be seen that each channel focus on different color information, and the 2nd channel has
no any response with all black.

Figure 3: Five color channels generated by the color sub-network. The top left picture
is the input image, and the others are the five color channels images of the output layer.
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4.2 Texture Sub-network
The feature flow of the texture sub-network is shown in Figure (4), which extract tex-
ture features on spatial space without inter-channel mixing.

Figure 4: Architecture of the proposed texture sub-network.

In order to enrich the texture features, the texture sub-network expands each chan-
nel to 2 or 3 channels in each layer and the max pooling is performed to enlarge the
receptive field. Regularization is conducted after each convolution operation, and the
activating function Relu is adopted after the regularization operation. To avoid over-
fitting, some neural units are dropout after activation function. These operations make
up a convolution block.

Figure 5: A typical layer of the texture sub-network which is denoted as 32. The texture
features are extracted in each channel without any combination among channels.

The texture sub-network is stacked by 5 convolution blocks, and each block has two
or three convolution kernels and a max pooling operation. The size of all convolution
kernels is 3×3. And a typical layer is shown in Figure (5).

The convolution operation adopted in the ith layer is formulated as follows:

f i
km = gi−1(wi−1

km f i−1
m +bi−1

km ) (5)
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where f i
km is the (k∗m)th texture channel in the ith layer, f i−1

m is the mth texture channel
in the (i− 1)th layer, wi−1

km is the kth convolution kernel from the (i− 1)th layer to the
mth texture channel of the ith layer, bi−1

km is the (k ∗m)th bias term in the (i−1)th layer,
and gi−1 is the nonlinear activation function in the (i−1)th layer.

4.3 Batch Regularization
Currently, researchers generally utilize mini-batch stochastic gradient descent algo-
rithms to learn network parameter when training deep neural networks. The training
effect is correlated with the covariance in batches. So scaling and migration are adopted
to reduces the variation in intra-covariance in batches before the nonlinear activation
function. The operation is called batch regularization. The mean f̄ i

m and the variance
(δ 2)i in batches are computed as follows:

{
f̄ i
m = 1

Nb
∑

Nb
j=1 f i

jm

(δ 2)i = 1
Nb

∑
Nb
j=1( f i

jm− f̄ i
m)

(6)

where f̄ i
m is the mean of the mth feature of the ith layer, Nb is the number of samples in

a batch , and f̄ i
m is the mth feature of the jth sample in the ith layer. Thus, each feature

is regularized as follows:

f̂ i
m =

( f i
m− f̄ i

m)√
(δ 2)i +ζ

(7)

where ε is a small positive constant to improve stability.
Regularization reduces the difference between samples. Therefore, rm and βm are

introduced to recover the original samples for each feature. Batch regularization con-
sists of 2 steps, scaling and migrating:

BN( f i
m) = γm f̂ i

m +βm (8)

where BN( f i
m) is the output of batch regularization.

4.4 The Concat Layer
The feature maps of the color sub-network and the outputs of every pooling operation in
the texture sub-network are pooled into same size and then integrated into 470 feature
maps. That is,

f 19 = [MP16( f 4), MP8( f 7), MP4( f 10), MP2( f 14), f 18, f 21] (9)

where f 4 is the output of the color sub-network, f 7, f 10, f 14, f 18 and f 21 are the
features after the 1st , 2nd , 3rd and 4th pooling layer. In the network, f 22 is the concat
feature, and MP16, MP8, MP4 and MP2 are the max pooling with striding sizes of
16×16, 8×8, 4×4 and 2×2, respectively.
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4.5 Global Max Pooling
The concatenated feature maps, f 22, are assembled into 4 feature maps, f 23, with a
Depthwise Conv2d operation. In fact, this layer integrates the 470 features into a
combo feature. As before, a dropout operation is adopted to reduce overfitting and
improve the generalization ability. Inspired by [134], global max pooling is adopted to
select the largest value from the 2D feature map as the output, and the 2D feature map
is transformed into a one-dimensional vector. Thus, this process is formulated as:

f 24
m = global max pooling( f 23

j,m) (10)

where f 24
m is a vector with 4 scalar, f 23

j,m is the value of the jth pixel in the mth feature
of the 23th layer, whose size is 16×16, and m is the serial number of the channels.

4.6 Output Layer
A softmax function is used to determine whether smoke or fire happens in the input
image. The probability of smoke ps is

ps =
1

f 24
j,m

∑[e f 24
j,m ] (11)

where f 24
j,m, a scalar, is the output of the 24st layer.

4.7 Loss Function
The loss of the network JA(W ) is the sum of the smoke loss Js(Ws), the fire loss J f (Wf ),
and the L2 norm of all trainable parameters in the network

Js(Ws) =− 1
N ∑[Ls log(ps)+(1−Ls) log(1− ps)]

J f (Wf ) =− 1
N ∑[Ls log(p f )+(1−L f ) log(1− p f )]

J(WA) = λsJs(Ws)+λ f J f (Wf )+λw||WA||2
(12)

where ps and p f are the smoke probability and the fire probability detected by the
network; Ls and L f are the image labels of smoke and fire; Ws, Wf and WA are the
trainable parameters of the smoke path, fire path and the union, respectively, and λs,
λ f and λA are the weight coefficients. The L2 norm attempts to smooth the training
process and constrain the parameter space.

{
Wt+1 =Wt +Vt

Vt = MuWt −Lr∇d(Wt)
(13)

where t is the number of iterations, Wt+1 and Wt are the network parameters at the t +1
and t turns, respectively, Vt is the parameter adjustment, Mu is the momentum, which
is generally 0.9, Lr is the learning rate, and ∇d(Wt) is the parameter gradient.
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4.8 Validation accuracy
The validation accuracy As and A f are defined as:{

As =
1

Nb
∑

Nb
q=1 |Ls

q−Ps
q |

A f =
1

Nb
∑

Nb
q=1 |L

f
q −P f

q |
(14)

where Nb is the number of samples in a batch, Ls
q and L f

q are the labels of smoke and
fire, and Ps

q and P f
q are the predicted probabilities of smoke and fire.

5 Network Training
This network, especially the color sub-network, should be sufficiently trained by abun-
dant pixel-level samples. Labelling pixel-level samples is time consuming, difficult and
expensive. Thus, image-level annotated samples, which are cheap and plentiful, are
adopted to make up the pixel-level samples. So, a complex training process is adopted
to train the color and texture sub-networks with both pixel-level annotated images and
image-level annotated samples.

5.1 Training Dataset
Our training dataset contains two subsets. The pixel-level labeled subset includes 241
images containing smoke and fire, 1,283 images with smoke but no fire, 359 images
with fire only, and 1,042 images without smoke and fire, totally 2,925 samples. The
image-level annotated subset contains 1,085 images of ”smoke-fire”, 29,476 images of
”smoke-no-fire”, 653 images of ”no-smoke-fire”, and 41,537 images of ”no-smoke-no-
fire”, which are selected from ImageNet2012, COCO2014 and ILSVRC2012, totally
83,751 samples.

To reduce the influence of illumination, a min-max regularization is adopted as
following:

f 1
i = ( f 0

i −min( f 0))/max(( f 0)−min( f 0)) (15)

where f 0
i is the value of the pth pixel of layer 0, f 1

i is the normalized value, and max( f 0)
and min( f 0) are the maximum and the minimum pixel values in each sample.

To increase the number of categories with less samples, 210-degree random rota-
tions and random brightness shifts within the range of +10 and -10 are performed. So
every categories have similar image samples.

5.2 Training Process
There are 4 steps in the network training process. At the 1st step, the color sub-network
is trained N1 times with the pixel-level labeled subset; at the 2nd step, the color sub-
network and texture sub-network are trained N2 times with the pixel-level labeled sub-
set; at the 3rd step, the whole network is trained N3 times with the image-level labeled
subset; Finally, the entire training is conducted N4 times.
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The pixel-level labeled subset is used at the 1st and 2nd steps to classify every pixel
according to the pixel features. Therefore, 2 classification layers are inserted after the
color sub-network and the texture sub-network. The output of the color sub-network is
convoluted into a 2-channel feature map with the same size by [1,1,5,2] convolutional
kernels. One channel is the smoke probability of every pixel, and the other channel is
the fire probability. The loss functions Js

1 of smoke and J f
1 of fire are

Js/ f
1 (W 1) = ∑

s/ f
∑
i j
[Ls/ f

i j log(ps/ f
i j ) +

(1−Ls/ f
i j ) log(1− ps/ f

i j )]+λ1||W 1||2
(16)

where s/ f denotes smoke or fire in the 2 output channels and in the labels, (i, j) is the
pixel coordinate, ps/ f

i j is the probability of pixel pi j in the s or f channel, Ls/ f
i j is the

label of pi j for smoke or fire, λ1 is a weight factor, and ||W 1||2 is the L2 norm of the
trainable parameters of the color sub-network.

The output of the texture sub-network, f 18, is also convoluted into a 2-channel map
by [1,1,120,2] convolutional kernels. The classification layers similar to the ones of
color sub-network are added after the texture sub-network. However, the sizes of the
feature maps are different. The loss functions Js

2 and J f
2 of smoke and fire are

Js/ f
2 (W 2) = ∑

(s/ f )2

∑
i j
[L(s/ f )2

i j log(p(s/ f )2
i j ) +

(1−L(s/ f )2
i j ) log(1− p(s/ f )2

i j )]+λ2||W 2||2
(17)

whose parameters are similar to the ones of Equation (16).
The validation accuracy of smoke (As

1) and fire (A f
1 ) are

Rs/ f
i j =

{
0, ps/ f

i j < 0.5

1, ps/ f
i j > 0.5

As/ f
1/2(W

1) = (2× 1
N ∑i j L×R+δ )

/( 1
N ∑i j L×L+ 1

N ∑i j R×R+δ )

(18)

where N is the number of pixels in the image sample, and δ is a very small constant to
avoid dividing by zero.

The image-level labeled subset is used at the 3rd stage to train the whole network
through weak supervision.

The detail training procedures is shown in Figure (6).

5.3 Hyperparameters
The input image size is [256,256,3], the batch size is 32, and the learning rate decreases
exponentially with an initial learning rate of 0.01 and a decaying coefficient of 0.9. The
dropout rate is set as 0.6 in the training stage and 1 in the predicting stage. The Adam
optimizer is adopted to optimize the network parameters.
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Figure 6: Training procedures of the proposed network.

5.4 Learning Curve
Taking N1,N2,N3 and N4 as 1, 1, 10 and 16,000, respectively, the training and validating
accuracy during the training process is shown in Figure (7). Figure (7a) illustrates the
training process of smoke with 16,000 iterations, and the highest validating accuracy
of smoke is 0.96; Figure (7b) shows the same training process of fire, and the highest
validating accuracy is 0.99.

Figure 7: Learning process of the decoupled neural network with the color sub-network
3× 9× 36× 11× 5. (a) The highest validating accuracy of smoke is 0.96. (b) The
highest validating accuracy of fire is 0.99.

6 Experiment
To test the proposed network, which is abbreviated as DNNSD, three experiments are
conducted: the 1st compares the detecting accuracy between DNNSD and some classic
traditional algorithms; the 2nd compares the detecting accuracy between DNNSD and
some classic neural networks; and the 3rd analyzes the impact of the network archi-
tecture on detecting accuracy. Before these comparison, the experimental settings are
introduced. At the end of this section, what the network focuses on are displayed. Last
several successful and failure cases of DNNSD are both demonstrated.
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6.1 Experimental settings
6.1.1 Validating Dataset

The validating dataset also consists of images with four different classes: “smoke-with-
fire”, “smoke-without-fire”, “non-smoke-with-fire”, and “non-smoke-without-fire”. The
images with smoke or fire are randomly selected from the publicly available smoke
database [135–138]. The non-smoke-without-fire images are randomly selected from
ImageNet2012, COCO2014 and ILSVRC2012. The dataset comprises of 7231 im-
ages with 1917 smoke-with-fire images, 1949 smoke-without-fire images, 1541 non-
smoke-with-fire images and 1824 non-smoke-without-fire images. These samples are
not exerted any data augmentation.

6.1.2 Evaluation Metrics

To evaluate the proposed method, three metrics including hit rate HR, false-alarm rate
FAR and detection accuracy DR are defined as follows:

HR =
Pp
Qp
∗100%

FAR =
Np
Pp
∗100%

DR =
Pp+Nn
Qn+Qp

∗100%

(19)

where Qp and Qn are the number of positive and negative samples; Pp is the number
of correctly detected positive samples, Np is the number of negative samples classified
as positive samples, and Nn is the number of correctly classified negative samples. The
higher the hit accuracy HR and detection rate DR are, or the lower the false-alarm rate
FAR is, the better detection results the network can achieve.

6.1.3 Computing Platform

All training and validating phases are performed on a computer with an Intel(R) Core
i7-6700 CPU at 3.40 GHz, an NVIDIA GeForce GTX 1080Ti, the operation system of
ubuntu 16.04 and the framework pytorch 1.4.0.

6.2 Comparison with Classic Human-Crafted Algorithms
In order to evaluate DNNSD, some traditional methods are adopted to train and vali-
date on the same datasets. Inspired by [51] and [84], the HSV color model is utilized to
locate the candidate regions, and LBP and AdaBoost are adopted to describe the smoke
texture. HSV is transformed from the RGB color space, and the pixels whose satura-
tion component is between 0 and 0.28 and whose value component is between 0.38
and 0.985 are thought to be smoke. This experience is referenced from [35]. Inspired
by [139] and [140], MSER and SLIC are utilized to locate the candidate regions, and
the texture features are extracted using wavelet transform. Later, SVM is conducted
on the histograms of all texture features in the candidate regions to determine whether
there is smoke. So, there are 4 methods, color+LBP+SVM, color+AdaBoost+SVM,
MSER+Wavelet+SVM and SLIC+Wavelet+SVM, are conducted for the comparison.
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Methods HR(%) DR(%) FAR(%)
Color+LBP+SVM 79.50 77.69 9.21
Color+AdaBoost+SVM74.31 75.76 8.38
MSER+Wavelet+SVM81.06 80.18 6.13
SLIC+Wavelet+SVM 83.85 82.21 7.92
DSNN(Ours) 98.13 97.47 1.76

Table 1: Detection accuracy of the decoupled neural network and the 4 traditional
methods

Deep CNNs ResNet50 [141] Xception [142] InceptionV3 [143] MobileNet [144] DNNSD
Weight 99M 88M 92M 17M 0.56M

Parameters 25,636,712 22,910,480 24,851,784 4,253,864 136,873
As 0.84 0.86 0.90 0.80 0.96
A f 0.87 0.88 0.89 0.78 0.99

Table 2: Performance of the decoupled neural network and classic deep neural net-
works

The results are shown in Table 1. The AR, HR and FAR of Color+LBP+SVM are
79.50%, 77.69% and 9.21%, respectively; the corresponding AR, HR and FAR of
Color+AdaBoost+SVM are 74.31%, 75.76% and 8.38%; the AR, HR and FAR of
MSER+Wavelet+SVM are 81.06%, 80.18% and 6.13%; and the AR, HR and FAR
of SLIC+Wavelet+SVM are 83.85%, 82.21%, and 9.92%. The best result is achieved
by DNNSD, and the corresponding measures, AR, HR and FAR, are 98.13%, 97.47%
and 1.76%. It can be seen that the proposed method is much more accurate than these
human-crafted methods.

6.3 Comparison with Classic Deep Neural Networks
To evaluate DNNSD, we fine-tune the pretrained classic deep neural networks, such
as ResNet50 [141], Xception [142], Inception V3 [143], and MobileNet [144], with
2 outputs. One output is the smoke probability, and the other is the fire probability.
Just like DNNSD, one fully connected layer is connect on the bottleneck features of
each model. Each model is trained for 50 epochs and 1,000 batches in a epoch. The
results are shown in Figure (8) and Table 2. The accuracy of the all these fine-tuned
models, ResNet50, Inception V3, Xception, and MobileNet, are inferior to the one of
DNNSD. DNNSD achieves the highest accuracy, As = 0.96/A f = 0.99. In these fine-
tuned models, Inception V3 achieves the highest accuracy, As = 0.90/A f = 0.89 and
MobileNet achieves the lowest As, 0.80, and the lowest A f , 0.79. These results are
different from those reported in [97], in which Xception achieved the highest accuracy
of 1.0 and Inception V3 achieved the lowest accuracy of 0.76. Another very important
benefit of DNNSD is that its weight is only 0.56M, but the corresponding one of the
second best model, Inception V3, is 92M. It can be seen that the proposed network is
much more compact with higher accuracy.
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Figure 8: Learning curves of the fine-tuned ResNet50, Xception, Inception V3, and
MobileNet. The datasets for training and validating are same as the one of the decou-
pled neural network. Among these models, Inception V3 achieves the highest accuracy,
As = 0.90/A f = 0.89, MobileNet achieves the lowest As, 0.80 and the lowest A f 0.78.

6.4 Impact of Network Architecture on Detection Accuracy
To validate the decoupled thought, different network architectures of the color sub-
network and the texture sub-network are compared. When the color sub-network is
varied, the texture sub-network is fixed with the structure 32× 22× 23× 23. When
the texture sub-network is varied, the color sub-network is fixed with the structure
3×9×36×11×5.

6.4.1 Different Architectures of Color Sub-network

3×36×5 3×9×36×5 3×9×64×5 3×9×36×11×5 3×9×36×11×3 3×9×53×17×5 3×9×64×27×13×5
As 0.75 0.82 0.89 0.96 0.94 0.96 0.96
A f 0.92 0.95 0.99 0.99 0.96 0.99 0.99

Table 3: Performance of the decoupled neural network with different color sub-
networks.

32×22×23 33×23×23 22×22×23×23 32×22×23×23 33×23×23×23 32×22×23×23×23
As 0.81 0.83 0.85 0.96 0.96 0.96
A f 0.91 0.96 0.96 0.99 0.99 0.99

Table 4: Performance of the decoupled neural network with different texture sub-
networks.
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In order to find a suitable network structure, the architecture of the color sub-
network is adjusted to change network width and depth, which mean the number of lay-
ers of the sub-network and the number of channels per layer. We use ∏

R
i=1 ni to describe

the structure of the sub-network, which has R layers and ni channels at the ith layer. For
example, a 3×9×36×11×5 sub-network has 5 layers, the number of channels of each
layer are 3, 9, 36, 11 and 5, and the convolution kernels are 1×1×3×9, 1×1×9×36,
1×1×36×11 and 1×1×11×5, respectively. The experimental results are shown in
Table 4. The detection accuracy gradually increases from the 3×36×5 network with
the accuracy As = 0.75 and A f = 0.92; when the structure is 3× 9× 36× 11× 5, the
accuracy is stable with an approximate As = 0.96 and A f = 0.99. If the sub-network
is changed wider and deeper, the accuracy is almost unchanged. However, the fire ac-
curacy A f is always higher than the smoke accuracy As and never drop below 0.92.
The smoke accuracy As is always lower than the one of fire, especially when the sub-
network is shallow, which shows that the fire color space is relatively convergent and
the one of smoke is more emanative. Therefore, shallow sub-networks, which mean
simple transformations in color space, may be insufficient to reach the smoke space.
This is also the reason why these traditional methods which make use of color mod-
els in RGB [16], YCbCr [17], CIE Lab [18], HSV [19], HSI [145], YUV [146], dark
channels [69] could not achieved satisfied accuracy. When the sub-network is deep
enough to contain the whole smoke color space, wider or deeper structure would have
little effects on these 2 accuracy. The structure with sufficient width and depth is
3× 9× 36× 11× 5. Two examples of the training process whose structures of the
color sub-networks are 3×9×64×5 and 3×9×53×17×5, as shown in Figure (9a)
and (9b). The detection accuracy is As = 0.87/A f = 0.99 and As = 0.96/A f = 0.99,
respectively. In the figure, the red lines indicate the learning curve of fire, the blue and
green lines indicate the ones of smoke, the solid lines denote the training accuracy, and
the dotted lines denote the validating accuracy.

Figure 9: Learning curves of the decoupled neural network whose color sub-networks
are 3×9×64×5 and 3×9×53×17×5. (a) 3×9×64×5. (b) 3×9×64×5. The
red lines indicate fire, the blue and green lines indicate smoke, the solid lines denote
the training precision, and the dotted lines denote the validating precision.
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6.4.2 Different Architecture of Texture Sub-network

All convolutions in the texture sub-network are depth-wise convolutions in which the
convolution kernels operate on only one channel without mixing among other channels.
The structure of the texture sub-network is recorded as ∏

R
1 CK , indicating that the sub-

network has R layers, one feature map are transformed into C feature maps in a layer
and convolutions are conducted K times successively in this layer. In each layer, the
convolution expands the channel numbers by 2 or 3 times, and the convolution kernel
is recorded as 3×3×Ci−1×C, where Ci−1 is the number of channels of the previous
layer and C is the expanding time. The following K−1 convolutions do not expand the
channels, and the convolution kernels are 3×3×Ci−1×1.

We vary the sub-network depth R, the channel number per layer C, and the convo-
lution number per layer K to find the best structure of the texture sub-network, and 6
typical results are shown in Table ??. If the network depth R is increased, the highest
detection accuracy of this network improves. But after the sub-network depth is in-
creased to 5 layers, the detection accuracy increases slowly. On the other hand, if the
channel number per layer C increases, the accuracy also improves. Analogously, after
the channel number increases to a certain level, the accuracy increases slowly. If the
convolution number per layer increases, the accuracy improves slightly. Among these
sub-networks, the 32×22×23×23 structure achieve the best accuracy and the lightest
weight.

The training process of 2 examples whose texture sub-networks are 32× 22× 23
and 22×22×23×23, just as shown in Figure (10), and the detection accuracy is As =
0.81/A f = 0.91 and As = 0.85/A f = 0.96, respectively. In this figure, the colors and
line types have the same meaning as in Figure (9).

Figure 10: Learning curves of the decoupled neural network whose texture sub-
networks are 32×22×23 and 22×22×23×23. (a) 32×22×23. (b) 22×22×23×23.
The red lines indicate fire, the blue and green lines indicate smoke, the solid lines
denote the training precision, and the dotted lines denote the validating precision.
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6.5 Visualization of the Color Sub-network and the Texture Sub-
network

6.5.1 Activation of a Typical Sample

To observe what DNNSD cares, feed the network with a sample shown in Figure (11a),
and exhibit the feature maps of the color sub-network, f 4, in Figure (11b) and the ones
of the texture sub-network, f 20, in Figure (11c), respectively. The actual size of f 4 is
(256, 256), and the one of f 20 is (16, 16). The feature maps of the color sub-network
are reduced and the feature maps of the texture sub-network are enlarged by proper
times to illustrate in a same figure. It is confirmed that the feature maps are seriously
activated at the pixels where smoke or fire happen, and suppressed at other pixels. So
the network is effective.

Figure 11: The feature maps from the color sub-network and the texture sub-network.
(a) The original image with the size (256, 256), (b) the feature maps of the color sub-
network with the size (256, 256), and (c) the feature maps of the whole network with
the size (16, 16). (a) and (b) are zoomed out and (c) is zoom in by proper times for this
display.

6.5.2 Maximize the Activation of the sub-networks

To further observe what DNNSD is interested in, a random image is fed into this net-
work and later change its value to maximize the activation of the color sub-network
and the whole network. The activation maximization is defined as

x̂ = argmax
x

‖hij(x,θ)‖. (20)

where x is the random image, hi j is a part of network from the input layer to the jth

channel of the ith layer, and θ is the corresponding sub-network parameters. The 5
input images which maximize the activation of the color sub-network are shown in
Figure (12a) and the ones corresponding to the whole network are shown in Figure
(12b). It can be seen that Figure (12a) is not a pure color image with one single value,
but a dominated color image with a small number of mottling. The typical color values,
which maximize the activation of the color sub-network. So the color features cover a
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little texture information in the color sub-network. Compared with Figure (12a), Figure
(12b) has rich texture. So the texture sub-network pay more attention on texture. On
the other hand, though these 2 sub-network focus on different features, the network is
incompletely decoupled. The first input image at Figure (12b) is corresponding to the
label ”no-smoke-no-fire”, the second one corresponding to the label ”smoke-no-fire”,
the third one corresponding to the label ”no-smoke-fire”, and the last one corresponding
to the label ”smoke-fire”.

1 2 3 4 5
R 111 153 107 89 111
G 111 188 85 164 133
B 111 71 152 140 174

Table 5: The typical values, the color of the most pixels, which could maximize the
activation of the color sub-network.

Figure 12: The input images which maximize the activation of the color sub-network
and the whole network. (a) The 5 input images which maximize the activation of the
color sub-network. (a) The 4 input images which maximize the activation of the whole
network.

Since only 1× 1 filters are adopted at the color sub-network and its pixel of the
feature maps is one-by-one corresponding to the pixel of the input image, the color
sub-network pays its main attention on color and some attention on fine texture. On the
other hand, since the filters of the texture sub-network operate only the separate maps
without any combination among these feature maps, the texture sub-network only pays
its attention at texture. So the color features and the shape features are incompletely
decoupled.

7 Conclusion
In some color modes, smoke can be observed obviously in some special channels. This
is a common knowledge, which can be concluded that every object has its special color
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patterns. So it is helpful for object detection. But in general, color is not sufficient
to distinguish these objects from background. So, color, texture, shape, and other fea-
tures have to be integrated. On the other side, the fashionable neural networks extract
complex and chaotic features to achieve the state-of-the-art accuracy. This method try
to decouple these complex features into several kinds of features, which is effective to
detect not only smoke but also other objects with special color patterns. The novelty of
this work lies in decoupling of an end-to-end complex network to several sub-networks,
each of which extracts only one type of feature. Because these sub-networks are seri-
ally stacked, and the network is trained by some pixel-level samples, the features are
not completely decoupled. The texture features unavoidably make use of the color fea-
tures. In spite of the incomplete decoupling, the proposed network is more effective
and efficient than the other classic networks.
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