
EasyChair Preprint
№ 6606

Dense Nearest Neighborhood Query

Hina Suzuki, Hanxiong Chen, Kazutaka Furuse and
Toshiyuki Amagasa

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 13, 2021

Dense Nearest Neighborhood Query

Hina Suzuki1, Hanxiong Chen2, Kazutaka Furuse3, and Toshiyuki Amagasa2

1 Degree Programs in Systems & Information Engineering,
University of Tsukuba, Japan

suzuki.hina.ss@alumni.tsukuba.ac.jp
2 Dept. Computer Science, University of Tsukuba, Japan

{chx,amagasa}@cs.tsukuba.ac.jp
3 Faculty of Business Administration, University of Hakuoh, Japan

furuse@fc.hakuoh.ac.jp

Abstract. A nearest neighbor (NN) query is a principal factor in ap-
plications that handle multidimensional vector data, such as location-
based services, data mining, and pattern recognition. Meanwhile, a near-
est neighborhood (NNH) query finds neighborhoods which are not only
dense but also near to the query. However, it cannot find desired groups
owing to strong restrictions such as fixed group size in previous studies.
Thus, in this paper, we propose a dense nearest neighborhood (DNNH)
query, which is a query without strong constraints, and three efficient
algorithms to solve the DNNH query. The proposed methods are divided
into clustering-based and expanding-based methods. The expanding-based
method can efficiently find a solution by reducing unnecessary processing
using a filtering threshold and expansion breaking criterion. Experiments
on various datasets confirm the effectiveness and efficiency of the pro-
posed methods.

Keywords: Nearest Neighborhood query · Spatial database · Informa-
tion retrieval · Grid index.

1 Introduction

In multi-dimensional vector data such as spatial databases, a nearest neighbor
(NN) query is a fundamental and important query in many fields, such as data
mining and information retrieval, and it is widely used in various applications,
such as services using pattern recognition, facility information, and map and
navigation services using location information.

Many neighbor searches have been developed from the NN search. Sometimes
users want to search a “dense group” of neighboring points quickly. Examples
are as follows:

– A tourist who wants to visit several stores without moving too much
– A user who wants to find a social networking community whose hobbies and

interests match his own
– A user who wants to identify an accident-prone area near a school

2 H. Suzuki et al.

Fig. 1 shows an example for some neighbor points from a given query q. In (b),
four points nearest to the query are searched, which are obtained by repeating the
single neighbor point search four times. As indicated in this example, searched
points may be scattered in the data space. In (c), a dense group including four
points is searched. This paper addresses the latter type of searches.

(a) (b)

qq

(c)

Fig. 1. (a) Data Points, (b) 4-NN of query q (data points that are emphasized as
triangles), (c) A Dense neighborhood of q

Among the many studies on the efficiency and extension of the NN query, the
most relevant queries for this type are the nearest neighborhood (NNH) query
[1] and balanced nearest neighborhood (BNNH) query [6], which are explained
in detail in Section 2. The BNNH query is an extension of the NNH query that
solves the query of the empty output owing to the strong constraints. However,
the remaining constraints of the BNNH query interfere with users obtaining the
desired output.

In this paper, we propose a novel flexible query, dense nearest neigh-
borhood (DNNH), releasing the above constraints, and three algorithms for
solving the query. One is an intuitive method that uses clustering techniques,
and the other two algorithms provide faster search by exploiting the filtering
thresholds and expansion breaking criteria for group retrieval. To verify the use-
fulness and the efficiency of the proposed methods, we conducted experiments
on a large dataset and compared the performance of the proposed methods.

2 Related Work

The neighborhood search query starts with the most basic (k-)NN query, which
searches for the (k) points closest to the query point, and has been studied in
many ways to improve its efficiency and extension [2][5][7][8]. Intuitively, clus-
tering the dataset and find the nearest cluster answers DNNH query. However,
it is inefficient to run the clustering algorithm whenever a single datum changes.
To compare, we still implement an algorithm based on x-means and believe that
using other clustering algorithms makes no fundamental difference.

Dense Nearest Neighborhood Query 3

The queries that are most relevant to the search for dense neighborhood
groups are the NNH query [1] and BNNH query [6]. When each of these queries
is applied to the dataset in Fig. 1(a), the candidate groups are as shown in (a),
(b) and (c) of Fig. 2.

(a) (b) (c)

�

k = 3 k = 4

Fig. 2. (a) NNH, specifying k = 3 and a fixed radius ρ. Circles with a smaller ρ may
not guarantee 3 points contained (b) BNNH, specifying k = 4 and ρ is changeable.
May enlarge the circles to guarantee 4 points contained and gives up the density. (c)
DNNH

NNH query. The NNH query [1] outputs the smallest distance between the
center of a circle and a query point among the circles that contain more than a
specified number (k) of points within the circle of a specified radius (ρ).
As shown in Fig. 2(a), it is possible to obtain the desired group (triangle mark
points in Fig. 1(c)) by specifying the appropriate parameters. However, in real-
ity, it is not always the case that more than k points are found within the circle
of fixed ρ, which implies that the query obtains an empty result if the appropri-
ate parameters cannot be specified. Estimating the appropriate parameters in
advance is particularly difficult for large datasets.

BNNH query. The BNNH query uses a circle of variable radius to guarantee
that it contains the specified number (k) of points. This is implemented by
finding the circles minimizing the evaluation ∆(C, q) expressed by the following
equation:

∆(C, q) = α∥q − c(C)∥+ (1− α)ρ

Here, c(C) is the center of C, and ρ is the radius of C. ∥q−c(C)∥ is the Euclidean
distance between q and c(C). α is a value for 0 < α < 1, where the closer the
value to 0, the greater the cohesion, and the closer it is to 1, the greater the
distance to q. Unlike NNH queries, BNNH queries allow to enlarge the circle to
guarantee k data in the answer.

However, there is still the problem that the group circle will not be dense
unless an appropriate k is specified. For example, the candidate groups in the
sample dataset (Fig. 2(b)) by BNNH with varying parameters are shown in Fig.
3. The best dense nearby group is group C with parameter k = 4, as shown in

4 H. Suzuki et al.

(a). However, in (b), for parameter k = 5, it returns group C ′, which is neither
dense nor close to the query q.

(a) (b)

k = 4 k = 5

C

C�

Fig. 3. The candidate groups by BNNH with varying parameters. (a) k = 4, (b) k = 5

Therefore, the BNNH query strongly depends on the parameter k, and there
is a high possibility that the desired dense nearby group cannot be obtained if
the appropriate value is not given. Nevertheless, it is difficult to estimate the
value depending on the dataset and query location in advance. To address the
problem that neither NNH nor BNNH guarantees that the answer groups found
are dense, we propose DNNH, which finds a dense group without specifying
the parameters k and ρ. DNNH queries are more flexible than BNNH queries
because they compare dense groups that were retrieved regardless of the number
of points in the group.

3 Dense Nearest Neighborhood Query

Definition 1. (Dense nearest neighborhood query, DNNH). Given a set of points
P and a query point q, the DNNH query returns a group C that minimizes the
value of ∆(C, q).

The total degree of approximation ∆ is defined by the following equation4:

∆(C, q) = ∥q − c(C)∥+ sd(C) (1)

Here, c(C) is the centroid of C, and sd(C) is the standard deviation of C. Com-
pared with the previous studies that used the center and radius of a circle, this
method can accurately represent the variation of points in a group. Moreover,
DNNH overcomes the disadvantage of BNNH such that the searched groups are
not necessarily dense, because it does not require the number of points in each
group.

4 Note that the definition of ∆ is not same as the one of BNNH.

Dense Nearest Neighborhood Query 5

The most difficult part of solving a DNNH query is to efficiently retrieve
dense groups. For example, if we consider how to find a dense group to which a
point p may belong, in the case of the BNNH query, because the number of data
in the group k is specified, we can find it only by performing a number of NN
searches based on k for p. Meanwhile, in a DNNH query, the number of data in
a group is not specified; thus, we must find a dense group from a large number
of combinations including p, and it is NP-hard to find the optimal solution. We
propose three approximate solutions by heuristics — the one is by clustering and
the others are by expanding — for implementing efficient DNNH search.

3.1 Clustering-Based Approach

As the simplest approach for solving DNNH queries, we propose calculating ∆
after clustering all the points. It is important to note here that the DNNH query
is parameter free; therefore, clustering should not take redundant parameters as
well.

X-means is an extension of k-means and is characterized by the fact that
it can estimate the number of clusters and perform clustering simultaneously
without the need to specify the number of clusters in advance, by using the
recursive 2-means partitioning and the stopping criterion based on the informa-
tion criterion BIC. BIC is calculated by the likelihood function and the size of
a dataset, intuitively telling whether it is likely to split a set into two. In this
study, we used an algorithm improved by Ishioka [4]. This algorithm differs from
the original one by Pellog and Moore in that it considers the possibility that the
variance differs among clusters, and it uses approximate computation for some
calculations to enhance the efficiency. The pseudocode is shown in Algorithm 1.

3.2 Expanding-Based Approach

Clustering of large datasets used in the abovementioned approach is time con-
suming. To avoid this, our another approach attempts to retrieve groups from
nearby the query q. Intuitively, points located near the query are more likely
to form the result group. In this approach, we retrieve groups from the query’s
neighborhood and filter points that cannot be answers using the current degree
∆e as a threshold. Using this approach, we briefly repeat the following: (1) Ex-
tract the query neighbor from the dataset, (2) retrieve the dense group to which
the extracted point belongs (Section 3.2.1, 3.2.3), (3) update the threshold for
filtering and remove the points that cannot be answers from the dataset (Section
3.2.2).

3.2.1 Evaluation Metric for Retrieving a Cluster
In this section, we explain how the retrieval of a dense group Cp to which

a point p belongs is performed. In this study, this is achieved by selecting a
dense preferred group from among the groups obtained by expansion using an

6 H. Suzuki et al.

Algorithm 1 X-means Clustering-based Algorithm

Input: P , q, k0
Output: C
1: C,C← ϕ
2: C1, C2, ..., Ck0 ← k-means++ (p, k0) // partition P into k0 clusters
3: for each Ci ∈ {C1, C2, ..., Ck0} do
4: splitClusterRecursively(Ci)

5: for each Ci ∈ C do
6: if ∆(Ci, q) < ∆(C, q) then
7: C ← Ci

8: return C

9: function splitClusterRecursively(C)
10: C1, C2 ← k-means++(C, 2)
11: if BIC(C) > BIC′(C1, C2) then
12: for each Ci ∈ {C1, C2} do
13: splitClusterRecursively(Ci)

14: else
15: Insert C into C

NN search. The problem is to select a group from the enlarged ones based on
the criteria, which we address by designing and using the enlargement index ∆e.

The ∆e is calculated by

∆e(C, pnext) = ∆(C, q) · πe(C, pnext)

where πe(C,P) denotes the expandability of group C in dataset P and is defined
by the following equation:

πe(C, pnext) =
pdmean(C)

pdmean(C) + ndmean(C, pnext)

pdmean(C) =
1(|C|
2

) ∑
pi,pj∈C

∥pi − pj∥

ndmean(C, pnext) =
1

|C|
∑
p∈C

∥pnext − p∥

pnext = arg min
p∈P−C

∥c(C)− p∥

pdmean and ndmean represent the average distance between the samples in the
group and the average distance between the candidate points (pnext) and the
samples in the group, respectively. The candidate point pnext is the point that
has the smallest distance to the center c(C) among the points not in C.

Dense Nearest Neighborhood Query 7

3.2.2 Bounding the Expanding Group
In this section, we explain the conditions under which a point p is removed

using ∆ of an already retrieved group C. Let Cp denote the group to which p
belongs. If min∆(Cp, q) > ∆(∃C, q) holds, the group to which p belongs will not
be preferred to the existing groups, and no further processing of p is necessary.
Therefore, if we can derive min∆(Cp, q) from the information of p, we can de-
termine whether the group is removed by filtering using ∆(C, q). However, in a
DNNH query where the number of data in a group is not specified, ∆ may be
as small as possible depending on the distribution of the data, and it is difficult
to determine the exact filtering threshold. Evidently, it makes no sense to find
dense groups in a uniform distribution; therefore, we assume that the data of Cp

follow a normal distribution.
Based on the assumption that the data of Cp follow a normal distribution,

argmin∆(Cp, q) as C
min
p , we can approximate its centroid and standard devia-

tion. In this case, min∆(Cp, q) can be calculated as follows:

min∆(Cp, q) = ∥q − cmin
p ∥+ sd(Cmin

p) =
∥q − p∥

2
+

∥q − p∥
2α

=
α+ 1

2α
∥q − p∥

The α indicates the sigma rule coefficient, and all points in group Cp are assumed
to be within the radius α · sd(Cp) from the centroid. According to the 68-95-
99.7 rule of the normal distribution, about 95%, 99.7% of the points of Cp are
within the radius 2sd(Cp), 3sd(Cp) from the centroid. Therefore, α = 2 or 3
seems to be effective. Substituting this into min∆(Cp, q) ≤ ∆(C, q), we obtain
∥q − p∥ > 2α

α+1∆(C, q). This leads to the following conclusion.

Theorem 1. A point p locating further than a bound, that is, p which holds the
following in equation:

∥q − p∥ >
2α

α+ 1
min
C

∆(C, q) (2)

can be removed in the filtering process.

3.2.3 Expansion Breaking Criteria
The bound given above is inefficient because it works only in the second and

subsequent retrieval of clusters. For the computation of pdmean, ndmean, the first
group retrieval always continues to expand until the entire dataset is included,
and O(|P |2). This is a problem because the DNNH query does not specify the
group size, which affects the efficiency.

By the definition of ∆e, we know that p of small ∆e suggests that the corre-
sponding group is desired so that we can stop the enlargement process, thereby
reducing the computational cost. Then, we determine that ∆e is small enough.
Under the assumption that C to which p belongs follows a normal distribution,
and they exist within the radius α · sd(C) from the centroid c, when Eq. 3
holds for the expansion point pnext , we can conclude that further expansion is
meaningless.

8 H. Suzuki et al.

∥pnext − q∥ ≥ α · sd(C) (3)

In addition, in the latter half of the cluster retrieval, where the solution is less
likely to be obtained, we aim to further speed up the process by terminating the
expansion when the cluster is found to be less preferable than the current most
preferable cluster Cbest among the retrieved clusters. However, as mentioned in
section 3.2.2, because the DNNH query does not specify the group size, ∆ may
be as small as possible depending on the distribution of the data. For C of a
certain size, it is reasonable to assume that sd(C) monotonically increases with
each expansion. Let C ′ be the cluster of C expanded an arbitrary number of
times; then, sd(C ′) > sd(C) holds by the assumption. Here, if

sd(C) > ∆(Cbest) (4)

holds, then by the definition of∆,∆(C ′) > sd(C ′) > sd(C ′) > sd(C) > ∆(Cbest)
holds. This means that Eq. 4 can be used as expansion breaking criteria to stop
expanding C.

3.2.4 Basic Expanding Algorithm
The basic method is shown in Algorithm 2. In this method, the points of

dataset P are first sorted in order of their distance from the query point q. The
points are extracted from the sorted dataset in order from the top (line 3), and
groups are retrieved as described in Section 3.2.1, 3.2.3 (lines 4, 10-18). After the
retrieval is finished, the points in the group are removed from P as processed
(line 5), the threshold bound is updated and filtered (lines 6–8), and if there
are still unprocessed points, the group is retrieved again (line 2). The process is
terminated when there are no more unprocessed points.

3.2.5 Grid Expanding Algorithm
The problem of the basic method is that the entire process, from indexing to

filtering of the dataset, is point-based, which is inefficient. Therefore, we propose
a grid-based method for preferential search from the neighboring points of query
points and further reduction of the search space in the NN search. The images
are presented in Fig. 4. The figure shows an example of a grid that divides the
space into 4×4 cells. The grid structure allows us to directly refer to the points
in the cells, thereby enabling us to achieve a more efficient refinement of the
search space in the NN search and coherent filtering process for each cell. The
pseudocode is shown in Algorithm 3.

4 Experiments

We conducted experiments to verify the efficiency of the proposed methods.
All algorithms for the solutions presented were implemented in C++. The ex-
periments were conducted on a Windows operating system with the following

Dense Nearest Neighborhood Query 9

Algorithm 2 Basic Expanding Algorithm

Input: P , q, α, kmin , kmax

Output: Cbest

1: bound←∞
2: while P is not empty do
3: p← nearest point ∈ P from q that is nearer than bound in Eq. 2
4: C ← RetrieveCluster(p, kmin , kmax)
5: P ← P − C
6: if ∆(C) < ∆(Cbest) then
7: update bound of Eq. 2
8: Cbest ← C

9: return Cbest

10: function RetrieveCluster(p, kmin , kmax)
11: C ← {p}, Cbest ← C
12: while P is not empty ∧ Eq. 4 is not satisfied do
13: pnext ← nearest point ∈ P from c
14: if Eq. 3 is not satisfied then break

15: if |Cbest | = 1 ∨ ∆e(C, pnext) < ∆e(Cbest , pnext
best) then

16: Cbest ← C

17: C ← C ∪ pnext

18: return Cbest

specifications: Windows 10 Home, with a 2.9 GHz 8-Core Intel Core i7 proces-
sor and memory of 64 GB 1466 MHz DDR4. The real data NE (123,593 data),
RR (257,942 data), and CAS (196,902 data) were provided by the U.S. Cen-
sus Bureau’s TIGER project5. In addition, to measure the correspondence to
the datasets with various distributions, we prepared uniform random data UN
(10000–200000 pts) and a cluster dataset RN. RN is a composite dataset of ran-
dom numbers that follow the standard normal distribution and are scaled and
arranged equally in space as clusters. All these datasets were two-dimensional
and normalized to [0, 1]. Experiments compare the performance of the three pro-
posed methods (x-means clustering-based, basic expanding, and grid expanding)
on real data, scalability, changes in cluster size |C|, α, and distance between clus-
ters. In the grid expanding algorithm, we vary the grid size n and investigate
the appropriate value of n. q was selected randomly from the dataset. Unless
otherwise stated, α = 2, n = 100, the distance between clusters = 1.0, and
the cluster size lower limit kmin = 10. All results are reported as the average
processing time for conducting DNNH queries 10 times.

4.1 Experimental Results

Performance for the real datasets. The results are presented in Fig. 5. The
results of the x-means clustering-based algorithm are “xmeans”; basic expanding

5 http://chorochronos.datastories.org/?q=user/15/track

http://chorochronos.datastories.org/?q=user/15/track

10 H. Suzuki et al.

pruned cell

bound

Fig. 4. Grid-based algorithm

and grid expanding algorighm are “basic” and “grid,” respectively; and “U100”
and “U500” indicate that the cluster size upper limit kmax is set to 100 and
500, respectively. First, it can be observed that the x-means clustering-based
algorithm is the slowest, and the basic expanding and grid expanding algorithms
are the fastest for all datasets. This is especially true for RR, where even the
basic expanding algorithm (kmax = 500), which is the slowest among the basic
expanding and the grid expanding algorithms, is 10 times faster than the x-
means clustering-based algorithm. The fastest algorithm is the grid expanding
algorithm, which is up to three times faster than the basic expanding algorithm.

CAS NE RR

102

103

104

105

Pr
oc

es
sin

g
tim

e
(m

s)

xmeans
basic-U500
grid-U500

basic-U100
grid-U100

Fig. 5. Performance for the real datasets

Effect of dataset size. The results are shown in Figs. 6 and 7. First, the ex-
perimental results for the UN dataset (Fig. 6) show that the x-means clustering-
based algorithm is the fastest when the data size is 10000. However, after 50000,
the basic expanding and the grid expanding algorithms are reversed and be-
come faster. A linear or gradual increase in the execution time is observed in all
algorithms. The fastest algorithm is the grid expanding, which shows a higher
performance than the basic expanding, as the data size increases. The experi-

Dense Nearest Neighborhood Query 11

Algorithm 3 Grid Expanding Algorithm

Input: P , q, kmin , kmax , α
Output: Cbest

1: bound←∞, Pcur ← ϕ
2: cells← get surround cells of q
3: while cells locate in bound do
4: Pcur ← points in cells
5: while Pcur is not empty do
6: p← nearest point ∈ Pcur from q that is nearer than bound in Eq. 2
7: C ← RetrieveCluster(p, kmin , kmax)
8: P ← P − C
9: if ∆(C) < ∆(Cbest) then
10: update bound of Eq. 2
11: Cbest ← C

12: cells← the next round of cells
13: return Cbest

14: function RetrieveCluster(p, kmin , kmax)
15: C ← {p}, Cbest ← C
16: cells← get surround cells of p
17: while cells locate in bound do
18: Pcur ← points in cells
19: while Pcur is not empty ∧ Eq. 4 is not satisfied do
20: pnext ← nearest point ∈ Pcur from c
21: if Eq. 3 is not satisfied then break

22: if |Cbest | = 1 ∨ ∆e(C, pnext) < ∆e(Cbest , pnext
best) then

23: Cbest ← C

24: C ← C ∪ pnext

25: cells← the next round of cells
26: return Cbest

mental results for the RN dataset (Fig. 7) show that the basic expanding and the
grid expanding algorithms are clearly faster than the x-means clustering-based
algorithm when the cluster size |C| = 50 and the increase in the execution time
was also slow. Again, the fastest algorithm is the grid expanding algorithm, which
performed about 100 times faster than the x-means clustering-based algorithm.

Effect of cluster size. The results are shown in Fig. 8. From 10 to 200, the
basic expanding and the grid expanding algorithms are from 10 to 1000 times
faster than the x-means clustering-based algorithm. However, the execution time
of the basic expanding and the grid expanding algorithms increased with an
increase in the cluster size and reversed when the cluster size was 500. For the
x-means clustering-based algorithm, the decrease in execution time as the cluster
size increases can be attributed to the fact that the number of clusters in the
entire dataset decreases owing to the fixed data size, which reduces the number
of divisions by k-means and the amount of BIC computations.

12 H. Suzuki et al.

10K 50K 100K 150K 200K
Data size (pts)

102

103

104

105

Pr
oc

es
sin

g
tim

e
(m

s)

xmeans
basic
grid

Fig. 6. Effect of data size (UN)
(kmax = 500)

10K 50K 100K 150K 200K
Data size (pts)

100

101

102

103

104

Pr
oc

es
sin

g
tim

e
(m

s)

xmeans
basic
grid

Fig. 7. Effect of data size (RN)
(kmax = 1000; |C| = 50)

Effect of the cluster distance. The results are shown in Fig. 9. If the
distance between clusters is x, there is an interval of x clusters between the clus-
ters. Consequently, while the basic expanding and the grid expanding algorithms
are from 10 to 100 times faster than the x-means clustering-based algorithm in
many cases, the performance of the basic expanding and the grid expanding de-
teriorated rapidly when the distance of the clusters was 0.0. This is because the
expansion breaking criteria can no longer function due to the loss of distance
between clusters, but it does function after 0.5, indicating that the proposed
expansion breaking criteria is effective even for small intervals.

10 50 200 500 1K
Cluster size (pts)

100

101

102

103

104

105

Pr
oc

es
sin

g
tim

e
(m

s)

xmeans
basic
grid

Fig. 8. Effect of cluster size
(|P |=10000; kmin =5; kmax =1000)

0.0 0.5 1.0 1.5 2.0
Distance between clusters

100

101

102

103

104

Pr
oc

es
sin

g
tim

e
(m

s)

xmeans basic grid

Fig. 9. Effect of distance of clusters
(|P | = 100000; |C| = 50; kmax = 500)

Effect of sigma rule coefficient α. The results are shown in Fig. 10.
Consequently, it is the fastest when α = 2 or 3 especially in the grid expanding
algorithm. The slowest speed is obtained when α = 1 or 5 because it is quite

Dense Nearest Neighborhood Query 13

small or large value that the expansion breaking criteria or filtering no longer
works.

Effect of grid size n. For example, because the datasets are two-dimensional,
when n = 100, the maximum number of cells is n2 = 100000. The results are
shown in Fig. 11. The cluster size of RN is fixed at 50 (RN-50P) and 200 (RN-
200P). Hence, the fastest execution time was obtained when n = 10, 30 or 50,
and the execution time increased slowly. This is because, when the grid size be-
comes quite large, the cells become smaller than necessary, and the amount of
search and the expansion processing of each cell increases.

1 2 3 5
101

102

103

104

105

Pr
oc

es
sin

g
tim

e
(m

s)

basic-UN
basic-RN

grid-UN
grid-RN

Fig. 10. Effect of α
(|P |=100000; |C|=50; kmax =500)

1 10 30 50 100 300
Grid size

100

101

102

103

104

Pr
oc

es
sin

g
tim

e
(m

s)

NE
UN

RN-50P
RN-200P

Fig. 11. Effect of grid size n
(|P |=100000 (UN, RN); kmax =300)

4.2 Evaluation of the Proposed Methods

Overall, the grid expanding algorithm is the fastest. In particular, in compar-
ison between the basic expanding and the grid expanding algorithms, the grid
expanding algorithm is faster in all results, unless the data size is small or ineffi-
cient parameter settings (such as α = 5) are used . Therefore, the grid expanding
algorithm should be chosen unless there is concern about memory usage or the
small overhead of building the cellular data. Depending on the distribution of
the data, a grid size of approximately 10–50 is considered the most suitable for
achieving a good balance between memory usage and processing efficiency.

However, depending on the distribution of the dataset and the purpose of
the search, the x-means clustering-based algorithm may be a better choice. For
example, the dataset may be sparsely distributed or the cluster size may be larger
than 200. However, in this study, we consider finding a set of nearby facilities
in a location-based service using a spatial database, or finding a set of objects
with attributes similar to those of a particular user in a social network service
(SNS). In these situations, the basic expanding or the grid expanding algorithm
is preferable because it can rapidly detect small- to medium-sized neighborhood
clusters.

14 H. Suzuki et al.

5 Conclusion and Future Work

In this paper, we proposed a DNNH query, which finds dense groups without
severe constraints, and the efficient methods for solving the query: x-means
clustering-based algorithm, basic expanding algorithm, and grid expanding al-
gorithm. The DNNH query can flexibly find more desirable groups for users,
which cannot be achieved by strongly constraining existing problems. Among
the proposed methods, the grid expanding algorithm is the fastest, and it can
contribute to many applications that deal with large datasets.

For future work, we are going to investigate the effect of the expansion break-
ing criteria in distributions with overlapping clusters. We will also extend the
grid based method to high dimension data. For example, we can consider an
approach using density-based clustering methods such as DBSCAN [3] for group
retrieval. It is also under consideration to parallel our algorithms and apply
multi-threaded solution.

References

1. Choi, D., Chung, C.: Nearest neighborhood search in spatial databases. In: 2015
IEEE 31st International Conference on Data Engineering. pp. 699–710 (April 2015).
https://doi.org/10.1109/ICDE.2015.7113326

2. Deng, K., Sadiq, S., Zhou, X., Xu, H., Fung, G.P.C., Lu, Y.: On group nearest group
query processing. IEEE Transactions on Knowledge and Data Engineering 24(2),
295–308 (2012). https://doi.org/10.1109/TKDE.2010.230

3. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD’96(34):
226-231 (1996)

4. Ishioka, T.: Extended k-means with an efficient estimation of the number of
clusters. Data Mining, Financial Engineering, and Intelligent Agents (2000).
https://doi.org/10.1007/3-540-44491-2 3

5. Jang, H.J., Hyun, K.S., Chung, J., Jung, S.Y.: Nearest base-neighbor search on spa-
tial datasets. Knowl Inf Syst 62, 867–897 (2020). https://doi.org/10.1007/s10115-
019-01360-3

6. Le, S., Dong, Y., Chen, H., Furuse, K.: Balanced nearest neighbor-
hood query in spatial database. In: 2019 IEEE International Conference
on Big Data and Smart Computing (BigComp). pp. 1–4 (Feb 2019).
https://doi.org/10.1109/BIGCOMP.2019.8679425

7. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neigh-
bor search using hierarchical navigable small world graphs. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 42(4), 824–836 (2020).
https://doi.org/10.1109/TPAMI.2018.2889473

8. Stanoi, I., Agrawal, D., Abbadi, A.E.: Reverse nearest neighbor queries for
dynamic databases. In: ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery. pp. 44–53 (2000), https://www.semanticscholar.
org/paper/Reverse-Nearest-Neighbor-Queries-for-Dynamic-Stanoi-Agrawal/
cb60aef9f2187d4052b36f99aba6e1b8eca9f4ca

https://doi.org/10.1109/ICDE.2015.7113326
https://doi.org/10.1109/TKDE.2010.230
https://doi.org/10.1007/3-540-44491-2_3
https://doi.org/10.1007/s10115-019-01360-3
https://doi.org/10.1007/s10115-019-01360-3
https://doi.org/10.1109/BIGCOMP.2019.8679425
https://doi.org/10.1109/TPAMI.2018.2889473
https://www.semanticscholar.org/paper/Reverse-Nearest-Neighbor-Queries-for-Dynamic-Stanoi-Agrawal/cb60aef9f2187d4052b36f99aba6e1b8eca9f4ca
https://www.semanticscholar.org/paper/Reverse-Nearest-Neighbor-Queries-for-Dynamic-Stanoi-Agrawal/cb60aef9f2187d4052b36f99aba6e1b8eca9f4ca
https://www.semanticscholar.org/paper/Reverse-Nearest-Neighbor-Queries-for-Dynamic-Stanoi-Agrawal/cb60aef9f2187d4052b36f99aba6e1b8eca9f4ca

	Dense Nearest Neighborhood Query

