
EasyChair Preprint

№ 1365

A Parallel Multi-Keyword Top-k Search Scheme

over Encrypted Cloud Data

Maohu Yang, Hua Dai, Jingjing Bao, Xun Yi and Geng Yang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 3, 2019

A Parallel Multi-Keyword Top-k Search Scheme
over Encrypted Cloud Data ?

Maohu Yang1, Hua Dai1,2, Jingjing Bao1, Xun Yi3, and Geng Yang1,2

1 Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2 Jiangsu Security and Intelligent Processing Lab of Big Data, Nanjing 210023, China

3 Royal Melbourne Institute of Technology University, Melbourne 3001, Australia
yangmh1234@163.com, daihua@njupt.edu.cn, jing874444051@163.com,

xun.yi@rmit.edu.au, yangg@njupt.edu.cn

Abstract. With searchable encryptions in the cloud computing, users
can outsource their sensitive data in ciphertext to the cloud that provides
efficient and privacy-preserving multi-keyword top-k searches. However,
most existing top-k search schemes over encrypted cloud data are the
centralize schemes which are limited in large scale data environment.
To support scalable searches, we propose a parallel multi-keyword top-k
search scheme over encrypted cloud data. In this scheme, the fragment-
based encrypted inverted index is designed, which is indistinguishable
and can be used for parallel searching. On the basis of such indexes,
a Map-Reduce-based distributed computing framework is adopted to
implement the parallel multi-keyword top-k search algorithms. Securi-
ty analysis and experiment evaluation show that the proposed scheme is
privacy-preserving, efficient and scalable.

Keywords: Cloud Computing · Inverted Index · Multi-keywords top-k
Search · Parallel Computing · Searchable Encryption.

1 Introduction

With the rapid development of computer technology and internet application,
data in many areas are growing exponentially, thus the demand for large and
scalable storage and computation is becoming urgent. More and more enter-
prises and individuals outsource their storage and computation to the cloud for
using data anytime and anywhere and saving costs of hardware and software [1].
However, while enjoying the benefits of cloud computing, users have to face the
risk that sensitive outsourced data could be leaked or abused because cloud ser-
vice providers can access the data without authorization. Therefore, data owners
usually encrypt data before outsourcing [2]. Although encryption preserves the

? Supported by the National Natural Science Foundation of China under the grant
Nos.61872197, 61572263, 61672297 and 61872193; the Postdoctoral Science Founda-
tion of China under the Grand No. 2019M651919; the Natural Research Foundation
of NJUPT under the grand No.NY217119; the Natural Science Foundation of Anhui
Province under the grant No.1608085MF127; the University Natural Science Foun-
dation of Anhui Province under the grant No.KJ2017A419.

2 Maohu Yang, Hua Dai, Jingjing Bao, Xun Yi and Geng Yang

security of data, it also affects the data availability. In this scenario, searchable
encryptions (SE) [3–18] that guarantee the security and availability of data have
been proposed.

At present, most solutions are based on the vector space model (VSM) and
TF-IDF model which extract keywords of documents into “points” in multi-
dimensional space and describe the relevance scores between documents and
search keywords. The top-k documents are determined by comparing the rele-
vance scores. However, if a scheme calculates the relevance scores between every
document and the search keywords, it will cost a large amount of time and
computing resources. To improve search efficiency, researchers have provided a
variety of schemes. Song et al. [3] proposed the first SE scheme where users need
to traverse entire documents while searching, and the search time is proportional
to the amount of data set. Goh et al. [4] proposed a search scheme based on the
Bloom Filter. Curtmola et al. [5] proposed an efficient SE scheme based on the
inverted index, but using this scheme could expose the privacy of keywords.

Cao et al. [6] proposed a new structure to adapt to multi-keyword search,
but it’s search time increases exponentially when document size grows. Xia et
al. [8] proposed a secure and dynamic multi-keyword ranked search scheme which
can reduce the large inner product calculation by pruning function. Jiang et
al. [9] proposed a secure ciphertext search scheme based on the inverted index,
which avoids calculating the relevance scores of irrelevant documents. Chen et
al. [10] proposed a method based on data mining, which can achieve linear time
complexity with the exponential growth of the document set. Our previous work
[11] also proposed a hierarchical agglomerative clustering tree index scheme,
which can perform an effective and verifiable ranked search.

However, the above existing schemes need to load the complete indexes into
memory at one time for performing search. Because the index size is proportional
to the number of documents, when the scale of documents grows to a certain
level, the memory will be overflow. Moreover, the indexes of those schemes should
be kept in integrity and cannot be segmented, which also limits their scalability.
To conquer such limitation, we propose a parallel privacy-preserving top-k search
(PPTS) scheme, which can meet the requirements of large scale data. First, we
propose a fragment-based encrypted inverted index model. In data preprocessing
and outsourcing phase, the indistinguishable fragment-based encrypted inverted
indexes are constructed and outsourced to the cloud together with the encrypted
documents. In the search phase, the Map-Reduce-based distributed computing
framework is adopted and the parallel multi-keyword top-k search algorithms are
proposed. After that, we analyze the security of PPTS and perform experiments
to evaluate its efficiency.

The contributions of this paper are: 1) We present the fragment-based en-
crypted inverted index model which is indistinguishable through adding random
paddings. 2) By adopting the Map-Reduce-based distributed computing frame-
work, the parallel multi-keyword top-k search algorithms are proposed. 3) We
analyze the security and evaluate the search performance. The result shows that
the proposed scheme can realize parallel search while preserving data privacy.

A Parallel Multi-Keyword Top-k Search Scheme over Encrypted Cloud Data 3

2 MODELS AND PROBLEM FORMULATION

2.1 Notations and Preliminaries

– D : The document set, D = {d1, d2, ..., dn}. D̃ is the encrypted form.
– n : The number of documents in D.
– W : The dictionary, namely, the set of keywords, denoted asW = {w1, w2, ..., wm}.
– m : The number of keywords in W .
– Q : The query consisting of a set of the search keywords, Q={w1, w2, ..., wq}.
– Vdi : The m-dimensional document vector of di. Ṽdi is the encrypted form.
– V : The document vector set, V={Vd1 , Vd2 , ..., Vdn}. Ṽ is the encrypted form.
– Vq : The m-dimensional query vector for Q. Ṽq is the encrypted form.
– TD : The trapdoor for the search request.
– RS : The result of the search.
– Pi,j : The posting corresponding to the document dj containing keyword wi,

Pi,j =< id(dj), Vdj >. P̃i,j is the encrypted form.

– PLi : The posting list of keyword wi, PLi = {Pi,1, Pi,2, ..., Pi,δ}. P̃Li is the
encrypted form.

– δ : The number of postings in PLi.
– ε : The fragmentation parameter.
– F : The fragmented documents of D according to ε, F = {F1, F2, ..., Ft}.
– t : The number of fragments of F .
– β : The number of posting list in Fi.

Vector Space Model(VSM) and TF-IDF Model. The VSM and TF-
IDF are widely used in multi-keyword privacy-preserving top-k search [6–13].
The term frequency (TF) refers to the number of times a given keyword or term
appears in documents, while the inverse document frequency (IDF) is equal to
the total number of documents in the set divided by the number of documents
containing a given keyword. VSM is used to convert a given document di and
search keywords Q into vectors Vdi and Vq. The calculation of those vectors can
be referred to [6–13].

Secure Inner Product Operation. This scheme uses the secure inner
product operation to calculate the inner product of two encrypted vectors with-
out knowing the plaintext value. The basic idea of this is as follows. Assuming
that p and q are two n-dimensional vectors and M is a random n×n-dimensional
invertible matrix. M is treated as the secure key. The encrypted form of p and
q are denoted as p̃ and q̃ respectively, where p̃ = pM−1 and q̃ = qMT . Then we
have p̃ · q̃ = (pM−1) · (qMT) = pM−1(qMT)T = pM−1Mq = p ·q, i.e. p̃ · q̃ = p ·q.
Therefore, we have that the inner product of two encrypted vectors equals the
inner product of the corresponding two plaintext vectors.

Inverted Index. Inverted index can be used to quickly find those documents
containing a given keyword by mapping to improves search efficiency. It consists
of dictionary and posting list. The dictionary is a collection of all keywords that
appeared in the D. Each index item in inverted index records a keyword and a
pointer to the posting list, which is the entry of posting. The posting list records
a list of all documents that contain a specified keyword. Each record in the
posting list is a posting that describes the information of the document.

4 Maohu Yang, Hua Dai, Jingjing Bao, Xun Yi and Geng Yang

2.2 System Model

The system model is shown in Fig.1, which is the same as [6–11], [14–16]. It in-
cludes three different entities. Data owners(DO) are responsible for constructing

fragment-based encrypted inverted indexes (Ĩ), and outsourcing the encrypted
indexes and documents to the cloud server (CS). CS provide the search service
in parallel according to the search request submitted by data users (DU). DU
construct a search trapdoor based on its needs and send it to CS, then wait for
CS to return the search results.

Fig. 1. The system model

2.3 Problem Description

We adopt the “Honest-but-Curious” threat model. In this model, CS honestly
and correctly executes instructions in the designated protocol. However, CS can
analyze stored data and try to snoop on sensitive information.

The search result of PPTS is represented as RS. Vq is the query vector of Q.
Vdi and Vdj respectively represent the document vector of di and dj . Then, RS
meets the requirement:

|RS|= k ∧ ∀di, dj(di∈ RS∧ dj ∈ (D−RS))→ Vdi ·Vq>Vdj ·Vq.

The PPTS should satisfy three goals. First, the contents are directly seen
by CS only include encrypted documents, indexes, and trapdoors, that is, the
confidentiality of documents, indexes and trapdoors cannot be leaked. Second,
PPTS can handle the search requirements of large document sets in parallel with
Map-Reduce parallel search framework. Third, PPTS should fully guarantee
the accuracy of search, that is, to improve the efficiency without reducing the
accuracy.

2.4 Search Framework

To clearly describe the scheme proposed in this paper, we define a framework
for the PPTS scheme. As shown in Fig.2, the search model is composed of five
modules: GenKey, Setup, BuildIndex, GenTrapdoor, and Search.

– Genkey: DO generate the key for encryption, and share it with DU.

A Parallel Multi-Keyword Top-k Search Scheme over Encrypted Cloud Data 5

– Setup: DO preprocess the document set D, generate a document vector for
each document, and encrypt the D.

– BuildIndex: DO fragment the D and then construct an indistinguishable
inverted index to provide the CS to perform the search service.

– GenTrapdoor: DU generate a trapdoor based on the search keywords.
– Search: CS perform the top-k search service in parallel according to the TD

and Ĩ, and return the RS that satisfy the condition to the DU.

Fig. 2. PPTS Search Framework

3 Parallel Privacy-preserving Top-k Search Scheme

3.1 Fragment-based Encrypted Inverted Indexes Model

Definition 1. Document Fragmentation. The document set D is divided into e-
qual lengths according to the parameter ε. The generated fragmented documents
are denoted as F = {F1, F2, ..., Ft}, satisfying Formula 3 and 4.

|F1| = |F2| = ... = |Ft−1| = ε, 1 ≤ |Ft| ≤ ε (1)

D = F1 ∪ F2 ∪ ... ∪ Ft (2)

where |X| represent the number of elements contained in the list or set X.
Definition 2. Parameter-(δ, β). δ is the maximum number of documents

containing a certain keyword wj in a certain fragment Fi. And β is the maximum
number of keywords contained in a certain fragment of the F .{

δ = max{|Fv,j | | 1 < v < t, 1 < j < m}
β = max{|Wv| | 1 < v < t, 1 < j < m}

(3)

where Fv,j⊂Fv is the document set containing the keywords wj in fragment Fv,
and Wv ⊂W is the keywords set contained in fragment Fv.

Definition 3.Fragment-based Encrypted Inverted Indexes. Ĩ = {Ĩ1, Ĩ2, ..., Ĩt}.
Here, Ĩv ∈ Ĩ is an encrypted inverted index corresponding to fragment Fv. Each

6 Maohu Yang, Hua Dai, Jingjing Bao, Xun Yi and Geng Yang

row in Ĩv is <tagj , P̃Lj>, corresponding to a keyword wj . tagj is a hash-based

message authentication code of wj generated by key c, tagj = hash(c, wj). P̃Lj
is the encrypted posting list of wj . To protect the private information of keyword

frequencies, we make the index Ĩv corresponding to a fragment Fv ∈ F has the
same number of rows and the posting list in each row has the same number of
posting. Thus, the generated indexes Ĩ indistinguishable. The construction of
the index Ĩv is given as follows:

1) For any di ∈ Fv,j , the corresponding posting P̃j,i =< id(di), Ṽdi > is

generated to form the P̃Lj . Here, id(di) is the id information of document di.

If |Fv,j | < δ, δ − |Fv,j | different artificial padding P̃j,s =< id(ds), Ṽds
′ > are

constructed to add to the P̃Lj . ds represents a randomly selected document
that satisfies ds ∈ Fv−Fv,j . Vds ′ represents a randomly generated m-dimensional
vector, and the values of each dimension are as follows:

Vds
′[k] =

{
0, k 6= j

rand(min{Vdi [k]}), k = j ∧ di ∈ Fv,j
(4)

2) For any wj ∈ Wv, the corresponding row < tagj , P̃Lj > is generated

according to the above steps to form the Ĩv. If |Wv| < β, β − |Wv| different

artificial rows <tags, P̃Ls> are constructed to add to the Ĩv. tags is generated
by randomly selected keyword ws, where ws ∈ W −Wv. P̃Ls is composed of δ
artificial padding generated by the above steps.

Fig. 3. Example of Ĩ

We take an example to explain the above definitions. We assume D = {di|i =
1, ..., 10} and W = {w1, w2, w3}. D is divided to F1 = {d1, d2, d3, d4}, F2 =
{d5, d6, d7, d8}, F3 = {d9, d10}. Then, δ = 3 and β = 3 are calculated. Finally,

the indexes Ĩ = {Ĩ1, Ĩ2, Ĩ3} are generated as shown in Fig. 3.

3.2 Data Preprocessing and Outsourcing

The data preprocessing and outsourcing of PPTS are mainly performed by DO
which include three algorithms: GenKey, Setup and BuildIndex.

A Parallel Multi-Keyword Top-k Search Scheme over Encrypted Cloud Data 7

K← GenKey(1λ): On input a security parameter λ, the key generation
algorithm output the key K. DO randomly generate the key sk, c ∈ {0, 1}λ, an
m-dimensional vector S and two m×m invertible matrices M1, M2. Finally, the
key K = (sk, c, S,M1,M2) is formed. K is shared between DO and DU but is
private to CS.

(Ṽ , D̃)←Setup(D): On input the document set D, this algorithm output

the encrypted document vector set Ṽ and encrypted document set D̃. DU en-
crypts document di into d̃i using sk. Then DU generate document vector Vdi
according to VSM and TF-IDF models. The key S is used to split the document
vector Vdi into V

′

di
and V

′′

di
according to the following formula, and then the re-

versible matrices M1 and M2 are used to encrypt Vdi to Ṽdi = (MT
1 V

′

di
,MT

2 V
′′

di
).

Finally, the generated d̃i and Ṽdi are added to D̃ and Ṽ respectively.{
V

′

di
[j] = V

′′

di
[j] = Vdi [j], S[j] = 0

V
′

di
[j] + V

′′

di
[j] = Di[j], S[j] = 1

(5)

Algorithm 1: BuildIndex(K, Ṽ ,D, ε)

1 Calculate the value of Parameter-(δ, β);
2 for each Fv ∈ F do
3 for each wj ∈Wv do
4 for each di ∈ Fv,j do

5 add P̃j,i =< id(di), Ṽdi > to P̃Lj ;
6 end

7 while |P̃Lj | < δ do

8 add artificial padding P̃j,s =< id(ds), Ṽds
′ > to P̃Lj ;

9 end

10 add < tagj , P̃Lj > to Ĩv;

11 end

12 while |Ĩv| < β do

13 add artificial row < tags, P̃Ls > to Ĩv ;
14 end

15 add Ĩv to Ĩ;

16 end

17 return Ĩ

Ĩ←BuildIndex(K,D, Ṽ , ε): This algorithm is run by DU to generate
encrypted indexes. Its inputs are the key K, the document set D, the encrypted
document vector set Ṽ , and the fragmentation parameter ε, and output the Ĩ.
Procedures of this algorithm is shown in Algorithm 1 where DO first divides D
into fragments and then builds an encrypted index for each fragment. Since the
operations on each fragment are exactly the same after fragmented, the data
preprocessing stage can be executed in parallel. Finally, DO outsource the D̃
and Ĩ to CS.

8 Maohu Yang, Hua Dai, Jingjing Bao, Xun Yi and Geng Yang

3.3 Map-Reduce-based Top-k Search

The Map-Reduce-based top-k search phase of PPTS is performed by DU and
CS. DU generate a search trapdoor TD and submit it to CS. CS perform the
Map operation according to TD to obtain the k documents most relevant to each
fragment, and then perform Reduce operation to merge and rank the previous-
ly acquired documents to generate the final top-k results. This phase mainly
contains two polynomial-time algorithms: GenTrapdoor and Search.

TD ← GenTrapdoor(K,Q,k): This algorithm takes a plaintext query
containing the key K, the search keyword set Q, and the number of documents
to be returned k, and outputs the encrypted query as a trapdoor TD. Its goal
is to protect the keyword information in the query from CS. The construction
process of TD as the following steps:

1) The query vector Vq is constructed according to Q. If wi ∈ Q, the IDF
of wi is stored in Vq[i], otherwise, the value of Vq[i] is 0. Then, according to the

following formula, Vq is split into two vectors V
′

q and V
′′

q . Finally, V
′

q and V
′′

q are
encrypted with reversible matrices M1 and M2 to obtain the encrypted query
vector Ṽq = (M−11 Vq

′,M−12 Vq
′′).

{
V

′

q [j] + V
′′

q [j] = Vq[j], S[j] = 0

V
′

q [j] = V
′′

q [j] = Vq[j], S[j] = 1
(6)

2) The hash-based message authentication code tagi of wi is calculated and
constitutes the set T = {tagi | tagi = hash(c, wi) ∧ wi ∈ Q}.

3) Output TD = (T, Ṽq, k).

Algorithm 2: Search.Map(Ĩv, TD)

1 for each < tagj , P̃Lj >∈ Ĩv do
2 if tagj ∈ T then

3 for each P̃j,i ∈ P̃Lj do

4 if Score(Ṽdi , Ṽq) > minScore{RSi} then
5 if |RSi| = k then
6 Delete the document with the lowest relevance score in RSi;
7 end

8 add < id(di), Score(Ṽdi , Ṽq) > to RSi;

9 end

10 end

11 end

12 end
13 return RSi

RS←Search(Ĩ,TD): When CS receives the trapdoor TD, it performs the

top-k search in parallel on the basis of the indexes Ĩ, and then returns the result
encrypted documents. The standard Map-Reduce model is adopted to find the
top-k relevant documents. In the Map stage, local top-k result is obtained in

A Parallel Multi-Keyword Top-k Search Scheme over Encrypted Cloud Data 9

each fragment. In the Reduce phase, all local top-k results are merged to obtain
the global top-k result is calculated. Detailed procedures are shown in Algorithm
2 and 3.

Algorithm 3: Search.Reduce(RS1, RS2, ..., RSt)

1 for each RSv do

2 if RSv.Score(Ṽdi , Ṽq) > minScore{RS} then
3 if |RS| = k then
4 Delete the document with the lowest relevance score in RS;
5 end

6 Obtain the d̃i according to id(di), and add it to the RS;

7 end

8 end
9 return RS

According to the structure of index and the the top-k search algorithms, we
have that each encrypted inverted index for a fragment is independent and the
top-k search follows the Map-Reduce model. Thus, the proposed search scheme
is scalable. It means that, when the volume of outsourced data grows, the search
efficiency can be preserved by adding servers.

4 SECURITY ANALYSIS

This chapter mainly elaborates PPTS from two aspects of security and efficacy.
Security is to analyze the confidentiality of documents, indexes, and trapdoors.
Efficacy is to analyze the scalability of PPTS, and prove that it has the capability
of parallel search and can store large document sets.

Theorem 1. PPTS satisfies privacy requirements.

Proof. First, the symmetric encryption algorithm is used to encrypt documents
in PPTS, which can protect the privacy of documents when the key is not leaked.
Second, the security of the Ĩ is guaranteed by random mapping of keywords, fill-
ing redundant values and matrix encryption. Because of the characteristics of
the hash-based message authentication code, attackers cannot recover keyword
information according to the codes. The document vectors and query vectors
are encrypted by matrix encryption technology. Therefore, it can be fully proved
that the indexes and trapdoors of PPTS are confidential. In addition, the prob-
lem of correlation between similar trapdoors can be solved by randomly adding
redundant values to the search trapdoors.

Theorem 2. PPTS has parallel execution capability.

Proof. First, the indexes Ĩ is designed according to the parallel computing frame-
work Map-Reduce, that is, both Map and Reduce phases can be executed in
parallel. Second, HDFS as a distributed file system can store large data. On the
Hadoop cluster, DO do not need to pay attention to the details of data storage

10 Maohu Yang, Hua Dai, Jingjing Bao, Xun Yi and Geng Yang

and transmission. It only needs to submit the D̃ and the Ĩ to Hadoop to pro-
vide a secure, stable and effective search service for DU, which has very high
practicability. Also, the execution capability can be linearly improved by server
expansions, providing almost unlimited processing power.

Theorem 3. The accuracy and privacy of search are not affected by artificial
paddings and rows.

Proof. We assume that P̃j,s =< id(ds), Ṽds
′ > is an artificial padding added to

P̃Lj corresponding to the keywordwj .∀di ∈ Fv,j satisfies the following equation:

Score(Vds
′, Vq) = Vds · Vq = rand(min{Vdi [j]})× Vq[j] < Score(Vdi

′, Vq) (7)

Therefore, the relevance score corresponding to the padding must be lower than
any document in Fv,j . When searching, DU only focuses on the documents with
the highest relevance score, so the added paddings will not affect the accuracy of
the search results. By adding paddings and rows, the posting list corresponding
to each keyword is equal in length and to each fragment equal in width. There-
fore, it is impossible to judge whether it is artificial padding or row based on the
length of the posting list. Because ds /∈ Fv,j ∧ ds ∈ Fv, ds has uniqueness and
indistinguishability in posting list PLj . As a result, the added paddings will not
affect the privacy of the search results.

5 PERFORMANCE EVALUATION

To evaluate the performance of PPTS, we implement it on the Hadoop plat-
form and compared time cost with SPTS. Here, SPTS is a sequential privacy-
preserving top-k search scheme running on a single server. In other words, SPTS
use one server to search each Ĩv ∈ Ĩ sequentially. We extent the New York Times
Dataset [19] to generate our experimental dataset which has 3,600,000 documents
and 228,623 keywords are extracted. We implement the schemes using Java in
Hadoop platform with three servers. Each server has 3.2GHz, 8-core CPU, 16G
memory and 1T hard disk. Default parameters are n = 3, 600, 000, |Q| = 15, k =
5, and ε = 30, 000 which are the number of documents, search keywords, search
documents and fragmentation parameter respectively.

In the following experiments, we evaluate the time cost of searches where
one of the parameters n, k, and |Q| changes and the other parameters adopt the
default values. The results are shown in Fig.4-6.

Fig.4-6 all show that the proposed PPTS outperforms SPTS in the time cost
of ranked searches, and the former saves at least 80% of the time cost compared
with the latter. The reason is that both PPTS and SPTS are based on the invert-
ed index. In the inverted index, the number of candidate posting corresponding
to search keywords is positively correlated with the number of documents and
search keywords, but is not affected by the value of search documents. As the
number of documents or search keywords increases, more resources are needed

A Parallel Multi-Keyword Top-k Search Scheme over Encrypted Cloud Data 11

to calculate the relevance score. SPTS only use a single server with limited pro-
cessing power, which can possibly reach its processing bottleneck and make the
search speed slower and slower. However, PPTS use multiple servers to perform
the search at the same time, and the task pressure is shared on multiple servers,
so the time cost will not increase too much.

Fig. 4. Number of documents n (×106) Fig. 5. Number of search documents k

Fig. 6. Number of search keywords |Q|

6 CONCLUSION

In this paper, we propose a parallel privacy-preserving top-k search scheme over
encrypted cloud data. In this scheme, the fragment-based encrypted inverted
index is designed, which is indistinguishable and can be used for parallel search-
ing. On the basis of such indexes, the Map-Reduce-based distributed computing
framework is adopted and the parallel multi-keyword top-k search algorithms are
proposed. Security analysis and experiment evaluation show that the proposed
scheme is privacy-preserving, efficient and scalable.

References

1. L. M. V. González, L. Rodero-Merino, J. Caceres, and M. A. Lindner, “A break in
the clouds: towards a cloud definition,” Computer Communication Review, vol. 39,
no. 1, pp. 50–55, 2008.

2. S. Kamara and K. E. Lauter, “Cryptographic cloud storage,” in Financial Cryptog-
raphy and Data Security, FC 2010 Workshops, RLCPS, WECSR, and WLC 2010,
Tenerife, Canary Islands, Spain, January 2010, pp. 136–149.

12 Maohu Yang, Hua Dai, Jingjing Bao, Xun Yi and Geng Yang

3. D. X. Song, D. A. Wagner, and A. Perrig, “Practical techniques for searches on
encrypted data,” in 2000 IEEE Symposium on Security and Privacy, Berkeley, Cal-
ifornia, USA, May 2000, pp. 44–55.

4. E. Goh, “Secure indexes,” IACR Cryptology ePrint Archive, vol. 2003, p. 216, 2003.
5. R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmet-

ric encryption: improved definitions and efficient constructions,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, 2006, pp. 79–88.

6. N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-keyword
ranked search over encrypted cloud data,” in INFOCOM 2011. 30th IEEE Inter-
national Conference on Computer Communications, Joint Conference of the IEEE
Computer and Communications Societies, April 2011, pp. 829–837.

7. W. Sun, B. Wang, N. Cao, M. Li, and W. Lou, “Verifiable privacy-preserving multi-
keyword text search in the cloud supporting similarity-based ranking,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 11, pp. 3025–3035, 2014.

8. Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic multi-keyword
ranked search scheme over encrypted cloud data,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 2, pp. 340–352, 2016.

9. X. Jiang, J. Yu, J. Yan, and R. Hao, “Enabling efficient and verifiable multi-keyword
ranked search over encrypted cloud data,” Inf. Sci., vol. 403, pp. 22–41, 2017.

10. C. Chen, X. Zhu, P. Shen, J. Hu, and S. Guo, “An efficient privacy-preserving
ranked keyword search method,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 4,
pp. 951–963, 2016.

11. X. Zhu, H. Dai, X. Yi, G. Yang, and X. Li, “MUSE: an efficient and accurate
verifiable privacy-preserving multikeyword text search over encrypted cloud data,”
Security and Communication Networks, vol. 2017, pp. 1 923 476:1–1 923 476:17, 2017.

12. Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient multi-keyword fuzzy
search over encrypted outsourced data with accuracy improvement,” IEEE Trans.
Information Forensics and Security, vol. 11, no. 12, pp. 2706–2716, 2016.

13. X. Ge, J. Yu, C. Hu, H. Zhang, and R. Hao, “Enabling efficient verifiable fuzzy
keyword search over encrypted data in cloud computing,” IEEE Access, vol. 6, pp.
45 725–45 739, 2018.

14. C. Guo, R. Zhuang, C. Chang, and Q. Yuan, “Dynamic multi-keyword ranked
search based on bloom filter over encrypted cloud data,” IEEE Access, vol. 7, pp.
35 826–35 837, 2019.

15. W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li, “Privacy-
preserving multi-keyword text search in the cloud supporting similarity-based rank-
ing,” in 8th ACM Symposium on Information, Computer and Communications Se-
curity, ASIA CCS ’13, Hangzhou, China, May 2013, pp. 71–82.

16. Y. Yang, Y. Zhan, J. Liu, X. Liu, F. Yuan, and S. Zhong, “Chinese multi-keyword
fuzzy rank search over encrypted cloud data based on locality-sensitive hashing,” J.
Inf. Sci. Eng., vol. 35, no. 1, pp. 137–158, 2019.

17. R. Zhang, R. Xue, T. Yu, and L. Liu, “Dynamic and efficient private keyword
search over inverted index-based encrypted data,” ACM Trans. Internet Techn.,
vol. 16, no. 3, pp. 21:1–21:20, 2016.

18. H. Wang, X. Dong, and Z. Cao, “Secure and efficient encrypted keyword search for
multi-user setting in cloud computing,” Peer-to-Peer Networking and Applications,
vol. 12, no. 1, pp. 32–42, 2019.

19. B. D, “New york times dataset[db/ol],” http://developer.nytimes.com/docs,
2018.

