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Abstract— This study aims at comparing the performance
of computational intelligence methods to classify ECG data in
normal  (NORM),  myocardial  infarction  (MI),  and  ST-T
change  (STTC)  groups  using  the  XYZ ECG coordinates  as
input. The ECGs of 7146 patients were randomly selected from
the  PTBXL  Database  to  produce  a  balanced  dataset.  The
multi-layer  perceptron  model  achieved  99.99%  accuracy
during the training and 99.80% in testing. The convolutional
neural network model achieved 96.07% accuracy during the
training and 83.26% in testing. The long short-term memory
(LSTM) model achieved 99.90% accuracy during the training
and 89.00% during the test. Also, the LSTM model applied to
10-fold produced an average accuracy of  94.03 ± 1.83%. In
conclusion, this study provides an effective framework for the
automated detection of MI and STTC on ECG. Specifically, it
classifies  NORM,  MI,  and  STTC  with  more  than  94%
accuracy and hence can be employed in clinical settings.

Keywords—  Vectorcardiography,  Myocardial  Ischemia,
Artificial Neural Networks.

I. INTRODUCTION 

The electrocardiogram (ECG) is a non-invasive tool to
assess a patient's overall heart condition and is therefore the
first-line test  for  any diagnosis  of  cardiac  disease  (CVD)
[1]. The 3D vectorcardiogram (VCG) signal is considered to
add value to ECG analysis, as it provides different informa-
tion and allows the calculation of parameters that cannot be
calculated from separate ECG leads [2].  The VCG repre-
sents the sum of all instantaneous electrical vectors gener-
ated in the heart by myocardial cells and is designed to dis-
play a multidirectional view of cardiac electrical activity in
space-time [3]. 

The use of this tool allows the development of different
markers,  such as the assessment of ventricular repolariza-
tion heterogeneity, which is due to intercellular differences
in depolarization times and action potential morphology [4].
Furthermore, a recent study showed that QT dispersion is
largely determined by T-loop morphology, expressed by T-
loop amplitude and width, while an older study reported a
widened QRS-T angle in patients with left ventricular fail-
ure [5].  The QRS-T angle reflects the deviations between
ventricular depolarizations.  Spatial  and frontal  QRS-T an-
gles are two different ways to measure the QRS-T angle [5].

However, these previously developed VCG morphology
descriptors are insufficient to fully characterize the complex
three-dimensional morphology of the VCG loop [5]. Analy-
sis of the QRS loops of the VCG morphology can help de-
fine abnormal electrophysiological substrate in patients with
life-threatening  ventricular  arrhythmias  [5].  The morphol-
ogy of the VCG loop can be characterized by the direction
and amplitude of the initial instantaneous [5] and maximum
peak and average spatial vectors of the loop [5]. In addition,
deep  learning-based  artificial  intelligence  (AI)  algorithms
have recently achieved cutting-edge performance in multi-
ple domains [6]. An advantage of deep learning is the auto-
matic  learning  of  features  and  relationships  from  certain
data without a domain [6]. 

This  study  investigated  AI  algorithms  based  on  deep
learning to detect myocardial infarction (MI) and ischemic
ST-T changes (STTC) through 3D VCG loop morphology
to compare their performance with conventional methods in
the literature. The approaches were the MLP, which consists
of a minimum of three layers of nodes and uses the back-
propagation technique for its training, which is part of the
supervised learning methods [7]. The convolutional neural
network (CNN) was another model studied. CNN is a non-
linear statistical model and attempts to identify optimal lin-
ear combinations of the input variables and then model the
result as a nonlinear function of these covariates [7]. This
deep learning framework is able to distinguish data that is
not linearly separable.  Another model used was long-term
memory networks (LSTM) [7-8] that have been used in the
classification of ECG signals [7-8]. An important approach
widely used in recent deep learning studies.  

Objective: compare the performance of the MLP, CNN
and  LSTM  classifiers  in  separating  the  NORM,  MI  and
STTC groups using the XYZ ECG coordinates as input fea-
tures for classification. In particular, our study investigated
the  ability  of  XYZ  ECG coordinates  to  discriminate  be-
tween MI, STTC and NORM patients using deep learning
models.

II. MATERIALS AND METHODS

Dataset: We used a dataset available for free in the Phys-
ionet repository [9]. They followed the research procedures
that were conducted in accordance with the Helsinki Decla-



ration [9]. The PTBXL dataset comprises 21837 clinical 12-
lead  ECG records  o  10 s  in  length from 18885 patients,
where 52 % were male and 48 % were female. The data pre-
sented  a  hierarchical  organization  into  five  coarse  super-
classes (NORM: normal ECG, CD: conduction disturbance,
MI: myocardial  infarction,  HYP: hypertrophy,  and STTC:
ST-T changes) [9]. Only the classes NORM, MI, and STTC
were investigated, by randomly selecting 2382 patients for
each group (total 7146 subjects). The PTBXL has a rich set
of ECG annotations and further metadata, which turns the
dataset  into  an  ideal  resource  for  training  and  evaluating
machine learning algorithms [9]. 

Preprocessing: Twelve-lead ECG signals were low-pass
filtered by a Butterworth, 2nd-order filter with 35 Hz cutoff
frequency.  R-wave detection was carried  out  on digitized
ECG signals by the Pan & Tompkins algorithm [10]. A soft-
ware implemented in Python 3.9 [11] was developed to per-
form ECG and 3D vectorcardiographic analysis.

Twelve-lead  vectorcardiogram:  The  Kors  matrix  was
used to transform 12-lead ECG into XYZ ECG coordinates
for all ECG signals [12]. After that, each XYZ ECG coordi-
nate  was  averaged  considering  R-wave as  reference.  The
XYZ coordinates (X, Y, Z, superclass) were used for analy-
sis.  The data were  organized  in  a  matrix  (2501100 x 4),
where every 350 samples represent a patient (2501100/350
= 7146 patients). For each group, 2382 patients were ran-
domly allocated. After, the dataset was split into two non-
overlapping  sets:  training  (70%;  n  =  5002)  and  testing
(30%; n = 2144).

For the MLP the data were organized in a matrix (7146 x
1050) to have (X, Y, Z, superclass) side by side. The data
were organized in a matrix (7146 x 350 x 3) to fit the ex-
pected structure [samples, timesteps,  features]  required by
the LSTM and CNN algorithms to classify in 3D structure. 

The MLP, LSTM, and CNN models were created using
the Keras framework on top of TensorFlow 2.1.

The first layer for these three models was an embedding
layer.  The  LSTM network  consisted  of  two  bidirectional
LSTM layers followed by two fully connected layers [14].
The CNN network consisted of a convolutional layer, an av-
erage pooling layer, a convolutional layer, a global average
pooling  layer,  and  two  fully  connected  layers  [14].  The
number of layers and the number of epochs were empiri-
cally determined on a single training set with the original
distribution of NORM, MI and STTC groups.

For each step, the models were trained multiple times us-
ing the above-mentioned temporary training sets with dif-
ferent sizes and prevalence. The number of epochs was em-
pirically determined by a test run, resulting in 20 epochs for
the MLP/LSTM/CNN models. 

Evaluation: Model performance was evaluated by assess-
ing sensitivity and specificity. The predictive accuracies of

the models were compared by the area under the receiver
operator curve (AUC). As the goal of screening is to iden-
tify all individuals with the prevalent cardiovascular disease
(CVD),  the  target  was  to  maximize  the  test’s  sensitivity.
The validation of the CVD detection performance was made
in the independent dataset by measuring AUC and assessing
the sensitivity and specificity of the selected at the previous
step threshold. 

The sliding windows and the LSTM models were devel-
oped using Python 3 (Libraries: Keras, Numpy, Pandas and
Scikit learn) [11] and executed in Google Colab notebooks
is a cloud service based on Jupyter notebooks, which is a
service  linked  to  a  Google  Drive  account,  and  free  of
charge.

The age  and  VCG parameters  were  compared  using  a
one-way ANOVA based on a 95% confidence interval.

III. RESULTS

Table 1 shows the data (mean + standard deviation) for
the patient age, the QRS-T angle, the magnitude of the spa-
tial ventricular gradient (SVG), and the elevation angle of
the SVG (EL-SVG). There was no significant difference in
age  between the groups.  However,  significant  differences
were observed for VCG parameters (Table 1).

Table 1 - The average and standard deviation for age, QRS-T angle, SVG and EL-
SVG

NORM MI STTC p-value

Age 51.88 ± 17.16 63.97 ± 12.68 64.80 ± 14.44 0.2341

QRS-T angle 55.87 ± 45.46 86.39 ± 46.05 89.11 ± 49.07* < 0.0001

SVG 1226.57 ± 390.69 1017.34 ± 351.23 1083.05 ± 340.76* <0.0001

EL-SVG 66.55 ± 14.05 72.15 ± 11.549 65.10 ± 13.77* <0.0001

The comparison of classifier performance indices (Table
2) indicated MLP model as the cutting-edge performance.
One additional test was performed to LSTM model, using
the K-fold approach with 10 folds. This increased the per-
formance, reaching 94.03 ± 1.83% average accuracy. 

Table 2 - Comparison of classifier performance indices

MLP CNN LSTM

Train Test Train Test Train Test

AUC 0.99 0.99 0.96 0.83 0.99 0.89

Categorical accuracy 0.99 0.97 0.89 0.69 0.97 0.77

Precision 0.99 0.96 0.89 0.69 0.97 0.77

Recall 0.99 0.99 0.89 0.68 0.97 0.77



Figure 1 - Average VCG for MI, STTC, and Normal pa-
tients from different views (A, B, and C).

IV. DISCUSSION

Our goal was to compare the performance of the MLP,
CNN, and LSTM classifiers in separating the NORM, MI,
and STTC groups using the XYZ ECG coordinates as input
features  for  classification.  To the best  of  our  knowledge,
this study is the first to assess VCG morphology using an
AI algorithm, which prevents any comparison with litera-
ture.

The  best  results  were  produced  by  the  classical  MLP
model,  using  three  layers.  An excellent  performance  was
obtained with the 3D ECG samples,  without needing any
segmentation on the ECG or fiducial point measurements.
The results found are overcoming the limits indicated for
classification for this type of cardiac disease [6-8][13]. 

However, CNN and LSTM models underperformed with
similar results. This can not be used to point out MPL as the
best tool since any classification model has a set of configu-
ration parameters that could be explored. For example, only
rearranging the VCG data in a k-fold approach allowed im-
proving the LSTM performance to values similar to other
methods in the literature.

In converting the 12-lead ECG to the VCG, much redun-
dant information is removed, however, some relevant char-
acteristics may be lost by the mathematical method used to
extract  the  XYZ  coordinates.  Even  so,  we  were  able  to
achieve important results for the classification of heart dis-
eases such as MI and STTC.

V. CONCLUSIONS 

This study provides an effective framework for the auto-
mated detection of MI and STTC on short segments of XYZ
ECG.  Specifically,  it  is  able  to  classify  NORM,  MI  and
STTC with an accuracy of more than 94% and hence can be
employed in clinical settings. In future studies, the perfor-
mance evaluations of the proposed model will be done on
the different MI and STTC datasets. 
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