
EasyChair Preprint
№ 2669

Analysis of sorting techniques a naive approach

Varunkumar Pande

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 15, 2020

1

Analysis of sorting techniques a naïve approach

Pande Varunkumar

Computer science engineering (C.S.E)

University of Texas at Arlington

(U.T.A)

Arlington, U.S.A.

centrix94@gmail.com

Abstract—Study of various sorting techniques and

understanding the relation between the input and execution

time. The main point of this study is to help determine a sorting

algorithm suitable for various nature and size of inputs, in order

to efficiently sort a given input.

I. INTRODUCTION

Sorting is a fundamental operation in many of the
complex algorithms, thus a good understanding of different
sorting techniques is an important aspect for many of
computer science engineering related fields like data science,
machine learning, database technologies, etc. In this paper we
start with a small introduction on some commonly known
sorting techniques, and then dive deep to understand the
relation between the input and time taken by these algorithms
to sort the provided input. “One size does not fit all!” as this
famous quote states, its pretty much similar in the world of
sorting algorithms.

II. SORTING TECHNIQUES

A. Bubblesort:

It is the easiest and straight forward algorithm to sort a
given list. It works by continuously swapping the adjacent
elements that are out of order. The out of order pair is usually
termed as inversions. Following is a pseudocode for
bubblesort:

For optimization purposes in our implementation we add
another condition to check if any swapping has occurred and
if not then we stop the execution.

B. Insertionsort:

Insertionsort works by dividing the given array into two
parts the sorted to the left and unsorted to the right.
Assuming the first element to be sorted it begins sorting
from the second element until the last element, and sorts
one element at a time. Following is a pseudocode for
insertionsort:

C. Heapsort:

Heapsort also works by dividing the given input into
sorted and unsorted region. Heapsort uses a special data
structure named “Heap”. There are mainly two types of heaps
that are used in heapsort, the min-heap and the max-heap. For
ascending order, we use max-heap and for descending order
we use min-heap. Following is the pseudocode for heapsort:

[1]

[1]

[1]

2

D. Mergesort:

Mergesort is a well-known example of divide and

conquer approach. This algorithm recursively divides the

given input into set of two groups, until there is only

individual number remaining and then starts merging them

recursively in the required sorting order. Also, an important

feature of merge sort is that, it is a stable sort i.e. the order

of equal elements is the same in the input and output.

Following is the pseudocode for mergesort:

E. Quicksort:

Quicksort is also based on divide and conquer approach.

This algorithm recursively divides the given input into two

sets, but the two sets are divided based on the middle

element, and later sorted based on this middle number. We

use the “Median-of-three” approach to avoid the worst-case

selection of middle element which helps us to reduce the

number of swaps required. Following is the pseudocode for

quicksort:

The partition method does not contain, logic for median-of-

three pivot selection.

III. TOOLS AND SOURCE CODE

Source code for implementing sorting algorithm is

available at https://github.com/varunpande/DAA-Project.

The project is implemented in “node.js” to provide an

interactive interface. Please refer to the “project report.pdf”,

for detailed instruction on how to install the application

locally.

[2]

MergeSort(arr[], l, r)
If r > l
1.Find the middle point to
divide the array into two
halves:
 middle m = (l + r)/2

2.Call mergeSort for first
half:
 Call mergeSort(arr, l, m)

3.Call mergeSort for second
half:
 Call mergeSort(arr, m+1, r)

4.Merge the two halves sorted
in step 2 and 3:
 Call merge(arr, l, m, r)

[1]

https://github.com/varunpande/DAA-Project

3

IV. INSIGHTS ON THE RUNTIME AND INPUT

Analysis for a small list of numbers:

1. A sorted list input:

• For a sorted small input (200- integers) bubblesort

takes the least time (approx. 0.04 milliseconds) and

mergesort takes the worst time (approx. 0.4

milliseconds).

• Quicksort performs better than heapsort,

insertionsort and mergesort.

• Mergesort and insertionsort take approximately

equal time to sort the list.

2. A reverse sorted list input:

• For a reverse sorted small input (200- integers)

quicksort takes the least time (approx. 0.039

milliseconds) and bubblesort takes the most time

(approx. 0.84 milliseconds).

Fig. 1. Graph plot of execution time for sorted small input.

Fig. 2. Graph plot of execution time for reverse sorted small input. (reverse - meaning for sorting in ascending order, descending order input, and vice versa)

4

• heap sort performs second best, mergesort takes the

most time after bubblesort and insertionsort takes

less time as compared to mergesort to sort the list.

3. A list with repeating numbers:

• For a small input (200- integers) list with repeating

numbers quicksort performs best (approx. time

taken 0.0321ms) and mergesort has a poor

performance (approx. time taken 0.8468 ms).

• Insertionsort and heapsort have a similar runtime.

• Bubblesort performs better than mergesort while

numbers are repeated.

4. Unsorted list:

• For a small input (200- integers) of unsorted

numbers quicksort and heapsort perform best

(approx. time taken 0.0321ms).

• Bubblesort performs poorly as compared to other

algorithms (approx. time taken 0.3867 ms).

Mergesort takes the most time after bubblesort, and

insertionsort performs better than mergesort.

Fig. 3. Graph plot of execution time for small input with repeated numbers.

Fig. 4. Graph plot of execution time for unsorted small input.

5

Analysis for a large list of numbers:

1. A sorted list input:

• For a large sorted input (12999- integers)

bubblesort takes the least time (approx. 0.3075

milliseconds) and insertionsort takes the worst time

(approx. 229.40 milliseconds).

• For other algorithms the order of time taken is as

follows:

Quicksort < Heapsort < Mergesort.

2. A reverse sorted list input:

• For a sorted list in reverse order quicksort and

heapsort perform the best and have almost similar

runtime (approx. 1.2 milliseconds), mergesort

performs second best.

• Bubblesort takes the most time (approx. 764.15

milliseconds), followed by insertionsort taking

Fig. 5. Graph plot of execution time for sorted large input.

Fig. 6. Graph plot of execution time for reverse sorted large input. (reverse - meaning for sorting in ascending order, descending order input, and vice versa)

6

 the most time as compared to other algorithms.

3. A list with repeating numbers:

• For an unsorted list with repeating numbers

quicksort performs best (approx. runtime 0.6763

milliseconds) followed by heapsort (approx.

runtime 1.39 milliseconds) on an average almost

equal to quicksort, bubblesort performs the worst

amongst the other algorithms (approx. runtime

239.13 milliseconds).

• Mergesort performs better than insertionsort.

4. Unsorted list:

• From the above graph we can clearly state that the

fastest algorithm to sort large amount of numbers

(12999- integers) is quicksort (taking approx. 3.36

milliseconds), on an average heapsort performs

almost as good as quicksort, but the worst

Fig. 7. Graph plot of execution time for large input with repeated numbers.

Fig. 8. Graph plot of execution time for unsorted large input.

7

performing algorithm is bubblesort taking (taking

approx. 2328.34 milliseconds).

• Mergesort performs better than insertionsort.

V. CONCLUSION

Performance matrix:

TABLE I. SUMMARY OF SMALL INPUT

Nature

of input
Order of time taken to sort data

Sorted
input list

Bubblesort < Quicksort < Insertionsort < Heapsort < Mergesort

Reverse

sorted list

input

Quicksort < Heapsort < Insertionsort < Mergesort < Bubblesort

List with

repeating

numbers

Quicksort < Heapsort, Insertionsort < Bubblesort < Mergesort

Unsorted
list Heapsort, Quicksort < Insertionsort < Mergesort < Bubblesort

a. The above ordering is based on average of multiple runs.

TABLE II. SUMMARY OF LARGE INPUT

Nature

of input
Order of time taken to sort data

Sorted
input list

Bubblesort < Quicksort < Heapsort < Mergesort <Insertionsort

Reverse

sorted list

input

Heapsort, Quicksort < Mergesort < Insertionsort < Bubblesort

List with

repeating

numbers

Quicksort < Heapsort < Mergesort < Insertionsort < Bubblesort

Unsorted

list
Quicksort < Heapsort < Mergesort < Insertionsort < Bubblesort

a. The above ordering is based on average of multiple runs.

Individual algorithm performance for same input (unsorted):

TABLE III. PERFORMANCE OF INDIVIDUAL SORTING ALGORITHM

Sorting

Algorithm

Small input Large input

Ascending Descending Ascending Descending

Bubblesort 0.96 ms 0.78 ms 1 s 0.5 ms 9 ms

Heapsort 0.15 ms 0.5 ms 2.4 ms 2.3 ms

Insertionsort 0.18 ms 0.09 ms 315 ms 161 ms

Mergesort 0.2 ms 0.15 ms 20 ms 16 ms

Quicksort 0.13 ms 0.45 ms 2 ms 1.8 ms

a. The above values are an average of multiple runs.

The above table highlights the finding that insertionsort is

overall good for small input of unsorted list and quicksort

using the median-of-three approach is good for large input

of unsorted list. Bubblesort generally performs bad, but is

good if there are very few inversion pairs. Heapsort

performs best for most of the input if the heapify function is

implemented with high efficiency.

ACKNOWLEDGMENT

I would like to thank Senior Lecturer Negin Fraidouni for

teaching the subject data structure and algorithm analysis,

which helped me understand the concepts of sorting

algorithms. Also, Dr. Rajesh Bansode for providing me

guidance on publishing this paper.

REFERENCES
[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein “Introduction to Algorithms”–3rd ed. pg.18,40,154-
160,171.

[2] Mergesort pseudocode provided by - Chitranayal, Mayank Khanna 2
at https://www.geeksforgeeks.org/merge-sort/

https://www.geeksforgeeks.org/merge-sort/

