F EasyChair Preprint
 № 3708

The Reimann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

THE RIEMANN HYPOTHESIS

FRANK VEGA

Abstract

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. Many consider it to be the most important unsolved problem in pure mathematics. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US $1,000,000$ prize for the first correct solution. In 1915, Ramanujan proved that under the assumption of the Riemann Hypothesis, the inequality $\sigma(n)<e^{\gamma} \times n \times \log \log n$ holds for all sufficiently large n, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. In 1984, Guy Robin proved that the inequality is true for all $n>5040$ if and only if the Riemann Hypothesis is true. In 2002, Lagarias proved that if the inequality $\sigma(n) \leq H_{n}+\exp \left(H_{n}\right) \times \log H_{n}$ holds for all $n \geq 1$, then the Riemann Hypothesis is true, where H_{n} is the $n^{\text {th }}$ harmonic number. In this work, we show certain properties of these both inequalities.

1. Introduction

As usual $\sigma(n)$ is the sum-of-divisors function of n Cho+07]:

$$
\sum_{d \mid n} d .
$$

Define $f(n)$ to be $\frac{\sigma(n)}{n}$. Say Robins (n) holds provided

$$
f(n)<e^{\gamma} \times \log \log n
$$

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, and \log is the natural logarithm. Let H_{n} be $\sum_{j=1}^{n} \frac{1}{j}$. Say Lagarias (n) holds provided

$$
\sigma(n) \leq H_{n}+\exp \left(H_{n}\right) \times \log H_{n} .
$$

The importance of this property is:

[^0]Theorem 1.1. [RH] If Robins(n) holds for all $n>5040$, then the Riemann Hypothesis is true [Lag02]. If Lagarias(n) holds for all $n \geq 1$, then the Riemann Hypothesis is true Lag02].

It is known that Robins(n) and Lagarias (n) hold for many classes of numbers n. We known this:

Lemma 1.2. [known] If Robins(n) holds for some $n>5040$, then Lagarias (n) holds Lag02.

We recall that an integer n is said to be square free if for every prime divisor q of n we have $q^{2} \nmid n$ [Cho+07]. Robins(n) holds for all $n>5040$ that are square free [Cho+07]. Let core (n) denotes the square free kernel of a natural number n Cho +07]. We can show this:
Theorem 1.3. [pi] Let $\frac{\pi^{2}}{6} \times \log \log \operatorname{core}(n) \leq \log \log n$ for some $n>$ 5040. Then Robins(n) holds.

Moreover, we finally prove these theorems:
Theorem 1.4. [1-main] Robins (n) holds for all $n>5040$ when $q_{m} \nmid n$ for $q_{m} \leq 113$.

Theorem 1.5. [2-main] Let $n>5040$ and $n=r \times q$, where q denotes the largest prime factor of n and q is a sufficiently large number. If Robins (r) holds, then Lagarias (n) holds.

2. Known Results

We use that the following are known:

Lemma 2.1. [sigma-formula]

$$
\sigma(n)=\prod_{p^{k} \| n} \frac{p^{k+1}-1}{p-1}
$$

Lemma 2.2. [sigma-bound]

$$
f(n)<\prod_{p \mid n} \frac{p}{p-1}
$$

Cho+07

Lemma 2.3. [zeta]

$$
\prod_{k=1}^{\infty} \frac{1}{1-\frac{1}{q_{k}^{2}}}=\zeta(2)=\frac{\pi^{2}}{6}
$$

Lemma 2.4. [log-bound]

$$
\begin{equation*}
H_{n}>\log n+\gamma=\log \left(e^{\gamma} \times n\right) . \tag{Lag02}
\end{equation*}
$$

Lemma 2.5. [harmonic-bound]

$$
\begin{equation*}
\prod_{p \leq n} \frac{p}{p-1}<e^{\gamma} \times H_{n} \tag{RS62}
\end{equation*}
$$

Lemma 2.6. [down-bound] For $x \geq 286$,

$$
\begin{equation*}
\prod_{p \leq x} \frac{p}{p-1}<e^{\gamma} \times\left(\log x+\frac{1}{2 \times \log x}\right) \tag{RS62}
\end{equation*}
$$

3. A Central Lemma

The following is a key lemma. It gives an upper bound on $f(n)$ that holds for all n. The bound is too weak to prove Robins(n) directly, but is critical because it holds for all n. Further the bound only uses the primes that divide n and not how many times they divide n. This is a key insight.

Lemma 3.1. [pro] Let $n>1$ and let all its prime divisors be $q_{1}<$ $\cdots<q_{m}$. Then,

$$
f(n)<\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}
$$

Proof. We use that lemma 2.2 [sigma-bound]:

$$
f(n)<\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}
$$

Now for $q>1$,

$$
\frac{1}{1-\frac{1}{q^{2}}}=\frac{q^{2}}{q^{2}-1}
$$

So

$$
\begin{aligned}
\frac{1}{1-\frac{1}{q^{2}}} \times \frac{q+1}{q} & =\frac{q^{2}}{q^{2}-1} \times \frac{q+1}{q} \\
& =\frac{q}{q-1}
\end{aligned}
$$

Then by lemma 2.3 [zeta],

$$
\prod_{k=1}^{m} \frac{1}{1-\frac{1}{q_{k}^{2}}}<\zeta(2)=\frac{\pi^{2}}{6}
$$

Putting this together yields the proof:

$$
\begin{aligned}
f(n) & <\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \\
& \leq \prod_{i=1}^{m} \frac{1}{1-\frac{1}{q_{i}^{2}}} \times \frac{q_{i}+1}{q_{i}} \\
& <\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}
\end{aligned}
$$

4. A Condition on core (n)

4.1. A Particular Case. We prove the Robin's inequality for this particular case:
Lemma 4.1. [case] Robins (n) holds for all $n>5040$ when $\operatorname{core}(n) \in$ $\{2,3,5,6,10,14,15,21,30,35,42,70,105,210\}$.
Proof. Let $n>5040$. Specifically, let core (n) be the product of the primes q_{1}, \ldots, q_{m}, such that $\left\{q_{1}, \ldots, q_{m}\right\} \subseteq\{2,3,5\}$. We need to prove that

$$
f(n)<e^{\gamma} \times \log \log n
$$

that is true when

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq e^{\gamma} \times \log \log n
$$

is also true, because of lemma 2.2 [sigma-bound]. Then, we have that

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq \frac{2 \times 3 \times 5}{1 \times 2 \times 4}=3.75<e^{\gamma} \times \log \log (5040) \approx 3.81
$$

However, for $n>5040$

$$
e^{\gamma} \times \log \log (5040)<e^{\gamma} \times \log \log n
$$

and hence, the proof is completed for that case. Hence, we only need to prove the Robin's inequality is true for every natural number $n=$ $2^{a_{1}} \times 3^{a_{2}} \times 5^{a_{3}} \times 7^{a_{4}}>5040$ such that $a_{1}, a_{2}, a_{3} \geq 0$ and $a_{4} \geq 1$ are integers. In addition, we know the Robin's inequality is true for every natural number $n>5040$ such that $7^{k} \mid n$ and $7^{7} \nmid n$ for some integer $1 \leq k \leq 6$ [Her18]. Therefore, we need to prove this case for those natural numbers $n>5040$ such that $7^{7} \mid n$. In this way, we have

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq \frac{2 \times 3 \times 5 \times 7}{1 \times 2 \times 4 \times 6}=4.375<e^{\gamma} \times \log \log \left(7^{7}\right) \approx 4.65
$$

However, we know for $n>5040$ and $7^{7} \mid n$ such that

$$
e^{\gamma} \times \log \log \left(7^{7}\right) \leq e^{\gamma} \times \log \log n
$$

and as a consequence, the proof is completed.
4.2. Main Insight. The next theorem is a main insight. It extends the class of n so that Robins (n) holds. The key is that the class on n depend on how close n is to core (n). The usual classes of such n are defined by their prime structure not by an inequality. This is perhaps one of the main insights.

Theorem 4.2. Let $\frac{\pi^{2}}{6} \times \log \log \operatorname{core}(n) \leq \log \log n$ for some $n>5040$. Then Robins (n) holds.

Proof. Let $n^{\prime}=\operatorname{core}(n)$. Let n^{\prime} be the product of the distinct primes q_{1}, \ldots, q_{m}. By assumption we have that

$$
\frac{\pi^{2}}{6} \times \log \log n^{\prime} \leq \log \log n
$$

When $n^{\prime} \leq 5040$, Robins $\left(n^{\prime}\right)$ holds if $n^{\prime} \notin\{2,3,5,6,10,30\}$ [Cho+07]. However, we can ignore this case, since Robins (n) holds for all $n>5040$ when core $(n) \in\{2,3,5,6,10,30\}$ because of lemma 4.1 [case]. When $n^{\prime}>5040$, we know that Robins $\left(n^{\prime}\right)$ holds and so

$$
f\left(n^{\prime}\right)<e^{\gamma} \times \log \log n^{\prime} .
$$

By previous lemma 3.1 [pro]

$$
f(n)<\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}
$$

Suppose by way of contradiction that Robins (n) fails. Then

$$
f(n) \geq e^{\gamma} \times \log \log n
$$

We claim that

$$
\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}>e^{\gamma} \times \log \log n .
$$

Since otherwise we would have a contradiction. This shows that

$$
\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}>\frac{\pi^{2}}{6} \times e^{\gamma} \times \log \log n^{\prime}
$$

Thus

$$
\prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}>e^{\gamma} \times \log \log n^{\prime}
$$

and

$$
\prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}}>f\left(n^{\prime}\right)
$$

This is a contradiction since $f\left(n^{\prime}\right)$ is equal to

$$
\frac{\left(q_{1}+1\right) \times \cdots \times\left(q_{m}+1\right)}{q_{1} \times \cdots \times q_{m}} .
$$

5. On Possible Counterexamples

Lemma 5.1. [counter] Let $n>5040$ and $n=r \times q$, where q denotes the largest prime factor of n. We have that $q<\log n$, when Robins (r) holds, but Robins(n) does not.

Proof. So assume that $q \geq \log n$. This implies that $q \times \log q \geq(\log n) \times$ $\log \log n>(\log n) \times \log \log r$ and hence

$$
\frac{q}{\log n}>\frac{\log \log r}{\log q}
$$

This implies that

$$
\frac{q \times(\log \log n-\log \log r)}{\log q}>\frac{\log \log r}{\log q}
$$

where we used that

$$
\frac{\log \log n-\log \log r}{\log q}=\frac{1}{\log n-\log r} \int_{\log r}^{\log n} \frac{d t}{t}>\frac{1}{\log n} . \quad \text { Cho }+07
$$

This inequality is equivalent with $\left(1+\frac{1}{q}\right) \times \log \log r<\log \log n$. Now we infer that
$\frac{\sigma(n)}{n}=\frac{\sigma(q \times r)}{q \times r} \leq\left(1+\frac{1}{q}\right) \times \frac{\sigma(r)}{r}<\left(1+\frac{1}{q}\right) \times e^{\gamma} \times \log \log r<e^{\gamma} \times \log \log n$
because of we know that $\operatorname{Robins}(r)$ holds and where we used that σ is submultiplicative (that is $\sigma(q \times r) \leq \sigma(q) \times \sigma(r)$) Cho+07]. The last inequality contradicts our assumption that Robins (n) does not hold.

6. Robin's Divisibility

Lemma 6.1. [up-bound] For $x \geq 11$, we have

$$
\sum_{q \leq x} \frac{1}{q}<\log \log x+\gamma-0.12
$$

where $q \leq x$ means all the primes lesser than or equal to x.

Proof. For $x>1$, we have

$$
\sum_{q \leq x} \frac{1}{q}<\log \log x+B+\frac{1}{\log ^{2} x}
$$

where

$$
B=0.2614972128 \cdots
$$

is the (Meissel-)Mertens constant, since this is a proven result from the article reference RS62]. This is the same as

$$
\sum_{q \leq x} \frac{1}{q}<\log \log x+\gamma-\left(C-\frac{1}{\log ^{2} x}\right)
$$

where $\gamma-B=C>0.31$, because of $\gamma>B$. If we analyze $\left(C-\frac{1}{\log ^{2} x}\right)$, then this complies with

$$
\left(C-\frac{1}{\log ^{2} x}\right)>\left(0.31-\frac{1}{\log ^{2} 11}\right)>0.12
$$

for $x \geq 11$ and thus, we finally prove

$$
\sum_{q \leq x} \frac{1}{q}<\log \log x+\gamma-\left(C-\frac{1}{\log ^{2} x}\right)<\log \log x+\gamma-0.12
$$

Theorem 6.2. [strict] Given a square free number

$$
n=q_{1} \times \cdots \times q_{m}
$$

such that $q_{1}, q_{2}, \cdots, q_{m}$ are odd prime numbers, the greatest prime divisor of n is greater than 7 and $3 \nmid n$, then we obtain the following inequality

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times \sigma(n) \leq e^{\gamma} \times n \times \log \log \left(2^{19} \times n\right)
$$

Proof. This proof is very similar with the demonstration in theorem 1.1 from the article reference [Cho+07]. By induction with respect to $\omega(n)$, that is the number of distinct prime factors of n Cho+07]. Put $\omega(n)=m$ [Cho+07]. We need to prove the assertion for those integers with $m=1$. From a square free number n, we obtain

$$
\sigma(n)=\left(q_{1}+1\right) \times\left(q_{2}+1\right) \times \cdots \times\left(q_{m}+1\right)[\mathrm{eq}: 1]
$$

when $n=q_{1} \times q_{2} \times \cdots \times q_{m}$ Cho+07. In this way, for every prime number $q_{i} \geq 11$, then we need to prove

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times\left(1+\frac{1}{q_{i}}\right) \leq e^{\gamma} \times \log \log \left(2^{19} \times q_{i}\right) \cdot[\mathrm{eq}: 2]
$$

For $q_{i}=11$, we have

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times\left(1+\frac{1}{11}\right) \leq e^{\gamma} \times \log \log \left(2^{19} \times 11\right)
$$

is actually true. For another prime number $q_{i}>11$, we have

$$
\left(1+\frac{1}{q_{i}}\right)<\left(1+\frac{1}{11}\right)
$$

and

$$
\log \log \left(2^{19} \times 11\right)<\log \log \left(2^{19} \times q_{i}\right)
$$

which clearly implies that the inequality 6.2 is true for every prime number $q_{i} \geq 11$. Now, suppose it is true for $m-1$, with $m \geq 2$ and let us consider the assertion for those square free n with $\omega(n)=m$ [Cho+07]. So let $n=q_{1} \times \cdots \times q_{m}$ be a square free number and assume that $q_{1}<\cdots<q_{m}$ for $q_{m} \geq 11$.

Case 1: $q_{m} \geq \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)=\log \left(2^{19} \times n\right)$.
By the induction hypothesis we have
$\frac{\pi^{2}}{6} \times \frac{3}{2} \times\left(q_{1}+1\right) \times \cdots \times\left(q_{m-1}+1\right) \leq e^{\gamma} \times q_{1} \times \cdots \times q_{m-1} \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)$ and hence

$$
\begin{gathered}
\frac{\pi^{2}}{6} \times \frac{3}{2} \times\left(q_{1}+1\right) \times \cdots \times\left(q_{m-1}+1\right) \times\left(q_{m}+1\right) \leq \\
e^{\gamma} \times q_{1} \times \cdots \times q_{m-1} \times\left(q_{m}+1\right) \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)
\end{gathered}
$$

when we multiply the both sides of the inequality by $\left(q_{m}+1\right)$. We want to show

$$
\begin{gathered}
e^{\gamma} \times q_{1} \times \cdots \times q_{m-1} \times\left(q_{m}+1\right) \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right) \leq \\
e^{\gamma} \times q_{1} \times \cdots \times q_{m-1} \times q_{m} \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)=e^{\gamma} \times n \times \log \log \left(2^{19} \times n\right) .
\end{gathered}
$$

Indeed the previous inequality is equivalent with

$$
q_{m} \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right) \geq\left(q_{m}+1\right) \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)
$$

or alternatively

$$
\begin{gathered}
\frac{q_{m} \times\left(\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)-\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)\right)}{\log q_{m}} \geq \\
\frac{\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)}{\log q_{m}} .
\end{gathered}
$$

From the reference Cho+07, we have if $0<a<b$, then

$$
\frac{\log b-\log a}{b-a}=\frac{1}{(b-a)} \int_{a}^{b} \frac{d t}{t}>\frac{1}{b} .[\mathrm{eq} \mathrm{:} 3]
$$

We can apply the inequality 6.3 to the previous one just using $b=$ $\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)$ and $a=\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)$. Certainly, we have

$$
\begin{gathered}
\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)-\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)= \\
\log \frac{2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}}{2^{19} \times q_{1} \times \cdots \times q_{m-1}}=\log q_{m} .
\end{gathered}
$$

In this way, we obtain

$$
\frac{q_{m} \times\left(\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)-\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)\right)}{\log q_{m}}>
$$

Using this result we infer that the original inequality is certainly satisfied if the next inequality is satisfied

$$
\frac{q_{m}}{\log \left(2^{19} \times q_{1} \times \cdots \times q_{m}\right)} \geq \frac{\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)}{\log q_{m}}
$$

which is trivially true for $q_{m} \geq \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)$ Cho +07 .
Case 2: $q_{m}<\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)=\log \left(2^{19} \times n\right)$.
We need to prove

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times \frac{\sigma(n)}{n} \leq e^{\gamma} \times \log \log \left(2^{19} \times n\right)
$$

We know $\frac{3}{2}<1.503<\frac{4}{2.66}$. Nevertheless, we could have

$$
\frac{3}{2} \times \frac{\sigma(n)}{n} \times \frac{\pi^{2}}{6}<\frac{4 \times \sigma(n)}{3 \times n} \times \frac{\pi^{2}}{2 \times 2.66}
$$

and therefore, we only need to prove

$$
\frac{\sigma(3 \times n)}{3 \times n} \times \frac{\pi^{2}}{5.32} \leq e^{\gamma} \times \log \log \left(2^{19} \times n\right)
$$

where this is possible because of $3 \nmid n$. If we apply the logarithm to the both sides of the inequality, then we obtain
$\log \left(\frac{\pi^{2}}{5.32}\right)+(\log (3+1)-\log 3)+\sum_{i=1}^{m}\left(\log \left(q_{i}+1\right)-\log q_{i}\right) \leq \gamma+\log \log \log \left(2^{19} \times n\right)$.
From the reference [Cho+07], we note

$$
\log \left(q_{1}+1\right)-\log q_{1}=\int_{q_{1}}^{q_{1}+1} \frac{d t}{t}<\frac{1}{q_{1}}
$$

In addition, note $\log \left(\frac{\pi^{2}}{5.32}\right)<\frac{1}{2}+0.12$. However, we know

$$
\gamma+\log \log q_{m}<\gamma+\log \log \log \left(2^{19} \times n\right)
$$

since $q_{m}<\log \left(2^{19} \times n\right)$ and therefore, it is enough to prove

$$
0.12+\frac{1}{2}+\frac{1}{3}+\frac{1}{q_{1}}+\cdots+\frac{1}{q_{m}} \leq 0.12+\sum_{q \leq q_{m}} \frac{1}{q} \leq \gamma+\log \log q_{m}
$$

where $q_{m} \geq 11$. In this way, we only need to prove

$$
\sum_{q \leq q_{m}} \frac{1}{q} \leq \gamma+\log \log q_{m}-0.12
$$

which is true according to the lemma 6.1 [up-bound] when $q_{m} \geq 11$. In this way, we finally show the theorem is indeed satisfied.

Theorem 6.3. [btw2-3] Robins(n) holds for all $n>5040$ when $3 \nmid n$. More precisely: every possible counterexample $n>5040$ of the Robin's inequality must comply with $\left(2^{20} \times 3^{13}\right) \mid n$.

Proof. We will check the Robin's inequality is true for every natural number $n=q_{1}^{a_{1}} \times q_{2}^{a_{2}} \times \cdots \times q_{m}^{a_{m}}>5040$ such that $q_{1}, q_{2}, \cdots, q_{m}$ are prime numbers, $a_{1}, a_{2}, \cdots, a_{m}$ are natural numbers and $3 \nmid n$. We know this is true when the greatest prime divisor of $n>5040$ is lesser than or equal to 7 according to the lemma 4.1 [case]. Therefore, the remaining case is when the greatest prime divisor of $n>5040$ is greater than 7 . We need to prove

$$
\frac{\sigma(n)}{n}<e^{\gamma} \times \log \log n
$$

that is true when

$$
\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}} \leq e^{\gamma} \times \log \log n
$$

according to the lemma 3.1 [pro]. Using the equation 6.1, we obtain that will be equivalent to

$$
\frac{\pi^{2}}{6} \times \frac{\sigma\left(n^{\prime}\right)}{n^{\prime}} \leq e^{\gamma} \times \log \log n
$$

where $n^{\prime}=q_{1} \times \cdots \times q_{m}$ is the core (n) Cho +07 . However, the Robin's inequality has been proved for all integers n not divisible by 2 (which are bigger than 10) Cho+07. Hence, we only need to prove the Robin's inequality is true when $2 \mid n^{\prime}$. In addition, we know the Robin's inequality is true for every natural number $n>5040$ such that $2^{k} \mid n$ and $2^{20} \nmid n$ for some integer $1 \leq k \leq 19$ [Her18]. Consequently, we only need to prove the Robin's inequality is true for all $n>5040$ such that $2^{20} \mid n$ and thus,

$$
e^{\gamma} \times n^{\prime} \times \log \log \left(2^{19} \times \frac{n^{\prime}}{2}\right)<e^{\gamma} \times n^{\prime} \times \log \log n
$$

because of $2^{19} \times \frac{n^{\prime}}{2}<n$ when $2^{20} \mid n$ and $2 \mid n^{\prime}$. In this way, we only need to prove

$$
\frac{\pi^{2}}{6} \times \sigma\left(n^{\prime}\right) \leq e^{\gamma} \times n^{\prime} \times \log \log \left(2^{19} \times \frac{n^{\prime}}{2}\right)
$$

According to the equation 6.1 and $2 \mid n^{\prime}$, we have

$$
\frac{\pi^{2}}{6} \times 3 \times \sigma\left(\frac{n^{\prime}}{2}\right) \leq e^{\gamma} \times 2 \times \frac{n^{\prime}}{2} \times \log \log \left(2^{19} \times \frac{n^{\prime}}{2}\right)
$$

which is the same as

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times \sigma\left(\frac{n^{\prime}}{2}\right) \leq e^{\gamma} \times \frac{n^{\prime}}{2} \times \log \log \left(2^{19} \times \frac{n^{\prime}}{2}\right)
$$

that is true according to the theorem 6.2 [strict] when $3 \nmid \frac{n^{\prime}}{2}$. In addition, we know the Robin's inequality is true for every natural number $n>5040$ such that $3^{k} \mid n$ and $3^{13} \nmid n$ for some integer $1 \leq k \leq 12$ Her18. Consequently, we only need to prove the Robin's inequality is true for all $n>5040$ such that $2^{20} \mid n$ and $3^{13} \mid n$. To sum up, the proof is completed.

Theorem 6.4. [btw5-7] Robins(n) holds for all $n>5040$ when $5 \nmid n$ or $7 \nmid n$.

Proof. We need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

when $\left(2^{20} \times 3^{13}\right) \mid n$. Suppose that $n=2^{a} \times 3^{b} \times m$, where $a \geq 20$, $b \geq 13,2 \nmid m, 3 \nmid m$ and $5 \nmid m$ or $7 \nmid m$. Therefore, we need to prove

$$
f\left(2^{a} \times 3^{b} \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times m\right) .
$$

We know

$$
f\left(2^{a} \times 3^{b} \times m\right)=f\left(3^{b}\right) \times f\left(2^{a} \times m\right)
$$

since s is multiplicative Voj20. In addition, we know $f\left(3^{b}\right)<\frac{3}{2}$ for every natural number b Voj20]. In this way, we have

$$
f\left(3^{b}\right) \times f\left(2^{a} \times m\right)<\frac{3}{2} \times f\left(2^{a} \times m\right) .
$$

Now, consider

$$
\frac{3}{2} \times f\left(2^{a} \times m\right)=\frac{9}{8} \times f(3) \times f\left(2^{a} \times m\right)=\frac{9}{8} \times f\left(2^{a} \times 3 \times m\right)
$$

where $f(3)=\frac{4}{3}$ since s is multiplicative Voj20. Nevertheless, we have

$$
\frac{9}{8} \times f\left(2^{a} \times 3 \times m\right)<f(5) \times f\left(2^{a} \times 3 \times m\right)=f\left(2^{a} \times 3 \times 5 \times m\right)
$$

and

$$
\frac{9}{8} \times f\left(2^{a} \times 3 \times m\right)<f(7) \times f\left(2^{a} \times 3 \times m\right)=f\left(2^{a} \times 3 \times 7 \times m\right)
$$

where $5 \nmid m$ or $7 \nmid m, f(5)=\frac{6}{5}$ and $f(7)=\frac{8}{7}$. However, we know the Robin's inequality is true for $2^{a} \times 3 \times 5 \times m$ and $2^{a} \times 3 \times 7 \times m$ when $a \geq 20$, since this is true for every natural number $n>5040$ such that $3^{k} \mid n$ and $3^{13} \nmid n$ for some integer $1 \leq k \leq 12$ Her18. Hence, we would have
$f\left(2^{a} \times 3 \times 5 \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3 \times 5 \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times m\right)$
and
$f\left(2^{a} \times 3 \times 7 \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3 \times 7 \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times m\right)$ when $b \geq 13$.

Theorem 6.5. [btw11-47] Robins(n) holds for all $n>5040$ when $q_{m} \nmid n$ for $11 \leq q_{m} \leq 47$.

Proof. We know the Robin's inequality is true for every natural number $n>5040$ such that $7^{k} \mid n$ and $7^{7} \nmid n$ for some integer $1 \leq k \leq 6$ Her18. We need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

when $\left(2^{20} \times 3^{13} \times 7^{7}\right) \mid n$. Suppose that $n=2^{a} \times 3^{b} \times 7^{c} \times m$, where $a \geq 20, b \geq 13, c \geq 7,2 \nmid m, 3 \nmid m, 7 \nmid m, q_{m} \nmid m$ and $11 \leq q_{m} \leq 47$. Therefore, we need to prove

$$
f\left(2^{a} \times 3^{b} \times 7^{c} \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 7^{c} \times m\right) .
$$

We know

$$
f\left(2^{a} \times 3^{b} \times 7^{c} \times m\right)=f\left(7^{c}\right) \times f\left(2^{a} \times 3^{b} \times m\right)
$$

since s is multiplicative Voj20. In addition, we know $f\left(7^{c}\right)<\frac{7}{6}$ for every natural number c Voj20. In this way, we have

$$
f\left(7^{c}\right) \times f\left(2^{a} \times 3^{b} \times m\right)<\frac{7}{6} \times f\left(2^{a} \times 3^{b} \times m\right)
$$

However, that would be equivalent to

$$
\frac{49}{48} \times f(7) \times f\left(2^{a} \times 3^{b} \times m\right)=\frac{49}{48} \times f\left(2^{a} \times 3^{b} \times 7 \times m\right)
$$

where $f(7)=\frac{8}{7}$. In addition, we know
$\frac{49}{48} \times f\left(2^{a} \times 3^{b} \times 7 \times m\right)<f\left(q_{m}\right) \times f\left(2^{a} \times 3^{b} \times 7 \times m\right)=f\left(2^{a} \times 3^{b} \times 7 \times q_{m} \times m\right)$
where $q_{m} \nmid m, f\left(q_{m}\right)=\frac{q_{m}+1}{q_{m}}$ and $11 \leq q_{m} \leq 47$. Nevertheless, we know the Robin's inequality is true for $2^{a} \times 3^{b} \times 7 \times q_{m} \times m$ when $a \geq 20$
and $b \geq 13$, since this is true for every natural number $n>5040$ such that $7^{k} \mid n$ and $7^{7} \nmid n$ for some integer $1 \leq k \leq 6$ |Her18]. Hence, we would have
$f\left(2^{a} \times 3^{b} \times 7 \times q_{m} \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 7 \times q_{m} \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 7^{c} \times m\right)$
when $c \geq 7$ and $11 \leq q_{m} \leq 47$.
Theorem 6.6. [btw53-113] Robins(n) holds for all $n>5040$ when $q_{m} \nmid n$ for $53 \leq q_{m} \leq 113$.

Proof. We know the Robin's inequality is true for every natural number $n>5040$ such that $11^{k} \mid n$ and $11^{6} \nmid n$ for some integer $1 \leq k \leq 5$ Her18. We need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

when $\left(2^{20} \times 3^{13} \times 11^{6}\right) \mid n$. Suppose that $n=2^{a} \times 3^{b} \times 11^{c} \times m$, where $a \geq 20, b \geq 13, c \geq 6,2 \nmid m, 3 \nmid m, 11 \nmid m, q_{m} \nmid m$ and $53 \leq q_{m} \leq 113$. Therefore, we need to prove

$$
f\left(2^{a} \times 3^{b} \times 11^{c} \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 11^{c} \times m\right) .
$$

We know

$$
f\left(2^{a} \times 3^{b} \times 11^{c} \times m\right)=f\left(11^{c}\right) \times f\left(2^{a} \times 3^{b} \times m\right)
$$

since s is multiplicative Voj20. In addition, we know $f\left(11^{c}\right)<\frac{11}{10}$ for every natural number c Voj20. In this way, we have

$$
f\left(11^{c}\right) \times f\left(2^{a} \times 3^{b} \times m\right)<\frac{11}{10} \times f\left(2^{a} \times 3^{b} \times m\right) .
$$

However, that would be equivalent to

$$
\frac{121}{120} \times f(11) \times f\left(2^{a} \times 3^{b} \times m\right)=\frac{121}{120} \times f\left(2^{a} \times 3^{b} \times 11 \times m\right)
$$

where $f(11)=\frac{12}{11}$. In addition, we know
$\frac{121}{120} \times f\left(2^{a} \times 3^{b} \times 11 \times m\right)<f\left(q_{m}\right) \times f\left(2^{a} \times 3^{b} \times 11 \times m\right)=f\left(2^{a} \times 3^{b} \times 11 \times q_{m} \times m\right)$
where $q_{m} \nmid m, f\left(q_{m}\right)=\frac{q_{m}+1}{q_{m}}$ and $53 \leq q_{m} \leq 113$. Nevertheless, we know the Robin's inequality is true for $2^{a} \times 3^{b} \times 11 \times q_{m} \times m$ when $a \geq 20$ and $b \geq 13$, since this is true for every natural number $n>5040$ such that $11^{k} \mid n$ and $11^{6} \nmid n$ for some integer $1 \leq k \leq 5$ Her18. Hence, we would have
$f\left(2^{a} \times 3^{b} \times 11 \times q_{m} \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 11 \times q_{m} \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 11^{c} \times m\right)$
when $c \geq 6$ and $53 \leq q_{m} \leq 113$.

7. Proof of Main Theorems

Theorem 7.1. Robins(n) holds for all $n>5040$ when $q_{m} \nmid n$ for $q_{m} \leq 113$.

Proof. This is a compendium of the results from the Theorems 6.3 [btw2-3], 6.4 [btw5-7], 6.5 [btw11-47] and 6.6 [btw53-113].

Theorem 7.2. Let $n>5040$ and $n=r \times q$, where q denotes the largest prime factor of n and q is a sufficiently large number. If Robins (r) holds, then Lagarias(n) holds.

Proof. We need to prove

$$
\sigma(n) \leq H_{n}+\exp \left(H_{n}\right) \times \log H_{n} .
$$

We know if Robins (n) holds for $n>5040$, then Lagarias (n) holds because of lemma 1.2 [known]. In addition, Lagarias (n) has been checked for all $n \leq 5040$. Now suppose that Robins (r) holds, but Robins (n) does not. Let's multiply by e^{γ} the both sides of inequality and thus,

$$
e^{\gamma} \times \sigma(n) \leq e^{\gamma} \times H_{n}+e^{\gamma} \times \exp \left(H_{n}\right) \times \log H_{n} .
$$

If we apply the lemma 2.5 [harmonic-bound], then we obtain that

$$
\prod_{p \mid n} \frac{p}{p-1} \leq \prod_{p \leq n} \frac{p}{p-1}<e^{\gamma} \times H_{n}
$$

Hence, we obtain that

$$
e^{\gamma} \times \sigma(n)-\prod_{p \mid n} \frac{p}{p-1} \leq e^{\gamma} \times \exp \left(H_{n}\right) \times \log H_{n} .
$$

That would be equivalent to

$$
\prod_{p \mid n} \frac{p}{p-1} \times\left(e^{\gamma} \times \sigma(n) \times \prod_{p \mid n} \frac{p-1}{p}-1\right) \leq e^{\gamma} \times \exp \left(H_{n}\right) \times \log H_{n}
$$

We know that

$$
\sigma(n)=\prod_{p^{k} \| n} \frac{p^{k+1}-1}{p-1}
$$

because of lemma 2.1 [sigma-formula] and therefore

$$
\begin{aligned}
\sigma(n) \times \prod_{p \mid n} \frac{p-1}{p} & =\prod_{p^{k} \| n} \frac{p^{k+1}-1}{p} \\
& =\prod_{p^{k} \| n}\left(p^{k}-\frac{1}{p}\right) \\
& <n
\end{aligned}
$$

In this way, we can see that

$$
\prod_{p \mid n} \frac{p}{p-1} \times\left(e^{\gamma} \times n-1\right) \leq e^{\gamma} \times \exp \left(H_{n}\right) \times \log H_{n}
$$

If we apply the lemma 2.4 [log-bound] to the previous inequality, then we obtain that

$$
\prod_{p \mid n} \frac{p}{p-1} \times\left(e^{\gamma} \times n-1\right) \leq e^{\gamma} \times\left(e^{\gamma} \times n\right) \times \log \log \left(e^{\gamma} \times n\right)
$$

If we use the lemma 2.6 [down-bound], then we have that
$e^{\gamma} \times\left(\log q+\frac{1}{2 \times \log q}\right) \times\left(e^{\gamma} \times n-1\right) \leq e^{\gamma} \times\left(e^{\gamma} \times n\right) \times \log \log \left(e^{\gamma} \times n\right)$
where q is the largest prime factor of n and q is a sufficiently large number. In addition, if we introduce the lemma 5.1 [counter], then we have

$$
\frac{\log \left(q \times e^{\frac{1}{2 \times \log q}}\right)}{\log (q+\gamma)} \leq \frac{e^{\gamma} \times n}{e^{\gamma} \times n-1}
$$

However, we know that

$$
\lim _{q \rightarrow \infty} \frac{\log \left(q \times e^{\frac{1}{2 \times \log q}}\right)}{\log (q+\gamma)} \leq 1 \leq \frac{e^{\gamma} \times n}{e^{\gamma} \times n-1}
$$

for enough large values of q and therefore, the proof is completed.

References

[Cho+07] YoungJu Choie et al. "On Robin's criterion for the Riemann hypothesis". In: Journal de Théorie des Nombres de Bordeaux 19.2 (2007), pp. 357-372. DOI: 10.5802/jtnb. 591.
[Edw01] Harold M. Edwards. Riemann's Zeta Function. Dover Publications, 2001. ISBN: 0-486-41740-9.
[Her18] Alexander Hertlein. "Robin's Inequality for New Families of Integers". In: Integers 18 (2018).
[Lag02] Jeffrey C. Lagarias. "An Elementary Problem Equivalent to the Riemann Hypothesis". In: The American Mathematical Monthly 109.6 (2002), pp. 534-543. DOI: $10.2307 / 2695443$.
[RS62] J. Barkley Rosser and Lowell Schoenfeld. "Approximate Formulas for Some Functions of Prime Numbers". In: Illinois Journal of Mathematics 6.1 (1962), pp. 64-94. DOI: 10.1215/ijm/1255631807.
[Voj20] Robert Vojak. "On numbers satisfying Robin's inequality, properties of the next counterexample and improved specific bounds". In: arXiv preprint arXiv:2005.09307 (2020).

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France
E-mail address: vega.frank@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 11M26; Secondary 11A41, 26D15.

 Key words and phrases. number theory, inequality, sum-of-divisors function, harmonic number, prime.

 This work was supported by another researcher that shall be included as an author after his approval.

