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Abstract Since the novel Coronavirus (COVID-19) has been announced as
a global pandemic, researchers from different disciplines have attempted to
describe and forecast the spread of COVID-19. Some recent studies try to pre-
dict the future trend of the COVID-19 pandemic by deep learning, e.g., the
long short-term memory (LSTM), but most works focus on the compartmen-
tal epidemic model based curve fitting and forecast. The susceptible-infected-
removed (SIR) model and the susceptible-exposed-infected-removed (SEIR)
model are two most commonly used compartmental models. The question is to
what extent the choice of epidemic models will affect the fitting and long-term
forecast performance. In this work, we compared the fitting and prediction
performance by considering and ignoring the exposed state to characterize the
divergence between these two different models.
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1 Introduction

It is reported by the World Health Organization (WHO) that the Coronavirus
disease 2019 (COVID-19), which is caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), has been a global pandemic since early
2020 [1]. Due to the huge impacts of COVID-19 on people’s daily life and
the economy, many works attempt to find out the spreading mechanism of
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COVID-19 and predict how long the pandemic will last and how many peo-
ple will be finally affected or deceased [2]. One typical way to mathematically
describe the dynamics of COVID-19 is to use the compartmental models in
epidemiology which assumes that the spreading is in an infinite well-mixed
population. The Susceptible-Infected-Removed (SIR) model is one of the most
basic compartmental models to describe the COVID-19 pandemic. In the SIR
model [3,4,5,6], there are three compartments: the fraction of susceptible in-
dividuals (S), the fraction of active infectious individuals (I) and the fraction
of the cumulative removed individuals (R). Another common used compart-
mental epidemic model is the Susceptible-Exposed-Infected-Removed (SEIR)
model that considered an incubation period during which the people carried
the virus but still cannot infect the susceptible individuals [7,8,9,10,11,12].
There are many variations on the SIR and SEIR models, such as consider-
ing the unreported individuals [13], population-level [14] and the underlying
network structure [3,15,16].

Although it has been proved that there are on average 5 to 6 days incu-
bation period [17,18] for individuals infected with SARS-CoV-2, the exposed
state is still not considered in many forecast-related studies [9,10,3,4,19]. An
important question is whether the fitting and forecast accuracy will be signif-
icantly affected if the exposed state is not considered. It would be difficult to
figure out this question by directly working on the real data since there are
many external factors influencing the outcome apart from the basic parame-
ters in the classic SIR or SEIR model. For example, it has been proved that
the infection rate is changing with time because of the weather [20]. Moreover,
many policies, e.g., quarantine and wearing masks, may also significantly affect
the spreading process. We thus first compare the fitting and forecast accuracy
on the synthetic data. Our results reveal that the fitting performance will be
similar no matter the exposed state is considered or not. However, the results
of long-term forecast could be significantly different by considering or neglect-
ing the exposed state. We finally fit and forecast the real data for four different
countries1 by the SIT and SEIT models to back up our conclusions.

2 Compartmental models to describe the COVID-19 pandemic

The classic SIR and SEIR models have been implemented in plenty of prior
studies to describe the epidemic outbreak [21,22]. In the SIR model, the sus-
ceptible individuals are infected by the infectious individuals with an infection
rate β and the infectious individuals are removed (recovered or deceased) with
a removed rate δ. In the SEIR model, there is an exposed state E between the
susceptible state S and the infectious state I. The susceptible individuals are
infected by the infectious individuals and turn to be the exposed individual
with an infection rate β. The exposed individual turn to be infectious with a
rate σ, where σ−1 denotes the average incubation period. There is a common

1 https://covid19.who.int/info/
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misconception that the tested data is equal to the infected data. In reality, the
tested infectious individuals are almost impossible to infect the susceptible in-
dividuals because the infected people will be quarantined once tested positive.
We thus revise the SIR model and SEIR model as the Susceptible-Infected-
Tested (SIT) model and Susceptible-Exposed-Infected-Tested (SEIT) model
respectively. Specifically, the removed state R is revised to be the tested state
T and the removed rate δ is revised to be the tested rate γ. Then the revised
differential equations are

dS

dt
= −βSI

N
dI

dt
=
βSI

N
− γI

dT

dt
= γI

(1)

for the SIT model and
dS

dt
= −βSI

N
dE

dt
=
βSI

N
− σE

dI

dt
= σE − γI

dT

dt
= γI

(2)

for the SEIT model.
According to the recent researches [18] and [23], the incubation period of

COVID-19 is usually between 2 and 14 days. Furthermore, the research [23]
shows that the estimated mean incubation period is 5.5 days. Thus, we take
the latency period as 5.5 days in our work. At each day k, the fraction of daily
new tested individuals is Tdaily[k] = T [k] − T [k − 1]. In real data, the time
series cannot be as smooth as the curves in the SEIT model and the noise
increases with the number of daily tested individuals. We thus generate the
daily tested data with noise at each day Tnoise[k] by the normal distribution
with the mean equals Tdaily[k] and the standard deviation equals 10Tdaily[k].
In this work, we set the parameters β = 0.5 and γ = 0.3. The initial fractions
of S,E, I, T for the SEIT model are set to be [0.999, 0.001, 0, 0], respectively.
Figure 2 shows the curves before and after adding the Gaussian noise. We set
the curves after adding the Gaussian noise as the benchmark to be fitted and
forecasted. What we will do on the synthetic data is to fit the curves
in the first 30 days and forecast prevalence in the last 30 days. The
fitting error and forecast error can be measured by the Root Mean Square
Error (RMSE) [24]:

RMSE =

√∑L
k=1(T̃ [k] − T [k])

L
, (3)

where L denotes the length of time series, T [k] denotes the benchmark data

and T̃ [k] is the fit or forecast result.
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Susceptible Infected Tested

Susceptible Exposed Infected Tested

a

b

Fig. 1 Diagram of the Susceptible-Infected-Tested (SIT) model (figure a) and the
Susceptible-Exposed-Infected-Tested (SEIT) model (figure b) that applied to describe the
COVID-19 pandemic.

Time slot k Time slot k

Curves before adding Gaussian noise

Curves after adding Gaussian noise

a b

Fig. 2 Curves before and after adding the Gaussian noise. The left figure is for the frac-
tion of daily tested individuals and the right figure is for the fraction of cumulative tested
individuals.

3 Results and discussion

We first investigate how the fit or forecast error will vary with the epidemic
parameters β and γ. We go over all pairs of the infection rate β and the tested
rate γ in the range of (0, 1) with the interval of 0.01. Based on each parameter

pairs β and γ, we can generate the curves T̃ by numerically solving Equa-
tions (2) and further measure the difference between T̃ and the benchmark
curve T by RMSE as shown in Equation (3). In order to illustrate the RMSE
value clearer, we use the log(1/RMSE) since this value is more suitable for
showing small values. Figure 3.c shows the heatmap of log(1/RMSE) with
different parameter pairs β and γ. In the heatmaps, we map the RMSE values
to log(1/RMSE) and the fitting problem corresponds to the maximization
problem w.r.t values in heatmap. It reveals that there are many parameter
pairs β and γ that can fit well with the benchmark curve. We further try to
fit the benchmark curve (generated by the SEIT model) by the SIT model as
shown in Equation (1). The heatmap of log(1/RMSE) with different param-
eter pairs β and γ is shown in Figure 3.d. It reveals that the SIT model can
also fit the benchmark curve generated by the SEIT model well, but the fitted
parameters are all far from the real parameters β and γ.
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Fit by SEIT model
a

Fit by SIT model
b

c d

Fig. 3 Heatmaps on the RMSE between the benchmark curve and the estimate curve
(generated by the SEIT model or SIT model) with both β and γ in range of (0, 1) with the
interval of 0.01. The benchmark curve is generated by the SEIT model with Gaussian noise.
The upper figures are for the RMSE values and the bottom figures are for the log(1/RMSE)
values, which can find the positions of best fit easier. There are many different parameters
in both SIT model and SEIT model whose curves are very similar to the benchmark curve.
It also means that, given a curve generated by the SEIT model, it is likely to find a similar
curve that is generated by the SIT model. An inference is, if one fits the real COVID-19
data by SIT or SEIT model, the results can be very similar.

After compared the fitting performance between the SIT and SEIT mod-
els, we further investigate the forecast performance. Here we propose a hill-
climbing algorithm to fit the curves. The details of this algorithm are shown
in Appendix A. By fitting the curves with different epidemic models, we can
respectively derive the estimated parameters β, γ and R0. Note that the basic
reproduction number R0 = β/γ. Figure 4 shows the estimated parameters by
fitting the benchmark curve based on the SIT and SEIT models. It indicates
that the inferred parameters achieved from the SEIT model are closer to the
true values than the results from the SIT model. We future predict the last
30 days by generating curves using the inferred parameters β and γ. The left
figure of Fig. 5 shows that the predicted curves fitted by the SEIT model
are closer to the benchmark curves. We also calculate the prediction error for
each day of the 30-day prediction results, which is shown in the right figure
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of Fig. 5. During the prediction period, the relative errors of the prediction
results derived from the SIT and SEIT models are gradually increasing and
the prediction error of each day from the SEIT model is always smaller than
the results from SIT model.

Finally, we fit and forecast the real data from various countries by SIT
and SEIT models as shown in Fig. 6. For the fitting results, we can see that
SIT and SEIT model have a similar performance. For the prediction results,
the curves from France, Belgium and Italy fitted by SEIT model have a lower
RMSE value corresponding to the curves fitted by SIT model. But for the real
data from India, the forecast by SIT model has a higher accuracy.

a b c

Fig. 4 Output of the estimated parameters R0 (figure a), β (figure b) and γ (figure c) from
the SEIT model and the SIT model. The red lines mark the true values. Although the fitting
results from the SIT and SEIT model are similar, the estimated parameters are far different
for each model. The errorbar denotes the standard deviation.

Prediction date

Fig. 5 Forecast results by the SEIT and SIT model. (left) The RMSE between the fit curves
and benchmark curves by SEIT model and SIT model. The errorbar denotes the standard
deviation. (right) Relative errors of the forecast results in each day. Both predictions are
derived by using the SIT and SEIT model separately. It reveals that although the fitting
results from the SIT or SEIT model are similar, the long-term forecast performance can be
very different for different models. The results are over 100 experiments.
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Fit results Forecast results

RMSE (SEIT) = 0.00155

RMSE (SIT)   = 0.00152

RMSE (SEIT) = 0.00218

RMSE (SIT)   = 0.00222

RMSE (SEIT) = 0.00434

RMSE (SIT)   = 0.00440

RMSE (SEIT) = 0.00193

RMSE (SIT)   = 0.00220

RMSE (SEIT) = 0.000499

RMSE (SIT)   = 0.000641

RMSE (SEIT) = 0.000790

RMSE (SIT)   = 0.00142

RMSE (SEIT) = 0.0000996

RMSE (SIT)   = 0.0000974

RMSE (SEIT) = 0.000131

RMSE (SIT)   = 0.0000760

Fig. 6 Fitting and prediction results by SEIT and SIT model on the real data. The real
data are from France, Belgium, Italy and India respectively. Before the fitting and forecast,
the real data smoothed by moving average with 7-day time window (since there is usually
periodicity at around 7 days in real data [25]). It reveals that the fitting results from the
SIT and SEIT models are very similar, but the long-term forecast results are significantly
different for most countries.
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4 Conclusion

Many recent works focus on modeling and forecasting the COVID-19 pandemic
based on the compartmental models in epidemiology. A part of these works
considered the exposed state, but the others ignored it. This work analyzed
to what extend the negligence of the exposed state will affect the fitting and
forecast performance. To characterize the COVID-19 pandemic when there are
sufficient tests and quarantine, we proposed two revised compartmental mod-
els: the Susceptible-Infected-Tested (SIT) model and the Susceptible-Exposed-
Infected-Tested (SEIT) model. To characterize the divergence of the forecast
performance on SEIT and SIT models, we apply the artificial curves (which are
generated by the SEIT model with Gaussian noise) and real data for different
countries. We discover that there is no obvious difference between these two
models in curve fitting for both the synthetic and real data. However, for the
long-term forecast, the prediction results derived from the SIT model and the
SEIT model are significantly different for both the synthetic and real data.
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A Algorithm

A.1 Hill climbing optimization

Hill climbing is one of the heuristic mathematical optimization method, attempting to find
the maximizer or the minimizer of a function. Here in our case, we implement this algorithm
and try to find the optimal parameters to fit some curves and produce root-mean-square-
error (RMSE) as small as possible.

The basic idea of hill climbing is that the algorithm accepts any modifications regarding
the variables that can optimize the cost function value. To be specific, if one would like to
minimize the targeted cost function, one can search all the neighbours of the current state
or randomly generate a new state, and if the corresponding cost function value decreases,
with the hope that this direction will lead to the global optima, the new state is accepted.
Although this algorithm can be illustrated that the eventual solution is not necessarily the
global optima, yet due to the complicated relationship between parameters τ , β and γ and
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the corresponding generated curve, this method is suitable for this fitting case. Furthermore,
as shown in the following section, the results are quite good, indicating the efficacy of the
hill climbing algorithm. The implementation of this algorithm can be followed by the pseudo
code in the next section.

A.2 Pseudo code

In this section, we are going to show the way to implement hill climbing algorithm in
Algorithm 2.

Algorithm 1: Hill Climbing Algorithm for the artificial data
Data: Tnoise data created by SEIT model with additive Gaussian Noise
Result: Optimal τ , β, and γ with the lowest RMSE

1 step size ← 1, iteration ← 5000
2 β0 ← randomly drawn from uniform distribution (0, 1), τ0 ← randomly drawn

from uniform distribution (0, 5), γ0 = β0/τ0
3 Let state s = s0, the initial state of an SEIT or SIT curve which is created by β0

and γ0
4 Energy E(s), defined as RMSE between s and Tnoise

5 for n in iteration do
6 snew ← neighbor(s) generated by adding uniformly distributed variable in

(-1,+1) × step size
7 if E(s) >E(snew) then
8 s ← snew

9 end

10 end
11 Return τ , β ,γ

Algorithm 2: Hill Climbing Algorithm for the real data
Data: Tdaily Real daily-increased data from various countries after smoothing
Result: Optimal τ , β, and γ with the lowest RMSE

1 step size a1 ← 1, step size a2 ← 0.0001, iteration ← 50000
2 β ← randomly drawn from uniform distribution (0, 1), τ ← randomly drawn from

uniform distribution (0, 5), γ = β/τ
3 y0 ← [S0,(E0,)I0,T0]
4 Let state s = s0, the initial state of an SEIT or SIT curve which is created by β, γ

and y0
5 Energy E(s), defined as RMSE between s and Tdaily
6 for n in iteration do
7 snew ← neighbor(s) generated by adding uniformly distributed variable in

(-1,+1) × a1 to β, τ and (-1,+1) × a2 to T0
8 if E(s) >E(snew) then
9 s ← snew

10 end

11 end
12 Return τ , β ,γ


