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ABSTRACT
The development of fully autonomous conversational agents using
large languagemodels (LLMs) remains a significant challenge due to
the inherent complexity and critical importance of customer-facing
systems. This paper investigates a hybrid approach that integrates
LLMs within traditional task-oriented systems to enhance perfor-
mance while maintaining safety and reliability.

We propose a modular design, incorporating LLMs into specific
modules of the system to leverage modern architecture capabilities
while mitigating risks like hallucinations. Our work outlines the
architectural design, assesses the performance of the latest LLMs
on intent classification tasks, discusses unique challenges posed by
three-sided marketplaces, and trade-offs in designing and deploying
such systems at scale.

We demonstrate how this system can achieve real-world impact
with minimal investments in architecture, modeling, and dataset
collection, achieving up to a 35% reduction in workload while main-
taining customer satisfaction.
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1 INTRODUCTION
The recent advances in LLMs, exemplified by the global success
of ChatGPT1, and new paradigms such as Retrieval-Augmented
Generation (RAG) [10] and agentic applications [22], have made
LLM-based workflows the preferred choice for designing modern
dialogue management applications.

Despite the notable success of some applications and the impres-
sive rate of new developments, LLM pipelines can still be challeng-
ing to deploy safely at scale, due to issues such as hallucinations,
outdated knowledge, scalability, and cost [2, 22].

Glovo develops and operates a three-sided marketplace connect-
ing vendors, customers, and riders. Customers use our mobile or
web app to place orders from vendors, that are then delivered by
riders to the customer’s location. In this context, a distinctive chal-
lenge in designing a chatbot for order status queries lies in the
real-time, dynamic nature of the context. Unlike conversational
agents designed for static knowledge bases, the context of an order
being delivered can evolve mid-conversation. The system must ac-
cess real-time information regarding the geographical location of

1https://openai.com/chatgpt/

the rider, initial and current Estimated Time of Arrival (ETA) esti-
mations, and store saturation indicators. Customer support agents
typically handle an average of approximately 300,000 monthly sup-
port requests related to order status, with each chat averaging ap-
proximately seven messages, 13 tokens long, resulting in a monthly
volume of up to 300 million tokens across more than 20 countries
and languages.

In this paper, we describe the trade-offs encountered while devel-
oping and deploying a customer support chatbot for delivery mar-
ketplace at scale. To fully explain the rationale behind our design
decisions, we first present an overview of potential patterns to use
when building such systems, ranging from traditional task-oriented
systems to modern LLM-based agentic workflows, including hybrid
workflows. We then detail the design of our chosen solution, dis-
cussing trade-offs, costs, experimental results, and failure modes,
and conclude with potential future directions.

2 RELATEDWORK
2.1 Dialogue systems
Dialogue systems can be categorized into task-oriented and non-
task-oriented [5]. Task-oriented systems interact with users with
the goal of making them achieve a certain task, while non-task-
based systems can entertain more open ended conversations. Typi-
cally task-based systems treat the dialogue as a structured pipeline
consisting of the following components: a Natural Language Un-
derstanding (NLU) unit; a tracker, to keep track of all parameters
needed to manage the dialogue; a policy (or in our case decision
engine), responsible to make a decision given latest context and
metadata acquired by the NLU; and finally a Natural Language Gen-
eration (NLG) unit, responsible for translating the action selected
into human language and advance the conversation.

Such systems can be designed with different level of complexi-
ties, going from pure intent recognition systems [19] to end-to-end
trained systems such as the one described in [11], where both NLU,
policy selection and NLG are neural networks. On the other hand, in
[28] the problem is defined as a dynamic state machine to carry out
the conversation based on the detected user intent. Conversational
frameworks such as Rasa [3] make the design of such systems more
flexible and each subcomponent can be set as either simple rules
(e.g. regex), heuristics or more complex machine learning models,
depending on the use case.

The recent advances in LLMs architectures and alignment tech-
niques [15], coupled with the rise in popularity of frameworks such
as LLama-Index and Langchain [4, 12, 17], have made LLMs a par-
ticularly attractive choice when designing a conversational system



Biagio Antonelli and Gonzalo Cordova

for the first time, particularly when the team lacks prior experience
with such technologies or when resources are limited.

Agentic LLMs patterns like tools usage [7] can be leveraged to
quickly create fully autonomous systems that are able to plan, exe-
cute actions such as API and database calls [18], and interact with
both users and backend systems directly without human interven-
tion. Even though, especially given the success of ChatGPT, it might
be tempting to think that such a system can be easily designed and
deployed at scale, these systems usually suffer from problems like
hallucinations [18, 27], and issues around safety and privacy.

Hallucinations can be mitigated via finetuning, guardrails [20]
and prompt engineering [23]. Moreover, modern libraries [4, 12]
make it extremely easy to abstract away the specific LLM used,
allowing to use interchangeably open and closed source models
and seamlessly switch depending on needs. Finally, in terms of
safety there are several guardrails [20] techniques which could be
employed to mitigate potential issues.

2.2 Applications to Customer Support
Some applications in customer support [30] focus on tools that
ease issue resolution for human agents without direct interaction
with users. However, more recent studies [13] explore the devel-
opment of chatbots that can engage in conversations with users,
moving towards autonomous chatbots that handle interactions
without human intervention. As mentioned in previous sections,
recent breakthroughs in the field can be leveraged to enhance these
customer service agents.

One example of this is the implementation of knowledge-based
systems [14] or the development of Retrieval-Augmented Gener-
ation (RAG) engines [24] for question answering. However, these
systems are more suited to tasks involving FAQ-style questions.
RAG systems typically rely on a corpus of information from which
they retrieve relevant data before generating a response. In dynamic
environments like food delivery apps, where real-time information
such as courier position, order status, and ETA estimations are
dynamic, a RAG system might struggle.

Moreover, for customer service, especially in scenarios involving
real-time data, accuracy and precision are paramount, and hallu-
cinations can be problematic. In food delivery apps, for instance,
customers expect exact details about their orders. While RAG sys-
tems are effective in generating human-like responses, they might
not always provide the precise, up-to-date information required,
potentially causing significant legal and reputational issues for
companies [25].

To address these challenges, some approaches adopt a more de-
fensive strategy, such as intent recognition systems. In [19] they
explore different machine learning algorithms for intent classifica-
tion, showing their effectiveness in understanding user queries.

Despite these advancements, there is still a gap in deploying
large-scale, safe customer service agents using LLMs. To the best of
our knowledge, implementations that balance customer satisfaction
and cost-effectiveness using LLMs in a large-scale environment are
scarce. Real-time data integration without hallucinations remains a
challenge, making this a valuable area for research and development
in multi-sided marketplaces.

3 METHODOLOGY
We adopted a hybrid approach that integrates traditional task-
oriented components with modern LLM capabilities. Our primary
goal was to design a robust, scalable, and low-risk modular solution
that can be iteratively improved as new technologies mature. Here,
we outline the components and methodology used in our system.

Figure 1: Glovo conversational system.

3.1 System Architecture
The architecture of our dialogue management system consists of
the following key components:

• Natural Language Understanding (NLU): The NLU unit
interprets user inputs to extract intents and sentiments,
enabling the system to understand the user’s goals and
emotional state.

• Tracker: Maintains the context of the conversation and
tracks real-time information such as rider location and ETA,
ensuring the dialogue remains relevant and accurate.

• Decision Engine: Determines the next action based on the
current state and context, using a combination of rules and
heuristics.

• Natural Language Generation (NLG): The NLG unit gen-
erates human-like responses from action templates, ensur-
ing variability and appropriateness in the system’s replies.

3.2 Natural Language Understanding (NLU)
The NLU unit is responsible for extracting relevant information
from the user’s query. In the initial iteration of our system, this
component focuses on extracting the user intent and sentiment.

3.2.1 Intent Classification. Within the NLU unit, the intent classi-
fication task involves categorizing a user query into one of several
predefined intents. It is the most critical step of our system and
serves as a proxy for the system’s overall effectiveness, as the be-
havior of the other components is deterministic by design. In Table
1 we display a few intents and sample utterances for our use case.
Sample utterances are also passed as context in the LLMs prompt
(Fig. 4) for few-shot classification. Figure 2 shows the distribution
of intents from our curated dataset. We see that the most common
customer intents are to greet and to enquire on the status of the
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order being delivered. The intents presented are only a subset of
the 20 used in our production system.

Table 1: Selected Intents with associated sample utterances.

Intents Sample Utterances
GREETING - hello, there!

- Hola!
DISAPPOINTMENT - such a bad service!

- I am disappointed!
ORDER_STATUS - Entonces mi pedido no va a llegar?

- Where is my order?
RIDER_LOCATION - the rider location is wrong

- the rider is not moving,
CANCELLATION_REQUEST - I want to cancel my order!

- cancela mi pedido
REDIRECT_TO_AGENT - I want to speak to an agent

- I want to speak to a human
GOODBYE - bye!

- close the chat

Figure 2: Distribution of Intents from curated dataset.

3.2.2 Dataset Curation. In order to evaluate different intent clas-
sifiers, we adopted an efficient pipeline inspired by BERTTopic
and Llama2 [8] to expedite the data labelling process. Our method
involves the following steps:

(1) Automatic Clustering:We start by clustering historical
query data, using SentenceBERT as an embedding model
[21]. This step groups similar queries together, forming
clusters that represent different intents.

(2) Sampling and Labeling: From each cluster, we sample a
subset of queries. We then utilize an LLM to assign one of
the predefined intents to each cluster. If the LLM is unsure
about a particular query, it labels the samples from the
cluster as "UNKNOWN".

(3) Human Verification:We split the dataset in train and test,
and we asked human agents to manually confirm or update
all the pre-labelled data in the test set, while only reviewing
the "UNKNOWN" from the training set.

This process enabled us to collect a dataset of approximately
7,000 samples within a single day. The dataset is structured in the
following format: context | query → intent. The clustering approach
was adopted to minimise costs during labelling iterations but in
practice the cluster size could be set to 1 and we could get an LLM
to label every single sample independently.

By leveraging this semi-automated approach, we ensured that
our dataset is both comprehensive and accurately labeled, providing
a solid foundation for training and evaluating our system.

Figure 3: Dataset curation - semi-automated labelling
pipeline with LLMs.

Figure 4: Interpreter Prompt.

3.3 Tracker
Effective customer support requiresmaintaining an updated context
around the customer’s inquiry. The tracker is a back-end component
responsible for providing this real-time context to both the decision
engine, which utilizes this information to make decisions, and the
NLG unit, which conveys some of this information to the user.

Some of the key pieces of information managed by the tracker
include:

• Original ETA provided to the customer: This helps in
managing customer expectations and addressing any dis-
crepancies that might arise if the estimated time of arrival
changes.

• Current ETA remaining estimate: Providing an updated
ETA helps keep the customer informed about any changes
in the delivery schedule, enhancing transparency.

• Store saturation: Store saturation levels help understand
potential delays.

• Bundling information: Knowing if an order is part of a
bundle helps understand potential delays.

Additionally, the tracker supplies the interpreter with the mes-
sage history, which can aid in accurately interpreting the user’s
intent.
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3.4 Decision Engine
Given the metadata extracted from the NLU and the Tracker in-
formation, the rule-based decision engine selects a macro action.
Macro actions are collections of action templates that are subse-
quently translated into messages by the NLG unit.

Figure 5 illustrates the process followed by the Decision Engine.
A decision tree is selected based on the detected intent by the Inter-
preter. This tree is traversed, making decisions based on the data
provided by the Tracker. Ultimately, a macro action is selected and
passed to the NLG unit, along with the Tracker’s data, to generate
the message sent to the customer. Once the action is taken, the
system continues to listen for a new customer intent or concludes
the conversation.

Figure 5: Decision Engine Flow example.

3.5 Natural Language Generation (NLG)
The NLG module is responsible for generating the messages to
be sent to customers, based on the macro actions selected by the
Decision Engine. Macro actions comprise a set of action response
templates, each associated with a pool of text variations designed
to convey the same core message. The NLG unit randomly selects
a variant from each action response template and combines these
selections to generate the final message. An illustrative example of
response variations for the macro action "Late order with reason" is
provided in Figure 6. It is important to note that the NLG unit uses
the information provided by the Tracker to construct the final text.

While LLMs were used to generate text variations per action
template, human reviewers ensure the text maintains acceptable
quality and aligns with company values, tone, and standards. This
step is crucial to prevent hallucinations, which could negatively
impact performance and brand reputation.

3.6 Human-AI Interaction
We adopted a defensive UX design strategy [26] for integrating our
system with the product. This strategy anticipates any inaccuracies
that may occur during user interactions with our AI-based prod-
uct, addressing these issues proactively by directing user behavior,
preventing misuse, and managing errors effectively. Inspired by

Figure 6: Action response templates.

guidelines from [1] [16], we implemented the following design
patterns to ensure a quality Human-AI interaction:

• Setting the right expectations: Clearly informing the
user that they are interacting with an automated bot rather
than a human. As illustrated in Figure 7, this can be achieved
by using a distinct bot profile picture and an introductory
message from the bot.

• Enabling user supervision of automation: Providing
users with an option to complete their task when the system
does not work as intended by always displaying a "Redi-
rect to human agent" button or by detecting the "REDI-
RECT_TO_AGENT" intent.

• Facilitating user feedback: Allowing users to provide
feedback at the end of the interaction through the display
of a star-rating system to indicate their level of satisfaction.

• Avoiding hallucinations: Our system mitigates the risk
of generating misleading or erroneous responses by design.

Figure 7: Design for agent’s introduction to user.

4 EXPERIMENTS
The evaluation of our system is divided into two parts. First, we use
offline evaluations of the intent classification model as a proxy for
the effectiveness of the whole system, allowing us to iterate fast on
this critical sub-component. Subsequently, to accurately measure
the business impact of the whole chatbot system, we run AB tests
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Table 2: Evaluation of intent classification models.

Model Accuracy Precision Recall F1
gpt-4 0.85 0.92 0.85 0.88

gpt-4-turbo 0.83 0.90 0.83 0.86
gpt-4o 0.76 0.86 0.76 0.80

Llama3-8B-Instruct 0.75 0.85 0.75 0.74
gpt-3.5-turbo 0.73 0.85 0.73 0.78

Mistral-7B-Instruct-v0.2 0.39 0.86 0.39 0.51
Llama-2-7b-chat 0.17 0.47 0.17 0.21

that randomise exposure to interactions with the chatbot, and track
impact on key operational metrics. In the following section, we
report results of one of our offline evaluation studies. We also
provide an overview of the results of a recent AB tests in the Online
Experiments section.

4.1 Offline Experiments
We evaluate several open and proprietary LLMs on the few-shot
intent classification task based on accuracy, precision, recall and f1
score on our test dataset.

The results, presented in Table 2 align in terms of relative rank-
ings with publicly available benchmarks from the chatbot arena
[6], except for GPT-4o being outperformed by both GPT-4 and GPT-
4-Turbo in our experiments. GPT-4 and GPT-4-Turbo significantly
outperformed the other models tested. Due to its cost-effectiveness,
being one-third the cost of GPT-4 (see Table 3), and comparable
performance, we selected GPT-4-Turbo for our online experiments.
This choice is further justified by the faster insights it provides into
the potential benefits of deploying such a system globally. Addition-
ally, using GPT-4-Turbo, allows for quicker deployment without the
need to set up a GPU cluster for serving model predictions, unlike
other open-source models.

Smaller, fine-tuned models have demonstrated the capability to
outperform larger models on specific tasks [9, 29]. In the future,
once the benefits of the system are fully validated, we plan to fine-
tune a smaller model to reduce the costs associated with the intent
classification module and improve performances.

4.2 Online Experiments
To measure the real-world impact of our chatbot, we conducted
A/B tests where users were randomly assigned to either interact
with the chatbot or with human agents. Key operational metrics,
such as the rate of conversation escalations, cancellation rates, and
customer satisfaction scores (CSAT), were tracked.

• Reduction in Escalations: The chatbot reduced the num-
ber of conversations escalated to a human agent by over
35% compared to the existing flow.

• Customer Satisfaction: There was no significant change
in the CSAT scores, indicating that the chatbot didn’t impact
significantly user experience.

• Cancellation Rates: The rate of order cancellations re-
mained unchanged, suggesting that the chatbot did not
negatively impact user decisions.

4.3 Failure Modes
We followed a Conversation-Driven-Development 2, meaning that
while we were aware that there would be many things we couldn’t
anticipate, we prioritised experimenting and iterating fast over feed-
back. Below, we summarize some of the failure modes encountered
and the corresponding mitigation strategies:

Loops: In certain instances, conversations became trapped in a
loop wherein users repeatedly asked the same question due to un-
satisfactory responses. To address this, we implemented a detection
mechanism to identify such situations and reroute them to an agent
for resolution.

Intent confusion Queries like "Donde esta?" could be classified
ambiguously both as ORDER_STATUS or RIDER_LOCATION if no
context is provided. This could cause issues leading to a potential
sub-optimal action and should be avoided wherever possible. To
mitigate the issue, our Tracker back-end system not only passes the
latest user query to the Intent Classifier but also includes a history
of previous messages as context.

Multiple intents in a single query It is common to have a user
mixing several intents in the same query, as an example, a user
might ask "Hello there! I am very frustrated that my order hasn’t
arrived yet, where is it? I want to cancel it now!". In such a query
we observe at the same time many of our intents (GREETING, OR-
DER_STATUS, CANCELLATION_REQUEST). To address this issue,
setting clear expectations and refining prompts, as discussed in
Section Human-AI Interaction, can guide the system in handling
such situations effectively.

Context aggregation: Queries may be fragmented, with users
typing and sending messages sequentially. Implementing specific
UI or backend rules to discern when a user has finished typing, ag-
gregate the message, and send it to the AI Interpreter is necessary
to ensure accurate interpretation.

Hallucinations: Misspelling or made-up intents. This could be
mitigated via prompt engineering and robust response parsing
strategies.

Latency and Costs: When conducting initial experiments, it is
crucial to weigh the trade-offs between using external APIs and
investing in infrastructure to serve open-source models on a propri-
etary cluster. Given the significant performance gains demonstrated
by GPT-4 family (Table 2), we opted to use the external API. To
manage costs and improve efficiency, we implemented a semantic
caching strategy similar to GPTCache [2]. This involved using Sen-
tenceBERT [21] multilingual embeddings from the Hugging Face
library3, which allowed us to significantly reduce the number of
calls to the service.

2https://rasa.com/docs/rasa/conversation-driven-development
3https://huggingface.co/
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Table 3: Approximate cost breakdown for different GPTmod-
els based on estimated monthly tokens volume.

Model Monthly Cost
gpt-4 $60,000
gpt-4-turbo $20,000
gpt-4o $10,000
gpt-3.5-turbo $1,000

5 CONCLUSIONS
Modern LLMsmay still lack thematurity to create fully autonomous
conversational systems. Customer-facing conversational systems
are inherently complex and critically important for companies, as
they interact directly with customers, making safety and reliability
paramount concerns. Recent developments show promise for creat-
ing fully autonomous, reliable, and flexible conversational agents.
For instance, Gao et al. [7] demonstrate that fine-tuning LLMs to
produce an abstract, multi-step reasoning chain (Chain of Abstrac-
tion) allows these models to effectively use tools, aggregate results,
and provide comprehensive responses.

As these technologies mature, our modular and extensible hy-
brid system proves to be successful in combining traditional task-
oriented structures with LLMs in specific sub-modules such as
intent classification, natural language generation, and dataset cura-
tion. The modularity of the system allows new innovations to be
integrated quickly, moving towards increased autonomy as technol-
ogy advances. We demonstrate that our hybrid workflow, coupled
with a UI centered around Human-AI interaction design, can deliver
significant business impact without substantial investments in com-
puting, specialized skills, and dataset curation. These results are
validated through both offline benchmarks on intent classification
and real-world live experiments, showing that the system, even in
its first iteration, can significantly reduce agents’ workload while
maintaining customer satisfaction.
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