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ITCONTRAST: Contrastive Learning with Hard
Negative Synthesis for Image-Text Matching

Abstract
Image-text matching aims to bridge vision and
language so as to match the instance of one
modality with the instance of another modality.
Recent years have seen considerable progress in
the research area by exploring local alignment
between image regions and sentence words.
However, how to learn modality-invariant
feature embedding and make use of the hard
negatives in the training set to infer more
accurate matching scores are still open ques-
tions. In this paper, we attempt to solve these
problems by introducing a new Image-Text
Modality Contrastive Learning (abbreviated as
ITContrast) approach for image-text matching.
Specifically, a pre-trained vision-language
model OSCAR is firstly fine-tuned to obtain
the visual and textual features, and a hard
negative synthesis module is then introduced
to leverage the hardness of negative samples,
which features of profiling negative samples
in a mini-match and generating their represen-
tatives to reflect the hardness relations to the
anchor. A novel cost function is designed to
comprehensively combine the knowledge of
positives, negatives and synthesized hard nega-
tives. Extensive experiments on the MS-COCO
and Flickr30K datasets demonstrate that our
approach is effective for image-text matching.

Keywords: Multimodal Deep Learning,
Hard Negative Synthesis, Contrastive Learning,
Image-text Matching

1 Introduction

Modality often refers to a specific way in which
people receive information. The technique of
learning across multiple modalities such as vi-

sion and language simultaneously is important
for many cross-modal tasks. One of the fun-
damental multi-model learning techniques is
image-text matching, which is to measure the
similarity between an image and a text. This
is related to many important cross-modal tasks,
such as semantic image retrieval, image descrip-
tion, visual QA and so on.

The main challenges in image-text match-
ing include the heterogeneity gap and seman-
tic gap. Heterogeneity gap means inconsistent
feature representation of the data from differ-
ent modalities of image and text while the se-
mantic gap refers to the misalignment in cap-
turing the cross-modal correspondence between
image and text. Much effort has been endeav-
oured to find the solutions. Many works [1, 2]
have been published with the shared aim to learn
a joint embedding space where related image
and sentence instances are located close to each
other and to measure the image-text relevance
by computing the distance between global rep-
resentations. Currently, approaches [3, 4, 5]
based on attention mechanism have shown ad-
vantages in aligning image and text by discov-
ering more fine-grained cross-modal correspon-
dence. While these approaches have made no-
ticeable improvements, there are several limita-
tions that we’d like to address and improve.

Firstly, most existing works bridge the het-
erogeneity gap by exploiting some pre-trained
modules such as Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN)
to extract the image and text features, and
the joint embedding learning is performed on
these extracted features. These feature extrac-
tors are not trained or fine-tuned for discrimi-
native image-text embedding, and the optimal-
ity of the learned representation is questionable.



Secondly, many recent image-text matching ap-
proaches [3, 6] exploit a triplet loss to encour-
age the model to predict higher similarity scores
between positive image-text pairs than negative
ones. The cost function design does not suf-
ficiently take the hardness of negative samples
into consideration, which is one of the main
causes of weak generalization. The work in
[7] also shows that increasing the batch size to
obtain more negatives will lead to a sharp in-
crease in computational complexity and dimin-
ishing returns in terms of performance.

To address the aforementioned problems, we
introduce ITContrast: an Image-Text Modal-
ity Contrastive Learning method that bridges
the heterogeneity gap and learns a discrimina-
tive and modality-invariant embedding space.
Specifically, we start with learning discrimina-
tive cross-modal embedding while proceeding
with the semantic alignments between images
regions and sentence fragments. The text and
image inputs are jointly processed by multiple
Transformer layers in the OSCAR model [8],
which is pre-trained with 6.5 million text-image
pairs. By leveraging the fine-tuning capabilities
of OSCAR, we capture the intricate associations
between text and image and learn more discrim-
inative image-text embedding. Then we propose
a SynHNC module, standing for “(Syn)thesizing
the (H)ard (N)egative from the (C)lusters”, to di-
rectly synthesize hard negatives in the embed-
ding space, which is adaptive to each anchor.
Specifically, given each anchor in the training
set, we cluster its negative samples into the rep-
resentative embedding groups of semantically
similar vectors. After that, SynHNC compares
the anchor with prototypes in each negative
group to obtain the nonlinear relationship, and
then synthesizes the hard negatives by aggre-
gating the attentive contributions from all pro-
totypes. Therefore, the negative prototypes in
a cluster near the anchor acquire more weights
in the synthesis process. This strategy flexibly
increases the hardness of negative samples and
enhances the discriminative ability of the image-
text matching model. The training of the ITCon-
trast is based on contrastive learning by propos-
ing a novel InfoCMR loss with cross-modal data
being taken into account.

Our main contributions are summarized as
follows:

• We propose a novel contrastive learning
method called ITContrast for training an
image-text matching model, which consists
of a hard negative synthesis (SynHNC)
module for each positive query and inte-
grating with feature learning in a plug-and-
play manner.

• A new InfoCMR loss is introduced to en-
hance the embedding space where positive
image-text pairs are close while dissimilar
pairs are farther apart. We demonstrate that
the pre-trained OSCAR model can be suc-
cessfully fine-tuned using InfoCMR loss to
boost the image-text matching capabilities.

• The state-of-the-art performance on two
publicly datasets shown that contrastive
learning is well-suited for image-text
matching and that it results in modality-
invariant embedding. We further demon-
strate the generality of our method based
on the popular models: SCAN [3] and
SGRAF [5].

2 Related work

Image-Text Matching. Early image-text
matching methods [1, 2] map the image and text
into a shared global embedding space with deep
neural networks, in which the image-text rele-
vance can be directly measured using the co-
sine similarity or inner product. Recent methods
[3, 6] further expanded the exploration of rela-
tionships between words and image objects. Lee
et al. [3] proposed to discover the local align-
ments, which produce impressive results and in-
spire a surge of works [4, 5, 9, 10] to explore
accurate fine-grained correspondence. However,
these works pay less attention to the hardness
of negative sample, leading to weak general-
ization. Chen et al. [11] sampled offline hard
negatives from the training set, while the im-
provement of the model performance is limited
as the hard negatives in the training set are still
not sufficient. In this paper, we develop a hard
negative synthesis method for image-text match-
ing, which can effectively construct hard nega-
tive pairs in the embedding space.
Contrastive Learning. Contrastive learning is
a self-supervised learning methodology that for-



Figure 1: Illustration of the proposed method. ITContrast firstly encodes the image-text pair into
the visual feature and textual feature, followed by the SynHNC module to synthesize chal-
lenging negatives based on clustering. The InfoCMR loss performs image-text contrastive
matching from the embedding space and narrows the heterogeneous gap.

mulates the learning task as finding and encod-
ing similar and dissimilar objects. The core
idea is to map a data item (anchor) and its var-
ious augmented versions (positive samples) to
an embedding space where they are close to-
gether and are separated from other different
items (negative samples) [12]. Chen et al. intro-
duced SimCLR [7] to achieve promising results
compared with a supervised ResNet50 model.
MoCo [12] utilized a memory bank to improve
the efficiency of contrastive learning with small
batch size. Khosla et al. [13] extended con-
trastive learning to supervised learning, allow-
ing the model to leverage label information. In-
spired by these works, we propose a novel con-
trastive learning method with effective imple-
mentations for image-text matching.

3 Proposed Method

In this section, we present our Image-Text
Modality Contrastive Learning method (ITCon-
trast). Fig. 1 illustrates an overview of our ap-
proach.

3.1 Joint Feature Learning

Text Embedding. Given a sentence c, we split
it into s words with tokenization technique, and
use the Oscar-base token embedding Etok to
represent each token. Let a sentence be c =
{o1, ..., oz} after tokenization, we have:

ôi = Etok(or) (1)

where oi is the ith token of the sentence.
Therefore, a sentence is represented as ĉ =
{ô1, ..., ôz}, ôi ∈ RdH .
Image Embedding. For each input image i
with n regions of objects, we pass it through
Faster R-CNN [14] which is pre-trained on Vi-
sual Genome dataset to extract the regional vi-
sual features vre ∈ Rn×drcnn and region posi-
tion vpos ∈ Rn×dpos . After that, the vre and vpos
are concatenated as v̂ using a linear projection
to ensure that image has the same dimension of
text embedding. Given a pair of image and text
local embeddings, we use a single transformer
in OSCAR to get the joint feature representation
of the image-text pair. Afterwards, the global
visual representation v and global textual rep-
resentation c are computed by a mean-pooling
operation over all the local features.



3.2 Hard Negative Synthesis Module

Fig.2 shows a t-SNE [15] plot after running
SCAN [3] using online triplet loss [2] on fea-
ture embeddings. It can be clearly observed that
anchor has more easy negatives and fewer hard
ones, i.e. many negatives are too far to con-
tribute to the online triplet loss. Therefore, it
is significant to get more meaningful negative
samples and increase their “hardness” degree.

Figure 2: The t-SNE plot within a mini-batch
from MSCOCO..

Hard Negatives Learning. To increase the dis-
criminative ability of ITContrast, we propose
the SynHNC module to synthesize hard nega-
tives based on the clustering results. Without
loss generality, the samples in each image-text
pair are defined as anchor q, which represent ei-
ther image v or text c. SynHNC firstly performs
global semantic clustering for each sample in the
training set, i.e., we perform k-means on all its
non-corresponding negatives in a mini-batch to
obtain clusters G = {g1, g2, ..., gm}. After that,
hard negatives are learnt based on a Kernel As-
sociative Memory (KAM) [16] algorithm which
involves two phases, an encoding phase and a re-
construction phase. During the encoding phase,
kernel operations encode anchor q to obtain its
nonlinear relationship with all of the prototypes
in each negative cluster. In the reconstruction
phase, the anchor are associated with the proto-
types as expected hard negatives.

More specifically, withN negative prototypes
{xj1, xj2, ..., xjN} from cluster gj , a similarity
measure can be defined between q and each pro-

totype by employing a kernel function as,

k(q, xjn) =< Φ(q) · Φ(xjn) > (2)

where xjn is the nth sample in cluster j. A
kernel corresponding to Φ, implicitly obtains
some nonlinear relationships between negative
pair (q, xjn). A popular option of k is Gaussian
radial basis functions:

k(q, xjn) = exp(−||q − xjn||
2

2σ2
) (3)

Then, a hard negative sample qjh can be obtained
for q based on the reconstruction process from
the normalized kernels, e.g.,

qjh =

∑N
n=1 wnk(q, xjn)∑

n k(q, xjn)
(4)

where wn can be regarded as the reconstruction
weight of each prototype in synthesizing hard
negatives, which is determined by the following
least square objective:

J(W ) = min||X−Wk|| (5)

where X is a matrix in which the nth column is
xn, and k is a vector in which the nth element is
equal to k(q, xn). Generally, the optimum val-
ues for the weights can be obtained by using LS
approximation from Eq. (5). After that, the syn-
thetic points vh =

{
vih
}m
i=1

and ch =
{
cih
}m
i=1

are used as hard negatives of c and v to perform
contrastive learning.

3.3 InfoCMR Loss

Following the generic idea of cross-model
contrastive matching, we propose an In-
foCMR loss to contrast different image-
text pairs, including (v, c) and negative
pairs{(v, c), (t,v), (v, ch), (c,vh)}. Specifi-
cally, for the view of retrieving text with im-
age, we get positive similarity svc+ by calculat-
ing cosine similarity between v and c. Then,
we obtain negative similarity svc− by calculat-
ing cosine similarity among v and negative text
representations in C = c ∪ ch. Thus, we
achieve Svc = svc+ ∪ svc−. Similarly, from
the view of retrieving image with text, we get
Scv = scv+ ∪ scv−. The loss function for an
image-text pair can be written as:



Methods
MSCOCO Flickr30K

Sentence Retrieval Image Retrieval Sentence Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MMCA [17] 74.8 95.6 97.7 61.6 89.8 95.2 74.2 92.8 96.4 54.8 81.4 87.8
CAAN [18] 75.5 95.4 98.5 61.3 89.7 95.2 70.1 91.6 97.2 52.8 79.0 87.9
CASC [19] 72.3 96.0 99.0 58.9 89.8 96.0 68.5 90.7 95.9 50.2 78.3 86.3
IMRAM [20] 76.7 95.6 98.5 61.7 89.1 95.0 74.1 93.0 96.6 53.9 79.4 87.2
DP-RNN [4] 75.3 95.8 98.6 62.5 89.7 95.1 70.2 91.6 95.8 55.5 81.3 88.2
UWML [21] 76.8 96.2 98.5 60.9 89.0 95.5 73.1 92.7 96.8 54.2 79.9 87.3
GSMN [22] 78.4 96.4 98.6 63.3 90.1 95.7 76.4 94.3 97.3 57.4 82.3 89.0
CVSE [23] 74.8 95.1 98.3 59.9 89.4 95.2 73.5 92.1 95.8 52.9 80.4 87.8
SGRAF [5] 79.6 96.2 98.5 63.2 90.7 96.1 77.8 94.1 97.4 58.5 83.0 88.8
Unicoder-VL[24] 84.3 97.3 99.3 69.7 93.5 97.2 86.2 96.3 99.0 71.5 90.9 94.9
UNITER [25] - - - - - - 85.9 97.1 98.8 72.5 92.4 96.1
VSE∞ [26] 85.6 98.0 99.4 73.1 94.3 97.7 88.7 98.9 99.8 76.1 94.5 97.1
Fast and Slow [27] - - - - - - - - - 72.1 91.5 95.2
OSCAR [8] 88.4 99.1 99.8 75.7 95.2 98.3 88.5 98.5 99.2 79.8 93.3 96.6
Ours (SGRAF) 90.1 99.3 99.3 76.9 95.9 98.5 89.3 98.3 99.1 81.8 94.8 97.0
Ours (ITContrast) 92.5 99.6 99.8 79.6 97.4 99.4 92.8 98.9 99.3 84.1 96.2 98.1

Table 1: Comparison of image-text matching results on MSCOCO 1K test set and Flickr30K test set.

L(v, c) = −log e(s
vc+/τ)

1+|C|∑
i=1

e(S
vc
i /τ)

− log e(s
cv+/τ)

1+|V |∑
i=1

e(S
cv
i /τ)

(6)
where τ is a temperature parameter, | · | is the
size of set.

We further introduce an additional penalty
term to avoid overfitting. More specifically, we
randomly sampleZ Gaussian noise vectors from
a Gaussian distribution with the same dimen-
sions as the anchor vector. These vectors con-
stitute high confident negative pairs with each
sample in the batch to smooth the representation
space. Note that these Gaussian noise vectors
will not participate in the positive pair constitu-
tion. Accordingly, we defined the InfoCMR as
follows:

L(v, c) =− log e(s
vc+/τ)

1+|C|∑
i=1

e(S
vc
i /τ) +

Z∑
j=1

e(S
vg
j /τ)

− log e(s
cv+/τ)

1+|V |∑
i=1

e(S
cv
i /τ) +

Z∑
j=1

e(S
cg
j /τ)

(7)
where Svgj represents the cosine similarity be-
tween v and jth random Gaussian noise vec-
tor g. By minimizing Eq. (7), the ITContrast
network is enforced to mitigating the hetero-
geneous gap between image and text modali-

ties while excavating the apparent discrimina-
tion. The new InfoCMR provides several ben-
efits (1) the gradient of loss function encourages
learning from hard negatives; and (2) the de-
nominator of InfoCMR introduces an additional
penalty term to avoid overfitting.

4 Experiments

4.1 Datasets and Settings

Datasets. MS-COCO [28] and Flickr30K [29]
contains 123,287 and 31,783 image samples,
each labelled with 5 captions. Following [5], we
used 11,328 images for training, 5,000 for vali-
dation, and 5,000 for testing in MS-COCO. For
Flickr30K, we used 29,783/1,000/1,000 images
for training, validation and testing.
Evaluation Metric. We take Recall@K that de-
scribes the proportion of ground truth instance
being retrieved at the top K results as the evalu-
ation metric. The results on image retrieval and
sentence retrieval are reported.
Implementation Details. We fine-tune the
OSCAR-base model under the ITContrast
framework for 20 epochs, with a learning rate
0.00002 and batch size 128. The value of hyper-
parameter σ, τ and Z in Eq. (3) and Eq. (7) are
0.1, 0.05 and 128. Our method is implemented
on the PyTorch framework.



Methods Sen. Ret. Ima. Ret.
R@1 R@10 R@1 R@10

CAAN [18] 52.5 90.9 41.2 82.9
IMRAM [20] 53.7 91.0 39.7 79.8
MMCA [17] 54.0 90.7 38.7 80.8
SGRAF [5] 57.8 91.6 41.9 81.3
Unicoder-VL [24] 62.3 92.8 46.7 85.3
UNITER [25] 63.3 93.1 48.4 76.7
VSE∞ [26] 68.1 90.2 52.7 80.2
OSCAR [8] 70.0 95.5 54.0 88.5
Ours (SGRAF) 71.9 96.0 56.4 89.4
Ours (ITContrast) 74.5 97.2 59.1 92.3

Table 2: Comparison of image-text matching re-
sults on MSCOCO 5K.

4.2 Quatitative Results and Analysis

Table 1 and Table 2 shows the experimental re-
sults on MSCOCO dataset. We can observe
that the proposed ITContrast outperforms the
previous methods on both MSCOCO 1K and
5K test set. Specifically, ITContrast achieved
the best R@1=92.5% for sentence retrieval and
R@1=79.6% for image retrieval with 1K test
set. As for 5K test images, the proposed ap-
proach also outperforms the latest algorithms.
On the more challenging dataset, Flickr30K, our
approach obtained an improvement of more than
7% in rank-1 over the latest pre-trained mod-
els [25, 24]. For fair comparison, we also im-
plement the state-of-the-art method SGARF [5]
by applying the OSCAR model to learn the fea-
ture embedding instead of bi-directional GRU
and CNN. It can be observed that the ITContrast
still outperforms the new version of SGRAF,
which originates from the better feature embed-
ding space provided by the hard negative synthe-
sis as well as the proposed contrastive learning
framework.

4.3 Ablation Studies

Impact of Each Component. We analyze the
effectiveness of each component in ITContrast
on Flickr30K dataset. 1) OSCAR model. We
employ the SCAN t-i LSE method [3] as the
baseline(#1). Comparing #1 with #5 based on
R@1, better feature embeddings can be learned
that achieves 27.2% improvement for sentence
retrieval and 32.4% for image retrieval by intro-
ducing OSCAR. 2) SynHNC. Comparing #1, #5
with #2, #6, we discover that sampling hard neg-

atives is beneficial for training a more effective
model which improves 5.7% and 2.6% for top-
1 sentence retrieval. 3) InfoCMR: Comparing
#2, #4 and #6, #7, additional improvements are
obtained with the proposed contrastive loss, re-
gardless of whether OSCAR is applied or not.
Extension to Other Architectures. We further
evaluate the generality of the proposed method
by it them into the popular models: SCAN [3]
and SGRAF [5]. As shown in Table 4, we can
see that the performance of SCAN and SGRAF
on Flickr30K are significantly improved with
SynHNC and InfoCMR loss. Overall, the
most significant improvements are achieved on
SCAN. In particular, it outperforms the origi-
nal SCAN by 4.3% and 6.0% in top-1 sentence
retrieval and image retrieval. Experimental re-
sults further confirm the effectiveness and gener-
ality of our method which greatly improves the
performance of existing state-of-the-art method
SGRAF.

4.4 Qualitative Results and Analysis

Fig.3 exhibits the qualitative comparison be-
tween the models trained by different ap-
proaches on the Flickr30K dataset, including
OSCAR and ITContrast. For sentence retrieval,
our ITContrast guides the model to better dis-
tinguish the highly relevant descriptions of con-
cepts in negative sample, such as the OSCAR
mismatch of Query2, which contains highly rel-
evant descriptions of actions (e.g., “ jumping”)
and scene (e.g.,“stream”) in the image. For im-
age retrieval, our network can distinguish hard
samples well, even if negative samples consist of
the same semantic concepts, and attribute. Over-
all, these qualitative results further verify the ro-
bustness of our ITContrast on the small dataset
that contains a limited number of hard negative
pairs in the training set.

5 Conclusion

This paper proposes a new contrastive learning
objective, ITContrast, for the representation of
image-text matching. The key idea is to com-
pare image-text pairs with reinforced negative
samples generated at the feature level. Based on
the synthesized hard negatives, the effective In-



Model Base. OSCAR Syn. Info.
Sen. Ret. Ima. Ret.

R@1 R@10 R@1 R@10
1 X 61.1 91.5 43.3 80.9
2 X X 66.8 95.1 51.7 85.4
3 X X 70.8 94.8 50.4 84.9
4 X X X 73.3 97.2 54.2 87.0
5 X 88.3 99.0 75.7 96.1
6 X X 90.9 99.4 80.7 97.4
7 X X X 92.8 99.3 84.1 98.1

Table 3: Ablation study on each component of ITContrast.

ITContrast

1. A little boy in a red shirt and swim trunks plays at the beach.
2. A little boy holding a yellow, plastic shovel , crouches in the sand.
3. A boy wearing a red shirt digs into the sand with a yellow shovel.
4. A little boy squats while playing with a yellow plastic shovel.
5. A little boy is kneeling looking at his yellow shovel.
OSCAR

1. A little boy holding a yellow , plastic shovel , crouches in the sand.
2. A little boy in a red shirt and swim trunks plays at the beach.
3. A little boy squats while playing with a yellow plastic shovel.
4. A boy wearing a red shirt digs into the sand with a yellow shovel.
5. Young boy running in the dirt with a small handheld shovel.

ITContrast

1. 3 boys are standing on a pier in their bathing suits.
2. Boys look over a bridge on to a lake.
3. The boys are having fun jumping off the bridge into the water.
4. Some young men looking over the edge of a bridge on a sunny day.
5. A man is sitting on a wooden guard rail at a beach. 
OSCAR

1. Boys look over a bridge on to a lake.
2. 3 boys are standing on a pier in their bathing suits.
3. The boy wearing swimming trunks is jumping off a pier into a lake.
4. A man is sitting on a wooden guard rail at a beach. 
5. The boys are having fun jumping off the bridge into the water.

ITContrast

1. Young woman climbing rock face.
2. A girl wearing glasses is in a blue harness while rock climbing.
3. The woman in glasses is climbing a steep rock wall.
4. Girl rock climbing on the rock wall.
5. A woman in a striped shirt climbs up a mountain. 
OSCAR

1. The woman in glasses is climbing a steep rock wall.
2. Young woman climbing rock face.
3. Girl rock climbing on the rock wall.
4. A woman in a striped shirt climbs up a mountain. 
5. A kid rock climbing against the backdrop of a green valley.

ITContrast

1. A child is playing in water.
2. A child splashes in water.
3. A little girl is getting splashed by water.
4. A little girl jumping into the stream of water on a hot day.
5. A girl is playing in the fountain fully clothed.
OSCAR

1. A child is playing in water.
2. A child splashes in water.
3. A girl is playing in the fountain fully clothed.
4. A little girl is getting splashed by water.
5. A blond girl wearing blue jumping across a stream.

Query1 Query2 Query 3 Query 4

Query1: A football player is being tackled by 
members of the opposing team

Query2: A mountain biker rides up a hill on a 
red bicycle

Query3: A boy jumping to hit a tennis ball with 
his racket

Query4: A woman in white marriage dress poses 
with flowers in her hand

ITContrast OSCAR ITContrast OSCAR ITContrast OSCAR ITContrast OSCAR

Sentence retrieval 

Image retrieval 

Figure 3: Qualitative retrieval results on the Flickr30K test set. The correct matches are colored in
green for each query.

foCMR loss is proposed to learn the embedding
space to better distinguish positive and negative
pairs. The deep vision-language model boosts
the image-text matching capabilities with better
visual and textual embeddings. We thoroughly
evaluated the proposed method on the image-
text matching task and further demonstrated that
(i) contrastive learning is well suited for cross-
model matching, (ii) hard negative samples are
crucial for learning discriminative representa-
tions of image and text modality. Experimental
results showed that ITContrast obtains state-of-
the-art results on two benchmark datasets.
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