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Abstract
We propose a practical novel method to correct non-linear distortions in videos and single images, which we train a convo-
lutional neural network (CNN) to recognize multiple distortions by estimating image structure. We first employed a VGG16
model to extract features to retain substantial pixels from input images. We designed a CNN, trained by annotated dataset to
predict a window frame that visually defined the distortion. A drawing model uses network outputs to generate a grid fitting the
window frame. The grid deforms to the corrected sample to render the final image. We use headless rendering mode to enhance
correction speed and efficiency. Finally, the experimental results demonstrate that our algorithm outperforms other methods on
both time assumption and accuracy. (see https://github.com/danielcyrus/DistortionCorrection)

1. Introduction

Distortion is a major problem in digital images which originates
when the field of view is evenly mapped onto the image sensor.
These distortions alter the visual characteristics of the image, al-
tering the relative positions of objects in the image and causing
straight lines to become curved. Correcting these distortions is nec-
essary for many useful image analyses.

Standard calibration techniques use a physical target with known
properties to estimate parameters of a lens model (e.g. [LLC∗21,
HZZG20]). This requires physical access to the camera and mark-
ers with known properties (e.g., chess board or dot board) to es-
timate the parameters of a lens distortion function. In situations
where physical access is impractical, distortion correction needs
to rely solely on the visual properties of the image. For example
an urban environment contains a large number of straight edges,
if we find consistent curves in a image of an urban environment
then maybe we straighten these curves to produce an undistorted
image. These properties include vanishing points, co-planar circles
and repeated textures [HGSE∗18,ABAO17,YZW20]. These meth-
ods rely on accurate detection on these features, however these fea-
tures can easily be obscured by other objects in the scene, by low
sample resolution or by similarity with surrounding features. More
recently deep-learning techniques, such as Convolutional Neural
Networks (CNNs) have been employed to overcome these limita-
tions [LZSL19]. CNNs can combine information from across the
image and so are less vulnerable to obscuration of image features.
In this paper, we propose an algorithm for blind distortion correc-
tion on single images using a CNN to estimate parameters of a
two-dimensional polynomial mapping. Results of applying our al-
gorithm are given for both synthetic and photographic images. Fig-

Figure 1: Original image(Right) and applied correction resulted
from our method(Left)

ure 1 shows a sample of our result of how our method can apply
correction on distorted areas.

2. Related Work

Distortion correction has been widely studied which has a signifi-
cant impact in various applications (e.g., broadcasting videos, sci-
entific images and images with industrial applications). These al-
gorithms consist of two components; a parameterised model of the
distortion and an algorithm for finding the appropriate parameters
for a given camera. The models under consideration generally ap-
ply for images from wide angle camera lenses. These images suffer
from known distortion such as projective and radial distortion.
For single images with unknown camera information, estimating
the distortion mostly relies on vanishing points, coplanar circles
and repeated textures [HGSE∗18]. despite their success in correct-
ing single type of distortion, these approaches are not applicable to
high definition wide images and multiple distortions in one image.
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Blind Geometric Distortion Correction is one possible approach to
address this limitation [LZSL19], which is essentially a two-step
approach. In the first step, synthetic dataset is used to compare the
outputs with the original images to estimate the distortion, in the
second step, several iterations are required to detect each distortion
and resample the images. Alongside multiple distortions we were
inspired by the research determining a grid from images by Tian et
al [TN11]. However, the work is limited to text-based image dis-
tortion to perform the optical character recognition (OCR), the grid
can be estimated in a 3d scene with acceptable accuracy.

2.0.0.1. Single projective distortion. The primary basis of blind
calibration is finding features such as edges and making as-
sumptions about the content of the image. Previous author have
employed Hough transform [AFAGSC14], Canny edge detection
[RLZS14] and arc detection [PH95] to extract features. These
methods are highly focused on image detail and can struggle when
these details are vague or obscured. More recent methods have em-
ployed deep learning techniques to combine information from a
wider range of features and from larger areas of the image. CTRL-C
[LGL∗21] used a Transformer neural model that combines both raw
image information with a line segment detection algorithm for es-
timating parameters of a standard lens model. A similar method for
projective distortion is to parse wireframes with detecting straight
lines [HWZ∗18]. These methods are tailored for urban environ-
ments.

2.0.0.2. Single radial distortion. Circular arc detection used in
[BD13] to estimate camera parameters. Circular arc are particu-
larly suitable for estimation of radial distortions. López Antequera
et al. [LMG∗19] proposed a parameterization for radial distortion:
they estimate distortion offset and roll angle with a proposed loss
function based on point projection. DeepCalib [BERB18] works on
wide field-of-view (FOV) cameras with 3d reconstruction methods,
which only works for 180° camera lenses. Another similar method
is [WY21] with single purpose for fisheye distortion correction,
they achieved a large distortion correction with over 180° projec-
tion of FOV. Use of line segments is not limited to standard lens
models, Vijay et al. [KKL∗20] used a reduced set of line segments
chosen for there importance in object modelling to perform an ac-
curate estimation for wide-angle cameras but limited to fisheye dis-
tortion.

2.0.0.3. Multiple distortions. Most algorithms are bespoke mod-
els mostly designed for a limited set of distortion types, Li et
al. [LZSL19] trained a CNN to classify multiple distortions; barrel
distortion, pincushion, rotation, shear, perspective and wave dis-
tortion. In addition, they proposed A new resampling method with
faster convergence, the method should run iteratively for each dis-
tortion.

2.0.0.4. Realworld measurement using calibrated camera.
Many applications require estimation of both camera location and
distortion properties. These algorithms often focus on feature track-
ing as these features can be used both for estimation focal proper-
ties of lens and estimation of camera motion (e.g. [GCH∗02]). In
cases where multiple views of the same scene are available fea-
tures in multiple views can be reconciled to improve model accu-

racy [LN18,JAC∗21]. Sports camera calibration can take advantage
of the regular layout and patterns of professional sporting arenas.
Chen et al. fitted images of a soccar pitch to a known template using
edge detection [CL19]. Sha et al. used CNNs to implement segmen-
tation and fitted a known template to segmented areas. [SHF∗20].

3. Method

The primary basis of calibration is finding features by encod-
ing and decoding objects. Previous authors used Hough transform
[AFAGSC14], deep Haugh transform [ZHZ∗21], Canny edge de-
tection [RLZS14], arc detection [PH95] to extract features. As
they are basic methods to extract image features and possible ap-
proaches to estimate image orientation, distance to the origin and
also distortion. Since basic methods eradicate image fundamental
features we removed traditional methods and replaced them with a
VGG network to retain all obligatory pixels. Therefore, more pixels
in the same direction are observed as lines or curves, and then pro-
portional end-to-end polynomial lines are drawn over pixels. This
technique highlights distortion throughout the image. We have ob-
served that many images contain horizontal and vertical straight
line elements such as walls, windows, horizon lines etc. that have
been curved by lens distortion. Our method attempts detect and cor-
rect these features. Human observers identified and located these
lines within a set of distorted images. The images were annotated
with four polynomial curves; two horizontal near the top and bot-
tom of the image, and two vertical near the left and right of the
images. Each curve is placed on an identifiable feature that the an-
notator believes would be straight lines in an undistorted image.
The parameters of these polynomials were used to train the outputs
of the CNN. We first annotate input images by drawing four curves,
then third order coefficients are calculated from each curve. Basi-
cally, coefficients are decimal values which are rescaled into a 0 to
1 range to be validated in our network. Coefficients are utilized to
estimate the shape of the distortion grid. In general, our network
feeds from input images and is trained by coefficients.

3.1. Distortion Grid

We have observed that many images contain horizontal and ver-
tical straight line elements such as walls, windows, horizon lines
etc. that have been curved by lens distortion. Our method attempts
detect and correct these features. Human observers identified and
located these lines within a set of distorted images. The images
were annotated with four polynomial curves; two horizontal near
the top and bottom of the image, and two vertical near the left and
right of the images. Each curve is placed on an identifiable feature
that the annotator believes would be straight lines in an undistorted
image.

We wanted an algorithm that is capable of blind calibration over
a wide variety of camera types without making assumptions about
the lens. In order to train our neural network we need a function
that is parameterisable, with a limited number of parameters to
avoid over-fitting and roughly orthogonal parameters as this will
make training easier. We chose a polynomial curves as these were
flexible enough to describe the image features with relatively few
parameters.
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Figure 2: Overview our network structure and whole algorithm process. Ground Truth represent expected coefficients. VGG output represent
train images. Blue and red guidelines on right images illustrate the primary structure of grids calculated from predicted coefficients.

The algorithm assumes that the annotated curves should be
straight lines and applies a warp to straighten the lines. The warp
function models the distortion as if the image was embedded on
a flat surface and then bent using a two-dimensional polynomial
function (see fig 3). In our algorithm this polynomial was approx-
imated using a piece-wise linear grid. The shape of the polyno-
mial was anchored using the four annotated curves. Thus the two-
dimensional polynomial provides a smoothing function to inter-
polate between the annotated lines over the rest of the image. A
mapping was applied to each grid intersection to calculate its posi-
tion in the straightened configuration. Used OpenGL to render the
final straightened image. Through the geometric spatial estima-

Figure 3: Estimated image grid (left), corrected final grid shape
(right).

tion [CFO93], curve intersections are detected and stored in a ma-
trix (see Figure 2. Blue and red guide lines) to define each square
corner. The matrix specifies into a vertex buffer by OpenGL, each
vertex match to a quadrilateral primitive 3D shape and layout the
grid model, same process take place for straight grid.

Figure 4: Visualization of pixel movement, direction and distance,
estimated from reference and target grid.

3.2. Network Architecture

Our algorithm uses a modified VGG16 [SZ15] Convolutional Neu-
ral Network to learn the parameters of four hand-annotated third-
order polynomial curves for each image. Our model maintains all
but the final layers of the VGG16 neural network, which extracts
image features. The output layer consists of a fully connected layer
with 16 nodes activated by Leaky ReLU. The outputs 16 nodes cor-
respond to the 16 parameters of the 4 polynomial lines.

The raw parameters of the polynomical contain values outside
the ranges generally supported by Leaky ReLU, a normalisation
step is required to map the values into an appropriate range. fol-
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lowed by a normalization layer, to match the output with rescaled
coefficients. All activations (outputs) a in a layer are normalised as
â:

µl =
1
H

H

∑
i=1

al
i σ

l =

√
1
H

H

∑
i=1

(al
i −µl)2 (1)

Where H denotes the number of hidden units in a layer. σ and µ
denotes the normalization term but with different training cases.

3.3. Dataset structure

Our dataset consisted of 4500 photographic images from the places
dataset, each image scaled and converted to grey-scale to fit re-
quirements of the VGG16 network. For the training set 4200 im-
ages were manually annotated by placing markers along four edge-
like features in the image and fitted four polynomial curves using
least-squares regression. The edge-like features were chosen such
that one was horizontal and located near the top of the image, one
was horizontal and located near the bottom of the image and two
vertical features near the left and right of the images respectively.
We first use original images from places dataset [ZLK∗17], then we
include manipulated images from [LZSL19] dataset such as barrel,
wave and pincushion. Thus, our training dataset includes a wide
variety of different distortion types.
We expanded the data set by creating synthetic images based low
distortion manipulations of our manually annotated set. Images
and their annotations were artificially rotated. The ultimate file
saves normalized coefficient to a standard 0∼1 value. Overall, the
dataset contains Original images, Gray images, data frame normal-
ized point files.

3.4. Resampling

A part from time-assumption and accuracy, we aimed for reducing
mean square error (MSE) [WB09] on the target corrected image.
Moreover, manipulate correction accomplished in a single iteration
from reference grid to target by linear interpolation. First, the dis-
torted image perches on the estimated grid, then all coordinates
move to a new position given from the straight grid. The final de-
formed grid remains unchanged for all frames within video correc-
tion. Figure 4 shows the manner of pixel transformation.

4. Experiments

In this section we report our results. We first analyze our network
predictions in section 4.1 and then we discuss our corrected results.
In section 4.2, we compare our results with other methods, then a
comparison is proposed to evaluate the accuracy and functionality
of our method. Section 4.3 shows how we benefit from headless
mode for fast resampling in image correction.

4.1. Network Prediction

Our proposed network generates sixteen normalized values which
stride model fitting to 4, third-order regression. After denormal-
ization we compare the interval between the predicted outputs and
ground truth on our test dataset to estimate the network accuracy,
see figure 7. However, current precision is admissible, expansion
dataset causes the network to yield better.

4.2. Evaluation

We first use original images from places dataset [ZLK∗17], then we
include manipulated images from [LZSL19] dataset such as barrel,
wave and pincushion. Thus, our train dataset is included both orig-
inal and distorted images.
To evaluate the performance of our network, a structural similarity
(SSIM) method and mean square error (MSE) [WB09,WBSS04] is
used to compare with original images, see equation 2.

SSIM(x,y) = [l(x,y)α.c(x,y)β.s(x,y)λ]

MSE =
1
n

Σ
n
i=1(Yi−Ŷi)

2
(2)

However, the aim of this research is mainly to focus on non-linear
distortion a fair linear comparison utilizes to appraise with other
methods, see Figure 6.

4.3. Headless mode resampling

We perform a high performance resampling strategy that relies on
headless rendering to reduce pixel movement iteration. The head-
less mode enables vertices to render in backend with graphics ac-
celerators. First, a buffer vertex fit the distorted image grids that
were extracted from video frames, see Figure 3. The buffer ren-
der with new vertices positions of corrected gird shape. Finally,
rendered buffers are saved into video frames. Our approach has
been implemented on a machine with NVIDIA Tesla k80, Intel(R)
Xeon(R) CPU 2.30GHz and 13GB of RAM. Table 2 shows our
technique efficiency on different video size through 200 frames:

Resolution [LZSL19] u Ours u

256×256 38173.08 273.2222

1920×1080 - 7541.548

4450×2000 - 26489.16

Table 2: Time efficiency on different frame size, each column rep-
resents width and height of the video frames.

Where u denotes average time efficiency in microsecond for im-
ages with minimum 72dpi. The values in table 2 obviously shows
our method benefits from headless mode as it requires one iteration
for all distortions through the resembling.

5. Discussion

In this paper we present a state-of-the-art technique to enhance
multiple corrections, nevertheless, there are always limitations. Ba-
sically, the algorithm needs identifiable lines and curves to wield
the correction, it poorly operates if there are none. For images with
less features such as sky and sea, images with high dens back-
ground such as contradictory curves closed to each other, estimat-
ing a correction cannot be represented by our model. On the other
hand, curvy structures may be detected as distortion, for exam-
ple metal circular structures, non-flat walls and curved tree trunks.
Thus, our model may change the nature of non-distorted images.
Lastly, the robustness of our model could be enhanced with more
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Figure 5: Example of distortion correction for ultra-wide real-time video. Corrected video (left) and original Video (right).

Ours [LMG∗19] [LZSL19] Original

Figure 6: Qualitative comparison of our results with Deep Calibra-
tion [LMG∗19] and Blind geometric correction [LZSL19].

Model SSIM MSE
Ours 0.412 1227.77

[LMG∗19] 0.360 1640.42
[LZSL19] 0.411 1279.36

Table 1: Structural similarity(SSIM) and Mean Square Error(MSE)
statistics of our approach using 100 images.

Figure 7: Example result of comparison of our network predictions
(solid lines) and ground truth (dot cross lines).
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image transformation.
It also needs to be considered that we compared our method with
other researches which were published in 2019, for this reason, they
implemented their methods for a wide variety of images. Although
recent research has focused mainly on a very specific area, a fair
comparison was not feasible.

6. Conclusion

In conclusion, we presented a new method to estimate image struc-
ture by finding distorted areas and reconciling curves within a
framework. The result provides a structure which gives us the pos-
sibility of non-linear distortion correction. This method also pro-
vides a solution for high definition images, which are taken in rect-
angular shape. Moreover, the model can be used for videos without
repetition on resampling and distortion estimation for each frame.
Conducted multiple images and cropped images which contain un-
conventional features also are acceptable in our model.
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