
EasyChair Preprint
№ 2635

On the x-coordinates of Pell equations that are
sums of two Padovan numbers

Mahadi Ddamulira

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 10, 2020



Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Vol. XX, XXXX, No. X, XX–XX

On the x–coordinates of Pell equations that are
sums of two Padovan numbers

Mahadi Ddamulira1

1 Institute of Analysis and Number Theory, Graz University of Technology
Kopernikusgasse 24/II, 8010 Graz, Austria

e-mail: mddamulira@tugraz.at;mahadi@aims.edu.gh

Received: DD Month YYYY Revised: DD Month YYYY Accepted: DD Month YYYY

Abstract: Let (Pn)n≥0 be the sequence of Padovan numbers defined by P0 = 0, P1 = 1, P2 = 1,
and Pn+3 = Pn+1 + Pn for all n ≥ 0. In this paper, we find all positive square-free integers, d
such that the Pell equations x2 − dy2 = ±1, X2 − dY 2 = ±4, have at least two positive integer
solutions (x, y) and (x′, y′), (X, Y ) and (X ′, Y ′), respectively, such that each of x, x′, X , and
X ′ is a sum of two Padovan numbers.
Keywords: Padovan numbers, Pell equations, Linear forms in logarithms, Reduction method.
2010 Mathematics Subject Classification: 11B39, 11D45, 11D61, 11J86.

1 Introduction

Let (Pn)n≥0 be the sequence of Padovan numbers given by

P0 = 0, P1 = 1, P2 = 1, and Pn+3 = Pn+1 + Pn for all n ≥ 0.

This is sequence A000931 on the On-Line Encyclopedia of Integer Sequences (OEIS) [21]. The
first few terms of this sequence are

(Pn)n≥0 = 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, . . . .

Let d ≥ 2 be a positive integer which is not a square. It is well–known that the Pell equations

x2 − dy2 = ±1, (1)

and

X2 − dY 2 = ±4, (2)
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have infinitely many positive integer solutions (x, y) and (X, Y ), respectively. Putting (x1, y1)

and (X1, Y1), for the smallest positive solutions of (1) and (2), respectively, all solutions are of
the forms (xk, yk) and (Xk, Yk) for some positive integer k, where

xk + yk
√
d = (x1 + y1

√
d)k for all k ≥ 1, (3)

and

Xk + Yk
√
d =

(
X1 + Y1

√
d

2

)k

for all k ≥ 1. (4)

Furthermore, the sequences {xk}k≥1 and {Xk}k≥1 are binary recurrent. In fact, the following
formulae

xk =
(x1 + y1)k + (x1 − y1)k

2
,

and

Xk =

(
X1 + Y1

2

)k
+

(
X1 − Y1

2

)k
hold for all positive integers k.

Recently, Bravo et al. [2] studied the Diophantine equation

x` = Tm + Tn, (5)

where x` are the x−coordinates of the solutions of the Pell equation (1) for some positive integer
` and (Tn)n≥0 is the sequence of Tribonacci numbers given by T0 = 0, T1 = 1 = T2, and
Tn+3 = Tn+2 +Tn+1 +Tn for all n ≥ 0. They proved that for each square free integer d ≥ 2, there
is at most one positive integer ` such that x` admits the representation (5) for some nonnegative
integers 0 ≤ m ≤ n, except for d ∈ {2, 3, 5, 15, 26}. Furthermore, they explicitly stated all the
solutions for these exceptional cases.

In the same spirit, Rihane et al. [20] studied the Diophantine equations

xn = Pm and Xn = Pm, (6)

where xn and Xn are the x−coordinates of the solutions of the Pell equations (1) and (2), re-
spectively, for some positive integers n and (Pm)m≥0 is the sequence of Padovan numbers. They
proved that for each square free integer d ≥ 2, there is at most one positive integer x participating
in the Pell equation (1) and one positive integer X participating in the Pell equation (2) that is
a Padovan number with a few exceptions of d that they effectively computed. Furthermore, the
exceptional cases were d ∈ {2, 3, 5, 6} and d ∈ {5} for the the first and second equations in
(6), respectively. Several other related problems have been studied where x` belongs to some
interesting positive integer sequences. For example, see [7, 8, 10, 13, 14, 15, 16, 17, 18].
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2 Main Results

In this paper, we study a problem related to that of Bravo et al.[2] but with the Padovan sequence
instead of the Tribonacci sequence. We also extend the results from the Pell equation (1) to
the Pell equation (2). In both cases we find that there are only finitely many solutions that we
effectively compute.

Since P1 = P2 = P3 = 1, we discard the situations when n = 1 and n = 2 and just count the
solutions for n = 3. Similarly, P4 = P5 = 2, we discard the situation when n = 4 and just count
the solutions for n = 5. The main aim of this paper is to prove the following results.

Theorem 2.1. For each integer d ≥ 2 which is not a square, there is at most one positive integer
k such that xk admits a representation as

xk = Pn + Pm

for some nonnegative integers 0 ≤ m ≤ n, except when d ∈ {2, 3, 6, 15, 110, 483} in the +1 case
and d ∈ {2, 5, 10, 17} in the −1 case.

Theorem 2.2. For each integer d ≥ 2 which is not a square, there is at most one positive integer
k such that Xk admits a representation as

Xk = Pn + Pm

for some nonnegative integers 0 ≤ m ≤ n, except when d ∈ {3, 5, 21} in the +4 case and
d ∈ {2, 5} in the −4 case.

For the exceptional values of d listed in Theorem 2.1 and Theorem 2.2, all solutions (k, n,m)

are listed at the end of the proof of each result. The main tools used in this paper are the lower
bounds for linear forms in logarithms of algebraic numbers and the Baker-Davenport reduction
procedure, as well as the elementary properties of Padovan numbers and solutions to Pell equa-
tions. Computations are done with the help of a computer program in Mathematica.

3 Preliminary results

3.1 The Padovan sequence

Here, we recall some important properties of the Padovan sequence (Pn)n≥0. The characteristic
equation

Ψ(x) := x3 − x− 1 = 0

has zeros α, β, γ = β̄, where

α =
r1 + r2

6
, β =

−(r1 + r2) +
√
−3(r1 − r2)

12
, (7)
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and

r1 =
3

√
108 + 12

√
69 and r2 =

3

√
108− 12

√
69. (8)

Furthermore, the Binet formula is given by

Pn = aαn + bβn + cγn for all n ≥ 0, (9)

where

a =
(1− β)(1− γ)

(α− β)(α− γ)
, b =

(1− α)(1− γ)

(β − α)(β − γ)
, c =

(1− α)(1− β)

(γ − α)(γ − β)
= b̄. (10)

Numerically, the following estimates hold:

1.32 < α < 1.33,

0.86 < |β| = |γ| = α−
1
2 < 0.87, (11)

0.72 < a < 0.73,

0.24 < |b| = |c| < 0.25.

From (7), (8) and (11), it is easy to see that the contribution the complex conjugate roots β and γ,
to the right-hand side of (9), is very small. In particular, setting

e(n) := Pn − aαn = bβn + cγn then |e(n)| < 1

αn/2
, (12)

holds for all n ≥ 1. Furthermore, by induction, we can prove that

αn−2 ≤ Pn ≤ αn−1 holds for all n ≥ 4. (13)

3.2 Linear forms in logarithms

Let η be an algebraic number of degree d with minimal primitive polynomial over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of η. Then the loga-
rithmic height of η is given by

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(
max{|η(i)|, 1}

))
.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(η) =

log max{|p|, q}. The following are some of the properties of the logarithmic height function h(·),
which will be used in the next sections of this paper without reference:

h(η1 ± η2) ≤ h(η) + h(η1) + log 2,

h(η1η
±1
2 ) ≤ h(η1) + h(η2), (14)

h(ηs) = |s|h(η) (s ∈ Z).

We recall the result of Bugeaud, Mignotte, and Siksek ([3], Theorem 9.4, pp. 989), which is
a modified version of the result of Matveev [19], which is one of our main tools in this paper.
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Theorem 3.1. Let η1, . . . , ηt be positive real algebraic numbers in a real algebraic number field
K ⊂ R of degree DK, b1, . . . , bt be nonzero integers, and assume that

Λ := ηb11 · · · ηbtt − 1, (15)

is nonzero. Then

log |Λ| > −1.4× 30t+3 × t4.5 ×D2
K(1 + logDK)(1 + logB)A1 · · ·At,

where
B ≥ max{|b1|, . . . , |bt|},

and
Ai ≥ max{DKh(ηi), | log ηi|, 0.16}, for all i = 1, . . . , t.

3.3 Reduction procedure

During the calculations, we get upper bounds on our variables which are too large, thus we need
to reduce them. To do so, we use some results from the theory of continued fractions.

For the treatment of linear forms homogeneous in two integer variables, we use the well–
known classical result in the theory of Diophantine approximation. The following lemma is the
criterion of Legendre.

Lemma 3.2. Let τ be an irrational number, p0
q0
, p1
q1
, p2
q2
, . . . be all the convergents of the continued

fraction of τ and M be a positive integer. Let N be a nonnegative integer such that qN > M .
Then putting a(M) := max{ai : i = 0, 1, 2, . . . , N}, the inequality∣∣∣τ − r

s

∣∣∣ > 1

(a(M) + 2)s2
,

holds for all pairs (r, s) of positive integers with 0 < s < M .

For a nonhomogeneous linear form in two integer variables, we use a slight variation of a
result due to Dujella and Pethő (see [9], Lemma 5a). For a real number X , we write ‖X‖ =

min{|X − n| : n ∈ Z} for the distance from X to the nearest integer.

Lemma 3.3. Let M be a positive integer, p
q

be a convergent of the continued fraction of the
irrational number τ such that q > 6M , and A,B, µ be some real numbers with A > 0 and
B > 1. Furthermore, let ε := ||µq||−M ||τq||. If ε > 0, then there is no solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v, and w with

u ≤M and w ≥ log(Aq/ε)

logB
.
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At various occasions, we need to find a lower bound for linear forms in logarithms with
bounded integer coefficients in three and four variables. In this case we use the Lenstra-Lenstra-
Lovász lattice basis reduction algorithm (LLL algorithm) that we describe below. Let τ1, τ2, . . . τt ∈
R and the linear form

x1τ1 + x2τ2 + · · ·+ xtτt with |xi| ≤ Xi.

We put X := max{Xi}, C > (tX)t and consider the integer lattice Ω generated by

bj := ej + bCτje for 1 ≤ j ≤ t− 1 and bt := bCτteet,

where C is a sufficiently large positive constant.

Lemma 3.4. Let X1, X2, . . . , Xt be positive integers such that X := max{Xi} and C > (tX)t is
a fixed sufficiently large constant. With the above notation on the lattice Ω, we consider a reduced
base {bi} to Ω and its associated Gram-Schmidt orthogonalization base {b∗i }. We set

c1 := max
1≤i≤t

||b1||
||b∗i ||

, θ :=
||b1||
c1

, Q :=
t−1∑
i=1

X2
i , and R :=

1

2

(
1 +

t∑
i=1

Xi

)
.

If the integers xi are such that |xi| ≤ Xi, for 1 ≤ i ≤ t and θ2 ≥ Q+R2, then we have∣∣∣∣∣
t∑
i=1

xiτi

∣∣∣∣∣ ≥
√
θ2 −Q−R

C
.

For the proof and further details, we refer the reader to the book of Cohen. (Proposition 2.3.20 in
([4], pp. 58–63)).

Finally, the following Lemma is also useful. It is Lemma 7 in [12].

Lemma 3.5. If r > 1, H > (4r2)r, and H > L/(logL)r, then

L < 2rH(logH)r.

4 Proof of Theorem 2.1

Let (x1, y1) be the smallest positive integer solution to the Pell quation (1). We Put

δ := x1 + y1

√
d and σ = x1 − y1

√
d. (16)

From which we get that

δ · σ = x2
1 − dy2

1 =: ε, where ε ∈ {±1}. (17)

Then

xk =
1

2
(δk + σk). (18)
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Since δ ≥ 1 +
√

2, it follows that the estimate

δk

α4
≤ xk ≤ δk holds for all k ≥ 1. (19)

We assume that (k1, n1,m1) and (k2, n2,m2) are triples of integers such that

xk1 = Pn1 + Pm1 and xk2 = Pn2 + Pm2 (20)

We asuume that 1 ≤ k1 < k2. We also assume that 3 ≤ mi < ni for i = 1, 2. We set
(k, n,m) := (ki, ni,mi), for i = 1, 2. Using the inequalities (13) and (19), we get from (20) that

δk

α4
≤ xk = Pn + Pm ≤ 2αn−1 and αn−2 ≤ Pn + Pm = xk ≤ δk.

The above inequalities give

(n− 2) logα < k log δ < (n+ 3) logα + log 2.

Dividing through by logα and setting c2 := 1/ logα, we get that

−2 < c2k log δ − n < 3 + c2 log 2,

and since α3 > 2, we get

|n− c2k log δ| < 6. (21)

Furthermore, k < n, for if not, we would then get that

δn ≤ δk < 2αn+3, implying
(
δ

α

)n
< 2α3,

which is false since δ ≥ 1 +
√

2, 1.32 < α < 1.33 (by (11)) and n ≥ 4.
Besides, given that k1 < k2, we have by (13) and (20) that

αn1−2 ≤ Pn1 ≤ Pn1 + Pm1 = xk1 < xk2 = Pn2 + Pm2 ≤ 2Pn2 < 2αn2−1.

Thus, we get that

n1 < n2 + 4. (22)

4.1 An inequality for n and k (I)

Using the equations (9) and (18) and (20), we get

1

2
(δk + σk) = Pn + Pm = aαn + e(n) + aαm + e(m)

So,

1

2
δk − a(αn + αm) = −1

2
σk + e(n) + e(m),
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and by (12), we have∣∣δk(2a)−1α−n(1 + αm−n)−1 − 1
∣∣ ≤ 1

2δka(αn + αm)
+

2|b|
αn/2a(αn + αm)

+
2|b|

αm/2a(αn + αm)

≤ 1

aαn

(
1

2δk
+

2|b|
αn/2

+
2|b|
αm/2

)
<

1.5

αn
.

Thus, we have ∣∣δk(2a)−1α−n(1 + αm−n)−1 − 1
∣∣ < 1.5

αn
. (23)

Put

Λ1 := δk(2a)−1α−n(1 + αm−n)−1 − 1

and

Γ1 := k log δ − log(2a)− n logα− log(1 + αm−n).

Since |Λ1| = |eΓ1−1| < 1
2

for n ≥ 4 (because 1.5/α4 < 1/2), since the inequality |y| < 2|ey−1|
holds for all y ∈

(
−1

2
, 1

2

)
, it follows that e|Γ1| < 2 and so

|Γ1| < e|Γ1||eΓ1 − 1| < 3

αn
.

Thus, we get that ∣∣k log δ − log(2a)− n logα− log(1 + αm−n)
∣∣ < 3

αn
. (24)

We apply Theorem 3.1 on the left-hand side of (23) with the data:

t := 4, η1 := δ, η2 := 2a, η3 := α, η4 := 1 + αm−n,

b1 := k, b2 := −1, b3 := −n, b4 := −1.

Furthermore, we take the number field K := Q(
√
d, α) which has degree D := 6. Since

max{1, k, n} ≤ n, we take DK := n. First we note that the left-hand side of (23) is non-zero,
since otherwise,

δk = 2a(αn + αm).

The left-hand side belongs to the quadratic field Q(
√
d) while the right-hand side belongs to the

cubic field Q(α). These fields only intersect when both sides are rational numbers. Since δk is a
positive algebraic integer and a unit, we get that to δk = 1. Hence, k = 0, which is a contradiction.
Thus, Λ1 6= 0 and we can apply Theorem 3.1.

We have h(η1) = h(δ) = 1
2

log δ and h(η3) = h(α) = 1
3

logα. Further,

2a =
2α(α + 1)

3α2 − 1
,
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the mimimal polynomial of 2a is 23x3 − 46x2 + 24x − 8 and has roots 2a, 2b, 2c. Since 2|b| =

2|c| < 1 (by (11)), then

h(η2) = h(2a) =
1

3
(log 23 + log(2a)).

On the other hand,

h(η4) = h(1 + αm−n) ≤ h(1) + h(αm−n) + log 2

= (n−m)h(α) + log 2 =
1

3
(n−m) logα + log 2.

Thus, we can take A1 := 3 log δ,

A2 := 2(log 23 + log(2a)), A3 := 2 logα, and A4 := 2(n−m) logα + 6 log 2.

Now, Theorem 3.1 tells us that

log |Λ1| > −1.4× 307 × 44.5 × 62(1 + log 6)(1 + log n)(3 log δ)

× (2(log 23 + log(2a))(2 logα)(2(n−m) logα + 6 log 2)

> −2.33× 1017(n−m)(log n)(log δ).

Comparing the above inequality with (23), we get

n logα− log 1.5 < 2.33× 1017(n−m)(log n)(log δ).

Hence, we get that

n < 8.30× 1017(n−m)(log n)(log δ). (25)

We now return to the equation xk = Pn + Pm and rewrite it as

1

2
δk − aαn = −1

2
σk + e(n) + Pm,

we obtain ∣∣δk(2a)−1α−n − 1
∣∣ ≤ 1

aαn−m

(
1

α
+

1

αm+n/2
+

1

2δkαm

)
<

2.5

αn−m
. (26)

Put

Λ2 := δk(2a)−1α−n − 1, Γ2 := k log δ − log(2a)− n logα.

We assume for technical reasons that n−m ≥ 10. So |eΛ2 − 1| < 1
2
. It follows that

|k log δ − log(2a)− n logα| = |Γ2| < e|Λ2||eΛ2 − 1| < 5

αn−m
. (27)

Furthermore, Λ2 6= 0 (so Γ2 6= 0), since δk ∈ Q(α) by the previous argument.
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We now apply Theorem 3.1 to the left-hand side of (26) with the data

t := 3, η1 := δ, η2 := 2a, η3 := α, b1 := k, b2 := −1, b3 := −n.

Thus, we have the same A1, A2, and A3 as before. Then, by Theorem 3.1, we conclude that

log |Λ| > −9.82× 1014(log δ)(log n)(logα).

By comparing with (26), we get

n−m < 9.84× 1014(log δ)(log n). (28)

This was obtained under the assumption that n−m ≥ 10, but if n−m < 10, then the inequality
also holds as well. We replace the bound (28) on n−m in (25) and use the fact that δk ≤ 2αn+3,
to obtain bounds on n and k in terms of log n and log δ. We now record what we have proved so
far.

Lemma 4.1. Let (k, n,m) be a solution to the equation xk = Pn + Pm with 3 ≤ m < n, then

k < 2.5× 1032(log n)2(log δ) and n < 8.2× 1032(log n)2(log δ)2. (29)

4.2 Absolute bounds (I)

We recall that (k, n,m) = (ki, ni,mi), where 3 ≤ mi < ni, for i = 1, 2 and 1 ≤ k1 < k2.
Further, ni ≥ 4 for i = 1, 2. We return to (27) and write∣∣∣Γ(i)

2

∣∣∣ := |ki log δ − log(2a)− ni logα| < 5

αni−mi
, for i = 1, 2.

We do a suitable cross product between Γ
(1)
2 , Γ

(2)
2 and k1, k2 to eliminate the term involving log δ

in the above linear forms in logarithms:

|Γ3| := |(k1 − k2) log(2a) + (k1n2 − k2n1) logα| = |k2Γ
(1)
2 − k1Γ

(2)
2 |

≤ k2|Γ(1)
2 |+ k1|Γ(2)

2 | ≤ 5k2

αn1−m1
+

5k1

αn2−m2
≤ 10n2

αλ
, (30)

where
λ := min

1≤i≤2
{ni −mi}.

We need to find an upper bound for λ. If 10n2/α
λ > 1/2, we then get

λ <
log(20n2)

logα
< 4 log(20n2). (31)

Otherwise, |Γ3| < 1
2
, so∣∣eΓ3 − 1

∣∣ =
∣∣(2a)k1−k2αk1n2−k2n1 − 1

∣∣ < 2|Γ3| <
20n2

αλ
. (32)

We apply Theorem 3.1 with the data: t := 2, η1 := 2a, η2 := α, b1 := k1−k2, b2 := k1n2−k2n1.
We take the number field K := Q(α) and D := 3. We begin by checking that eΓ3 − 1 6= 0 (so
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Γ3 6= 0). This is true because α and 2a are multiplicatively independent, since α is a unit in the
ring of integers Q(α) while the norm of 2a is 8/23.

We note that |k1 − k2| < k2 < n2. Further, from (30), we have

|k2n1 − k1n2| < (k2 − k1)
| log(2a)|

logα
+

10k2

αλ logα
< 11k2 < 11n2

given that λ ≥ 1. So, we can take B := 11n2. By Theorem 3.1, with the same A1 := log 23 and
A2 := logα, we have that

log |eΓ3 − 1| > −1.55× 1011(log n2)(logα).

By comparing this with (32), we get

λ < 1.56× 1011 log n2. (33)

Note that (33) is better than (31), so (33) always holds. Without loss of generality, we can assume
that λ = ni −mi, for i = 1, 2 fixed.

We set {i, j} = {1, 2} and return to (24) to replace (k, n,m) = (ki, ni,mi):

|Γ(i)
1 | =

∣∣ki log δ − log(2a)− ni logα− log(1 + αmi−ni)
∣∣ < 3

αni
, (34)

and also return to (27), replacing with (k, n,m) = (kj, nj,mj):

|Γ(j)
2 | = |kj log δ − log(2a)− nj logα| < 5

αnj−mj
. (35)

We perform a cross product on (34) and (35) in order to eliminate the term on log δ:

|Γ4| : =
∣∣(kj − ki) log(2a) + (kjni − kinj) logα + kj log(1 + αmi−ni)

∣∣
=
∣∣∣kiΓ(j)

2 − kjΓ
(i)
1

∣∣∣ ≤ ki

∣∣∣Γ(j)
2

∣∣∣+ kj

∣∣∣Γ(i)
1

∣∣∣
<

5ki
αnj−mj

+
3kj
αni

<
8n2

αν
(36)

with ν := min{ni, nj −mj}. As before, we need to find an upper bound on ν. If 8n2/α
ν > 1/2,

then we get

ν <
log(16n2)

logα
< 4 log(16n2). (37)

Otherwise, |Γ4| < 1/2, so we have∣∣eΓ4 − 1
∣∣ ≤ 2|Γ4| <

16n2

αν
. (38)

In order to apply Theorem 3.1, first if eΓ4 = 1, we obtain

(2a)ki−kj = αkjni−kinj(1 + α−λ)kj .
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Since α is a unit, the right-hand side in above is an algebraic integer. This is a contradiction
because k1 < k2 so ki−kj 6= 0, and neither (2a) nor (2a)−1 are algebraic intgers. Hence eΓ4 6= 1.
By assuming that ν ≥ 100, we apply Theorem 3.1 with the data:

t := 3, η1 := 2a, η2 := α, η3 := 1 + α−λ,

b1 := kj − ki, b2 := kjni − kinj, b3 := kj,

and the inequalities (33) and (38). We get

ν = min{ni, nj −mj} < 1.14× 1014λ log n2 < 1.78× 1025(log n2)2.

The above inequality also holds when ν < 100. Further, it also holds when the inequality (37)
holds. So the above inequality holds in all cases. Note that the case {i, j} = {2, 1} leads to
n1 −m1 ≤ n1 ≤ n2 + 4 whereas {i, j} = {1, 2} lead to ν = min{n1, n2 −m2}. Hence, either
the minimum is n1, so

n1 < 1.78× 1025(log n2)2, (39)

or the minimum is nj −mj and from the inequality (33) we get that

max
1≤j≤2

{nj −mj} < 1.78× 1025(log n2)2. (40)

Next, we assume that we are in the case (40). We evaluate (34) in i = 1, 2 and make a suitable
cross product to eliminate the term involving log δ:

|Γ5| : =
∣∣(k2 − k1) log(2a) + (k2n1 − k1n2) logα + k2 log(1 + αm1−n1)− k1 log(1 + αm2−n2)

∣∣
=
∣∣∣k1Γ

(2)
1 − k2Γ

(1)
1

∣∣∣ ≤ k1

∣∣∣Γ(2)
1

∣∣∣+ k2

∣∣∣Γ(1)
1

∣∣∣ < 6n2

αn1
. (41)

In the above inequality we used the inequality (22) to conclude that min{n1, n2} ≥ n1 − 4 as
well as the fact that ni ≥ 4 for i = 1.2. Next, we apply a linear form in four logarithms to obtain
an upper bound to n1. As in the previous calculations, we pass from (41) to∣∣eΓ5 − 1

∣∣ < 12n2

αn1
, (42)

which is implied by (41) except if n1 is very small, say

n1 ≤ 4 log(12n2). (43)

Thus, we assume that (43) does not hold, therefore (42) holds. Then to apply Theorem 3.1, we
first justify that eΓ5 6= 1. Otherwise,

(2a)k1−k2 = αk2n1−k1n2(1 + αn1−m1)k2(1 + αn2−m2)−k1 ,

By the fact that k1 < k2, the norm NQ(α)/Q(2a) = 8
23

and that α is a unit, we have that 23

divides the norm NK/Q(1 + αn1−m1). The factorization of the ideal generated by 23 in OQ(α) is
(23) = p2

1p2, where p1 = (23, α + 13) and p2 = (23, α + 20). Hence p2 divides αn1−m1 + 1.
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Given that α ≡ −20 (mod p2), then (−20)n1−m1 ≡ −1(mod p2). Taking the norm NQ(α)/Q, we
obtain that (−20)n1−m1 ≡ −1 (mod 23). If n1 − m1 is even −1 is a quadratic residue modulo
23 and if n1 − m1 is odd then 20 is a quadratic residue modulo 23. But, neither −1 nor 20 are
quadratic residues modulo 23. Thus, eΓ5 6= 1.

Then, we apply Theorem 3.1 on the left-hand side of the inequalities (42) with the data

t := 4, η1 := 2a, η2 := α, η3 := 1 + αm1−n1 , η4 := 1 + αm2−n2 ,

b1 := k2 − k1, b2 := k2n1 − k1n2, b3 := k2, b4 := k1.

Together with combining the right-hand side of (42) with the inequalities (33) and (40), Theorem
3.1 gives

n1 < 3.02× 1016(n1 −m1)(n2 −m2)(log n2)

< 8.33× 1052(log n2)4. (44)

In the above we used the facts that

min
1≤i≤2

{ni −mi} < 1.56× 1011 log n2 and max
1≤i≤2

{ni −mi} < 1.78× 1025(log n2)2.

This was obtained under the assumption that the inequality (43) does not hold. If (43) holds,
then so does (44). Thus, we have that inequality (44) holds provided that inequality (40) holds.
Otherwise, inequality (39) holds which is a better bound than (44). Hence, conclude that (44)
holds in all possible cases.

By the inequality (21),

log δ ≤ k1 log δ ≤ n1 logα + log 6 < 2.38× 1052(log n2)4.

By substituting this into (29) we get n2 < 4.64× 10137(log n2)10, and then, by Lemma 3.5, with
the data r := 10, H := 4.64 × 10137, and L := n2, we get that n2 < 4.87 × 10165. This
immediately gives that n1 < 1.76× 1063.

We record what we have proved.

Lemma 4.2. Let (ki, ni,mi) be a solution to xki = Pni + Pmi , with 3 ≤ mi < ni for i ∈ {1, 2}
and 1 ≤ k1 < k2, then

max{k1,m1} < n1 < 1.76× 1063, and max{k2,m2} < n2 < 4.87× 10165.

5 Reducing the bounds for n1 and n2 (I)

In this section we reduce the bounds for n1 and n2 given in Lemma 4.2 to cases that can be
computationally treated. For this, we return to the inequalities for Γ3, Γ4, and Γ5.

13



5.1 The first reduction (I)

We divide through both sides of the inequality (30) by (k2 − k1) logα. We get that∣∣∣∣ log(2a)

logα
− k2n1 − k1n2

k2 − k1

∣∣∣∣ < 36n2

αλ(k2 − k1)
with λ := min

1≤i≤2
{ni −mi}. (45)

We assume that λ ≥ 10. Below we apply Lemma 3.2. We put τ := log(2a)
logα

, which is irrational and
compute its continued fraction

[a0, a1, a2, . . .] = [1, 3, 3, 1, 11, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 5, 1, 15, 2, 19, 1, 1, 2, 2, . . .]

and its convergents[
p0

q0

,
p1

q1

,
p2

q2

, . . .

]
=

[
1,

4

3
,
13

10
,
17

13
,
200

153
,
217

166
,
634

485
,
851

651
,
1485

1136
,
2336

1787
,
8493

6497
, . . .

]
.

Furthermore, we note that taking M := 4.87× 10165 (by Lemma 4.2), it follows that

q315 > M > n2 > k2 − k1 and a(M) := max{ai : 0 ≤ i ≤ 315} = a282 = 2107.

Thus, by Lemma 3.2, we have that∣∣∣∣τ − k2n1 − k1n2

k2 − k1

∣∣∣∣ > 1

2109(k2 − k1)2
. (46)

Hence, combining the inequalities (45) and (46), we obtain

αλ < 75924n2(k2 − k1) < 1.75× 10336,

so λ ≤ 2714. This was obtained under the assumption that λ ≥ 10, Otherwise, λ < 10 < 2714

holds as well.
Now, for each ni −mi = λ ∈ [1, 2714] we estimate a lower bound |Γ4|, with

Γ4 = (kj − ki) log(2a) + (kjni − kinj) logα + kj log(1 + αmi−ni) (47)

given in the inequality 36, via the procedure described in Subsection 3.3 (LLL-algorithm). We
recall that Γ4 6= 0.

We apply Lemma 3.4 with the data:

t := 3, τ1 := log(2a), τ2 := logα, τ3 := log(1 + α−λ),

x1 := kj − ki, x2 := kjni − kinj, x3 := kj.

We set X := 5.4× 10166 as an upper bound to |xi| < 11n2 for all i = 1, 2, 3, and C := (20X)5.
A computer in Mathematica search allows us to conclude, together with the inequality (36), that

2× 10−671 < min
1≤λ≤2714

|Γ4| < 8n2α
−ν , with ν := min{ni, nj −mj}

which leads to ν ≤ 6760. As we have noted before, ν = n1 (so n1 ≤ 6760) or ν = nj −mj .

14



Next, we suppose that nj −mj = ν ≤ 6760. Since λ ≤ 2714, we have

λ := min
1≤i≤2

{ni −mi} ≤ 2714 and χ := max
1≤i≤2

{ni −mi} ≤ 6760.

Now, returning to the inequality (41) which involves

Γ5 : = (k2 − k1) log(2a) + (k2n1 − k1n2) logα + k2 log(1 + αm1−n1)− k1 log(1 + αm2−n2) 6= 0,

(48)

we use again the LLL algorithm to estimate the lower bound for |Γ5| and thus, find a bound for
n1 that is better than the one given in Lemma 4.2.

We distinguish the cases λ < χ and λ = χ.

5.2 The case λ < χ

We take λ ∈ [1, 2714] and χ ∈ [λ+ 1, 6760] and apply Lemma 3.4 with the data: t := 4,

τ1 := log(2a), τ2 := logα, τ3 := log(1 + αm1−n1), τ4 := log(1 + αm2−n2),

x1 := k2 − k1, x2 := k2n1 − k1n2, x3 := k2, and x4 := −k1.

We also put X := 5.4 × 10166 and C := (20X)9. After a computer search in Mathematica
together with the inequality 41, we can confirm that

8× 10−1342 < min
1≤λ≤2714

λ+1≤χ≤6760

|Γ5| < 6n2α
−n1 .

This leads to the inequality

αn1 < 7.5× 101341n2.

Subsitituting for the bound n2 given in Lemma 4.2, we get that n1 ≤ 12172.

5.3 The case λ = χ

In this case, we have

Λ5 := (k2 − k1)(log(2a) + log(1 + αm1−n1)) + (k2n1 − k1n2) logα 6= 0.

We divide through the inequality 41 by (k2 − k1) logα to obtain∣∣∣∣ log(2a) + log(1 + αm1−n1)

logα
− k2n1 − k1n2

k2 − k1

∣∣∣∣ < 21n2

αn1(k2 − k1)
(49)

We now put

τλ :=
log(2a) + log(1 + α−λ)

logα

15



and compute its continued fractions [a
(λ)
0 , a

(λ)
1 , a

(λ)
2 , . . .] and its convergents

[p
(λ)
0 /q

(λ)
0 , p

(λ)
1 /q

(λ)
1 , p

(λ)
2 /q

(λ)
2 , . . .] for each λ ∈ [1, 2714]. Furthermore, for each case we find an

integer tλ such that q(λ)
tλ

> M := 4.87× 10165 > n2 > k2 − k1 and calculate

a(M) := max
1≤λ≤2714

{
a

(λ)
i : 0 ≤ i ≤ tλ

}
.

A computer search in Mathematica reveals that for λ = 321, tλ = 330 and i = 263, we have that
a(M) = a

(330)
321 = 306269. Hence, combining the conclusion of Lemma 3.2 and the inequality

(49), we get

αn1 < 21× 306271n2(k2 − k1) < 1.525× 10338,

so n1 ≤ 2730. Hence, we obtain that n1 ≤ 12172 holds in all cases (ν = n1, λ < χ or λ = χ).
By the inequality (21), we have that

log δ ≤ k1 log δ ≤ n1 logα + log 6 < 3475.

By considering the second inequality in (29), we can conclude that n2 ≤ 9.9 × 1039(log n2)2,
which immediately yields n2 < 3.36×1044, by a simple application of Lemma 3.5. We summarise
the first cycle of our reduction process as follows:

n1 ≤ 12172 and n2 ≤ 3.36× 1044.

From the above, we note that the upper bound on n2 represents a very good reduction of the
bound given in Lemma 4.2. Hence, we expect that if we restart our reduction cycle with the new
bound on n2, then we get a better bound on n1. Thus, we return to the inequality (45) and take
M := 3.36× 1044. A computer search in Mathematica reveals that

q88 > M > n2 > k2 − k1 and a(M) := max{ai : 0 ≤ i ≤ 88} = a54 = 373,

from which it follows that λ ≤ 752. We now return to (47) and we put X := 3.36 × 1044 and
C := (10X)5 and then apply the LLL-algorithm in Lemma 3.4 to λ ∈ [1, 752]. After a computer
search, we get

5.33× 10−184 < min
1≤λ≤752

|Γ4| < 8n2α
−ν ,

then ν ≤ 1846. By continuing under the assumption that nj −mj = ν ≤ 1846, we return to (48)
and put X := 3.36 × 1044, C := (10X)9 and M := 3.36 × 1044 for the case λ < χ and λ = χ.
After a computer search, we confirm that

2× 10−366 < min
1≤λ≤752

λ+1≤χ≤1846

|Γ5| < 6n2α
−n1 ,

gives n1 ≤ 3318, and a(M) = a
(205)
175 = 206961, leads to n1 ≤ 772. Hence, in both cases

n1 ≤ 3318 holds. This gives n2 ≤ 5× 1042 by a similar procedure as before, and k1 ≤.
We record what we have proved.

Lemma 5.1. Let (ki, ni,mi) be a solution to xi = Pni + Pmi , with 3 ≤ mi < ni for i = 1, 2 and
1 ≤ k1 < k2, then

m1 < n1 ≤ 3318, k1 ≤ 3125, and n2 ≤ 5× 1042.
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5.4 The final reduction (I)

Returning back to (16) and (18) and using the fact that (x1, y1) is the smallest positive solution to
the Pell equation (1), we obtain

xk =
1

2
(δk + σk) =

1

2

((
x1 + y1

√
d
)k

+
(
x1 − y1

√
d
)k)

=
1

2

((
x1 +

√
x2

1 ∓ 1

)k
+

(
x1 −

√
x2

1 ∓ 1

)k)
:= Q±k (x1).

Thus, we return to the Diophantine equation xk1 = Pn1 + Pm1 and consider the equations

Q+
k1

(x1) = Pn1 + Pm1 and Q−k1(x1) = Pn1 + Pm1 , (50)

with k1 ∈ [1, 3125], m1 ∈ [3, 3318] and n1 ∈ [m1 + 1, 3318].
Besides the trivial case k1 = 1, with the help of a computer search in Mathematica on the

above equations in (50), we list the only nontrivial solutions in Table 1. We also note that 3 +

2
√

2 = (1 +
√

2)2, so these solutions come from the same Pell equation when d = 2.

Q+
k1

(x1)

k1 x1 y1 d δ

2 2 1 3 2 +
√

3

2 3 2 2 3 + 2
√

2

2 4 1 15 4 +
√

15

2 5 2 6 5 + 2
√

6

2 21 2 110 21 + 2
√

110

2 22 1 483 22 +
√

483

2 47 4 138 47 + 4
√

138

Q−k1(x1)

k1 x1 y1 d δ

2 1 1 2 1 +
√

2

2 2 1 5 2 +
√

5

2 3 1 10 3 +
√

10

2 4 1 17 4 +
√

17

2 5 1 26 5 +
√

26

2 9 1 82 9 +
√

82

2 10 1 101 10 +
√

101

2 17 1 290 17 +
√

290

2 42 1 1765 42 +
√

1765

2 47 1 2210 47 +
√

2210

2 63 1 3970 63 +
√

3970

Table 1: Solutions to Q±k1(x1) = Pn1 + Pm1

From the above tables, we set each δ := δt for t = 1, 2, . . . 17. We then work on the linear
forms in logarithms Γ1 and Γ2, in order to reduce the bound on n2 given in Lemma 5.1. From the
inequality (27), for (k, n,m) := (k2, n2,m2), we write∣∣∣∣k2

log δt
logα

− n2 +
log(2a)

log(α−1)

∣∣∣∣ < ( 5

logα

)
α−(n2−m2), (51)

for t = 1, 2, . . . 17.
We put

τt :=
log δt
logα

, µt :=
log(2a)

log(α−1)
, and (At, Bt) :=

(
5

logα
, α

)
.
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We note that τt is transcendental by the Gelfond-Schneider’s Theorem and thus, τt is irrational.
We can rewrite the above inequality, 51 as

0 < |k2τt − n2 + µt| < AtB
−(n2−m2)
t , for t = 1, 2, . . . , 17. (52)

We take M := 5 × 1042 which is the upper bound on n2 according to Lemma 5.1 and apply
Lemma 3.3 to the inequality (52). As before, for each τt with t = 1, 2, . . . , 17, we compute its
continued fraction [a

(t)
0 , a

(t)
1 , a

(t)
2 , . . .] and its convergents p(t)

0 /q
(t)
0 , p

(t)
1 /q

(t)
1 , p

(t)
2 /q

(t)
2 , . . .. For each

case, by means of a computer search in Mathematica, we find and integer st such that

q(t)
st > 3× 1043 = 6M and εt := ||µtq(t)|| −M ||τtq(t)| > 0.

We finally compute all the values of bt := blog(Atq
(t)
st /εt)/ logBtc. The values of bt correspond

to the upper bounds on n2 −m2, for each t = 1, 2, . . . , 17, according to Lemma 3.3. The results
of the computation for each t are recorded in Table 2.

t δt st qst εt > bt

1 2 +
√

3 85 8.93366× 1043 0.3100 374

2 4 +
√

15 90 3.90052× 1043 0.3124 371

3 5 + 2
√

6 80 3.16032× 1043 0.0122 382

4 21 + 2
√

110 88 6.33080× 1043 0.2200 374

5 22 +
√

483 75 4.19689× 1043 0.2361 372

6 47 + 4
√

138 96 7.76442× 1043 0.3732 373

7 1 +
√

2 78 1.46195× 1044 0.3328 375

8 2 +
√

5 94 1.48837× 1044 0.2146 377

9 3 +
√

10 88 4.21425× 1043 0.1347 374

10 4 +
√

17 92 1.11753× 1044 0.2529 375

11 5 +
√

26 98 3.23107× 1043 0.1043 374

12 9 +
√

82 74 5.25207× 1043 0.2181 373

13 10 +
√

101 94 1.86122× 1044 0.2672 377

14 17 +
√

290 87 1.06422× 1044 0.0193 384

15 42 +
√

1765 78 3.81406× 1043 0.1768 373

16 47 +
√

2210 94 3.92482× 1043 0.4476 370

17 63 +
√

3970 85 6.00550× 1043 0.4056 371

Table 2: First reduction computation results (I)

By replacing (k, n,m) := (k2, n2,m2) in the inequality (24), we can write∣∣∣∣k2
log δt
logα

− n2 +
log(2a(1 + α−(n2−m2)))

log(α−1)

∣∣∣∣ < ( 3

logα

)
α−n2 , (53)

for t = 1, 2, . . . , 17.
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We now put

τt :=
log δt
logα

, µt,n2−m2 :=
log(2a(1 + α−(n2−m2)))

log(α−1)
, and (At, Bt) :=

(
3

logα
, α

)
.

With the above notations, we can rewrite (53) as

0 < |k2τt − n2 + µt,n2−m2| < AtB
−n2
t , for t = 1, 2, . . . 17. (54)

We again apply Lemma 3.3 to the above inequality (54), for

t = 1, 2, . . . , 17, n2 −m2 = 1, 2, . . . , bt, with M := 5× 1043.

We take

εt,n2−m2 := ||µtq(t,n2−m2)|| −M ||τtq(t,n2−m2)|| > 0,

and

bt = bt,n2−m2 := blog(Atq
(t,n2−m2)
st /εt,n2−m2)/ logBtc.

With the help of Mathematica, we obtain the results in Table 3.

t 1 2 3 4 5 6 7 8 9

bt,n2−m2 388 389 394 394 393 394 396 392 392

t 10 11 12 13 14 15 16 17

bt,n2−m2 396 392 408 390 396 396 388 389

Table 3: Final reduction computation results (I)

Thus, max{bt,n2−m2 : t = 1, 2, . . . , 17 and n2 −m2 = 1, 2, . . . bt} ≤ 408.

Thus, by Lemma 3.3, we have that n2 ≤ 408, for all t = 1, 2, . . . , 17, and by the inequality (22)
we have that n1 ≤ n2 + 4. From the fact that δk ≤ 2αn+3, we can conclude that k1 < k2 ≤ 133.
Collecting everything together, our problem is reduced to search for the solutions for (20) in the
following range

1 ≤ k1 < k2 ≤ 133, 0 ≤ m1 < n1 ∈ [3, 408], and 0 ≤ m2 < n2 ∈ [3, 408].

After a computer search on the equation (20) on the above ranges, we obtained the following
solutions, which are the only solutions for the exceptional d cases we have stated in Theorem 2.1:
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For the +1 case:

(d = 2) x1 = 3 = P6 + P0 = P5 + P3, x2 = 17 = P12 + P3;

(d = 3) x1 = 2 = P3 + P0 = P3 + P3, x2 = 7 = P9 + P0 = P7 + P6,

x3 = 26 = P13 + P8;

(d = 6) x1 = 5 = P8 + P0 = P7 + P3 = P6 + P5,

x2 = 49 = P16 + P0 = P15 + P12 = P14 + P13;

(d = 15) x1 = 4 = P7 + P0 = P6 + P3 = P5 + P5, x2 = 31 = P14 + P6;

(d = 110) x1 = 21 = P13 + P0 = P12 + P8 = P11 + P10,

x2 = 881 = P26 + P17 = P25 + P22;

(d = 483) x1 = 22 = P13 + P3, x2 = 967 = P26 + P20 = P25 + P23.

For the −1 case:

(d = 2) x1 = 1 = P3 + P0, x2 = 7 = P9 + P0 = P8 + P5 = P7 + P6,

x3 = 41 = P15 + P7 = P14 + P10 = P13 + P12;

(d = 5) x1 = 2 = P5 + P0 = P3 + P3, x2 = 38 = P15 + P3;

(d = 10) x1 = 3 = P6 + P0 = P5 + P3, x2 = 117 = P19 + P6;

(d = 17) x1 = 4 = P7 + P0 = P6 + P3 = P5 + P5, x2 = P22 + P6.

This completes the proof of Theorem 2.1.

6 Proof of Theorem 2.2

The proof of Theorem 2.2 will be similar to that of Theorem 2.1. We also give the details for the
benefit of the reader. Furthermore, for technical reasons in our proof, we assume that d ≥ 5 and
then treat the cases d ∈ {2, 3} during the reduction procedure.

Let (X1, Y1) be the smallest positive integer solution to the Pell quation (2). We Put

ρ :=
X1 + Y1

√
d

2
and % =

X1 − Y1

√
d

2
. (55)

From which we get that

ρ · % =
X2

1 − dY 2
1

4
=: ε, where ε ∈ {±1}. (56)

Then

Xn = ρk + %k. (57)

Since ρ ≥ 1+
√

5
2

, it follows that the estimate

ρk

α2
≤ Xk ≤ 2ρk holds for all k ≥ 1. (58)
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Similarly, as before, we assume that (k1, n1,m1) and (k2, n2,m2) are triples of integers such that

Xk1 = Pn1 + Pm1 and Xk2 = Pn2 + Pm2 (59)

We asuume that 1 ≤ k1 < k2. We also assume that 4 ≤ mj < nj for j = 1, 2. We set
(k, n,m) := (kj, nj,mj), for j = 1, 2. Using the inequalities (12) and (58), we get from (59) that

ρk

α2
≤ Xk = Pn + Pm ≤ 2αn−1 and αn−2 ≤ Pn + Pm = Xk ≤ 2ρk.

The above inequalities give

(n− 2) logα− log 2 < k log ρ < (n+ 1) logα + log 2.

Dividing through by logα and setting c1 := 1/ logα, as before, we get that

−2− c1 log 2 < c1k log ρ− n < 1 + c1 log 2,

and since α3 > 2, we get

|n− c1 log ρ| < 5. (60)

Furthermore, k < n, for if not, we would then get that

ρn ≤ ρk < 2αn+1, implying
( ρ
α

)n
< 2α,

which is false since ρ ≤ 1+
√

5
2

, 1.32 < α < 1.33, and n ≥ 5.
Besides, given that k1 < k2, we have by (13) and (59) that

αn1−2 ≤ Pn1 ≤ Pn1 + Pm1 = Xk1 < Xk2 = Pn2 + Pm2 ≤ 2Pn2 < 2αn2−1.

Thus, as before, we get that

n1 < n2 + 4. (61)

6.1 An inequality for n and k (II)

Using the equations (9) and (55) and (59), we get

ρk + %k = Pn + Pm = aαn + e(n) + aαm + e(m)

So,

ρk − a(αn + αm) = −%k + e(n) + e(m),

and by (12), we have∣∣ρka−1α−n(1 + αm−n)−1 − 1
∣∣ ≤ 1

ρka(αn + αm)
+

2|b|
αn/2a(αn + αm)

+
2|b|

αm/2a(αn + αm)

≤ 1

aαn

(
1

ρk
+

2|b|
αn/2

+
2|b|
αm/2

)
<

2.5

αn
.
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Thus, we have ∣∣ρka−1α−n(1 + αm−n)−1 − 1
∣∣ <

2.5

αn
. (62)

Put

Λ
′

1 := ρka−1α−n(1 + αm−n)−1 − 1

and

Γ′1 := k log ρ− log a− n logα− log(1 + αm−n).

Since |Λ′1| = |eΓ′
1 − 1| < 0.83 for n ≥ 4 (because 2.5/α4 < 0.83), it follows that e|Γ′

1| < 4 and so

|Γ′1| < e|Γ
′
1||eΓ′

1 − 1| < 10

αn
.

Thus, we get that ∣∣k log ρ− log a− n logα− log(1 + αm−n)
∣∣ < 10

αn
. (63)

We apply Theorem 3.1 on the left-hand side of (62) with the data:

t := 4, η1 := ρ, η2 := a, η3 := α, η4 := 1 + αm−n,

b1 := k, b2 := −1, b3 := −n, b4 := −1.

Furthermore, we take same the number field as before, K = Q(
√
d, α) with degree D = 6. We

also take DK = n. First we note that the left-hand side of (23) is non-zero, since otherwise,

ρk = a(αn + αm).

By the same argument as before, we get a contradiction. Thus, Λ′1 6= 0 and we can apply Theorem
3.1. Further,

a =
α(α + 1)

3α2 − 1
,

the mimimal polynomial of a is 23x3−23x2 +6x−1 and has roots a, b, c. Since max{a, b, c} < 1

(by (11)), then h(η2) = h(a) = 1
3

log 23. Thus, we can take A1 := 3 log ρ, A2 := 2 log 23,
A3 := 2 logα, and A4 := 2(n−m) logα + 6 log 2.

Now, Theorem 3.1 tells us that

log |Λ′1| > −1.4× 307 × 44.5 × 62(1 + log 6)(1 + log n)(3 log ρ)

×(2 log 23)(2 logα)(2(n−m) logα + 6 log 2)

> −2.08× 1017(n−m)(log n)(log ρ).

Comparing the above inequality with (62), we get

n logα− log 2.5 < 2.08× 1017(n−m)(log n)(log ρ).
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Hence, we get that

n < 7.40× 1017(n−m)(log n)(log ρ). (64)

We now return to the equation Xk = Pn + Pm and rewrite it as

ρk − aαn = −%k + e(n) + Pm,

we obtain ∣∣ρka−1α−n − 1
∣∣ ≤ 1

aαn−m

(
1

α
+

1

αm+n/2
+

1

ρkαm

)
<

3

αn−m
. (65)

Put

Λ′2 := ρka−1α−n − 1, Γ′2 := k log ρ− log a− n logα.

We assume for technical reasons that n−m ≥ 10. So |eΛ2 − 1| < 1
2
. It follows that

|k log ρ− log a− n logα| = |Γ′2| < e|Λ
′
2||eΛ′

2 − 1| < 6

αn−m
. (66)

Furthermore, Λ′2 6= 0 (so Γ′2 6= 0), since ρk ∈ Q(α) by the previous argument.
We now apply Theorem 3.1 to the left-hand side of (65) with the data

t := 3, η1 := ρ, η2 := a, η3 := α, b1 := k, b2 := −1, b3 := −n.

Thus, we have the same A1, A2, A3 as before. Then, by Theorem 3.1, we conclude that

log |Λ| > −9.50× 1014(log ρ)(log n)(logα).

By comparing with (65), we get

n−m < 9.52× 1014(log ρ)(log n). (67)

This was obtained under the assumption that n−m ≥ 10, but if n−m < 10, then the inequality
also holds as well. We replace the bound (67) on n−m in (64) and use the fact that ρk ≤ 2αn+1,
to obtain bounds on n and k in terms of log n and log ρ. We again record what we have proved.

Lemma 6.1. Let (k, n,m) be a solution to the equation Xk = Pn + Pm with 3 ≤ m < n, then

k < 1.98× 1032(log n)2(log ρ) and n < 7.03× 1032(log n)2(log ρ)2. (68)

6.2 Absolute bounds (II)

We recall that (k, n,m) = (kj, nj,mj), where 3 ≤ mj < nj , for j = 1, 2 and 1 ≤ k1 < k2.
Further, nj ≥ 4 for j = 1, 2. We return to (66) and write∣∣∣Γ(j)′

2

∣∣∣ := |kj log ρ− log a− nj logα| < 6

αnj−mj
, for j = 1, 2.
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We do a suitable cross product between Γ
(1)′

2 , Γ
(2)′

2 and k1, k2 to eliminate the term involving log ρ

in the above linear forms in logarithms:

|Γ′3| := |(k1 − k2) log a+ (k1n2 − k2n1) logα| = |k2Γ
(1)′

2 − k1Γ
(2)′

2 |

≤ k2|Γ(1)′

2 |+ k1|Γ(2)′

2 | ≤ 6k2

αn1−m1
+

6k1

αn2−m2
≤ 12n2

αλ′
, (69)

where
λ′ := min

1≤j≤2
{nj −mj}

.
We need to find an upper bound for λ′. If 12n2/α

λ′ > 1/2, we then get

λ′ <
log(24n2)

logα
< 4 log(24n2). (70)

Otherwise, |Γ′3| < 1
2
, so∣∣∣eΓ′

3 − 1
∣∣∣ =

∣∣ak1−k2αk1n2−k2n1 − 1
∣∣ < 2|Γ′3| <

24n2

αλ′
. (71)

We apply Theorem 3.1 with the data: t := 2, η1 := a, η2 := α, b1 := k1 − k2, b2 := k1n2 − k2n1.
We take the number field K := Q(α) and D = 3. We begin by checking that eΓ′

3 − 1 6= 0 (so
Γ′3 6= 0). This is true because α and a are multiplicatively independent, since α is a unit in the
ring of integers Q(α) while the norm of a is 1/23.

We note that |k1 − k2| < k2 < n2. Further, from (69), we have

|k2n1 − k1n2| < (k2 − k1)
| log a|
logα

+
12k2

αλ logα
< 13k2 < 13n2

given that λ ≥ 1. So, we can take B := 13n2. By Theorem 3.1, with the same A1 := log 23 and
A2 := logα, we have that

log |eΓ′
3 − 1| > −4.63× 1010(log n2)(logα).

By comparing this with (71), we get

λ′ < 1.62× 1011 log n2. (72)

Note that (72) is better than (71), so (72) always holds. Without loss of generality, we can assume
that λ′ = nj −mj , for j = 1, 2 fixed.

We set {j, i} = {1, 2} and return to (63) to replace (k, n,m) = (ki, ni,mi):

|Γ(i)′

1 | =
∣∣ki log ρ− log a− ni logα− log(1 + αmi−ni)

∣∣ < 10

αni
, (73)

and also return to (66), with (k, n,m) = (kj, nj,mj):

|Γ(j)′

2 | = |kj log ρ− log a− nj logα| < 6

αnj−mj
. (74)
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We perform a cross product on (73) and (74) in order to eliminate the term on log ρ:

|Γ′4| :=
∣∣(kj − ki) log a+ (kjni − kinj) logα + kj log(1 + αmi−ni)

∣∣
=

∣∣∣kiΓ(j)′

2 − kjΓ(i)′

1

∣∣∣ ≤ ki

∣∣∣Γ(j)′

2

∣∣∣+ kj

∣∣∣Γ(i)′

1

∣∣∣
<

6ki
αnj−mj

+
10kj
αni

<
16n2

αν′
(75)

with ν ′ := min{ni, nj −mj}. As before, we need to find an upper bound on ν ′. If 16n2/α
ν′ >

1/2, then we get

ν ′ <
log(32n2)

logα
< 4 log(32n2). (76)

Otherwise, |Γ′4| < 1/2, so we have∣∣∣eΓ′
4 − 1

∣∣∣ ≤ 2|Γ′4| <
32n2

αν′
. (77)

In order to apply Theorem 3.1, first if eΓ′
4 = 1, we obtain

aki−kj = αkjni−kinj(1 + α−λ
′
)kj .

Since α is a unit, the right-hand side in above is an algebraic integer. This is a contradiction
because k1 < k2 so ki − kj 6= 0, and neither a nor a−1 are algebraic intgers. Hence eΓ′

4 6= 1. By
assuming that ν ′ ≥ 100, we apply Theorem 3.1 with the data:

t := 3, η1 := a, η2 := α, η3 := 1 + α−λ
′
,

b1 := kj − ki, b2 := kjni − kinj, b3 := kj,

and the inequalities (72) and (77). We get

ν ′ = min{ni, nj −mj} < 1.85× 1013λ′ log n2 < 3× 1024(log n2)2. (78)

The above inequality also holds when ν ′ < 100. Further, it also holds when the inequality (76)
holds. So the above inequality holds in all cases. Note that the case {i, j} = {2, 1} leads to
n1 −m1 ≤ n1 ≤ n2 + 4 whereas {i, j} = {1, 2} lead to ν ′ = min{n1, n2 −m2}. Hence, either
the minimum is n1, so

n1 < 3× 1024(log n2)2, (79)

or the minimum is nj −mj and from the inequality (33) we get that

max
1≤j≤2

{nj −mj} < 3× 1024(log n2)2. (80)

Next, we assume that we are in the case (80). We evaluate (73) in i = 1, 2 and make a suitable
cross product to eliminate the term involving log ρ:

|Γ′5| :=
∣∣(k2 − k1) log a+ (k2n1 − k1n2) logα + k2 log(1 + αm1−n1)− k1 log(1 + αm2−n2)

∣∣
=
∣∣∣k1Γ

(2)
1 − k2Γ

(1)
1

∣∣∣ ≤ k1

∣∣∣Γ(2)
1

∣∣∣+ k2

∣∣∣Γ(1)
1

∣∣∣ < 20n2

αn1
. (81)

25



In the above inequality we used the inequality (61) to conclude that min{n1, n2} ≥ n1 − 4 as
well as the fact that ni ≥ 4 for i = 1.2. Next, we apply a linear form in four logarithms to obtain
an upper bound to n1. As in the previous calculations, we pass from (81) to∣∣∣eΓ′

5 − 1
∣∣∣ < 40n2

αn1
, (82)

which is implied by (81) except if n1 is very small, say

n1 ≤ 4 log(40n2). (83)

Thus, we assume that (83) does not hold, therefore (82). Then to apply Theorem 3.1, we first
justify that eΓ′

5 6= 1. Otherwise,

ak1−k2 = αk2n1−k1n2(1 + αn1−m1)k2(1 + αn2−m2)−k1 .

By a similar argument as before, we get a contradiction. Thus, eΓ′
5 6= 1.

Then, we apply Theorem 3.1 on the left-hand side of the inequalities (42) with the data

t := 4, η1 := a, η2 := α, η3 := 1 + αm1−n1 , η4 := 1 + αm2−n2 ,

b1 := k2 − k1, b2 := k2n1 − k1n2, b3 := k2, b4 := k1.

Together with combining the right-hand side of (82) with the inequalities (72) and (80), Theorem
3.1 gives

n1 < 4.99× 1015(n1 −m1)(n2 −m2)(log n2)

< 2.43× 1051(log n2)4. (84)

In the above we used the facts that

min
1≤i≤2

{ni −mi} < 1.62× 1011 log n2 and max
1≤i≤2

{ni −mi} < 3× 1024(log n2)2.

This was obtained under the assumption that the inequality (83) does not hold. If (83) holds,
then so does (84). Thus, we have that inequality (84) holds provided that inequality (80) holds.
Otherwise, inequality (79) holds which is a better bound than (84). Hence, conclude that (84)
holds in all possible cases.

By the inequality (60),

log ρ ≤ k1 log ρ ≤ n1 logα + log 5 < 6.92× 1050(log n2)4.

By substituting this into (68) we get n2 < 3.67× 10134(log n2)10, and then, by Lemma 3.5, with
the data r := 10, P := 3.67× 10134, L := n2, we get that n2 < 3.07× 10162. This immediately
gives that n1 < 4.76× 1061.

We record what we have proved.

Lemma 6.2. Let (ki, ni,mi) be a solution to Xki = Pni + Pmi , with 3 ≤ mi < ni for i ∈ {1, 2}
and 1 ≤ k1 < k2, then

max{k1,m1} < n1 < 4.76× 1061, and max{k2,m2} < n2 < 3.07× 10162.
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7 Reducing the bounds for n1 and n2 (II)

In this section we reduce the bounds for n1 and n2 given in Lemma 4.2 to cases that can be
computationally treated. For this, we return to the inequalities for Γ′3, Γ′4, and Γ′5.

7.1 The first reduction (II)

We divide through both sides of the inequality (69) by (k2 − k1) logα. We get that∣∣∣∣ | log a|
logα

− k2n1 − k1n2

k2 − k1

∣∣∣∣ < 42n2

αλ′(k2 − k1)
with λ′ := min

1≤i≤2
{ni −mi}. (85)

We assume that λ′ ≥ 10. Below we apply Lemma 3.2. We put τ ′ := | log a|
logα

, which is irrational
and compute its continued fraction

[a0, a1, a2, . . .] = [1, 6, 2, 1, 18, 166, 1, 2, 13, 1, 2, 5, 1, 5, 1, 2, 3, 1, 1, 31, 1, 3, . . .]

and its convergents[
p0

q0

,
p1

q1

,
p2

q2

, . . .

]
=

[
1,

7

6
,
15

13
,
22

19
,
411

355
,
68248

58949
,
68659

59304
,

205566

177557
,
2741017

2367545
, . . .

]
.

Furthermore, we note that taking N := 3.07× 10162 (by Lemma 6.2), it follows that

q296 > N > n2 > k2 − k1 and a(N) := max{aj : 0 ≤ j ≤ 296} = a189 = 1028.

Thus, by Lemma 3.2, we have that∣∣∣∣τ ′ − k2n1 − k1n2

k2 − k1

∣∣∣∣ > 1

1030(k2 − k1)2
. (86)

Hence, combining the inequalities (85) and (86), we obtain

αλ
′
< 43260n2(k2 − k1) < 4.08× 10329,

so λ′ ≤ 2661. This was obtained under the assumption that λ′ ≥ 10, Otherwise, λ′ < 10 < 2661

holds as well.
Now, for each ni −mi = λ′ ∈ [1, 2661] we estimate a lower bound |Γ′4|, with

Γ′4 = (kj − ki) log a+ (kjni − kinj) logα + kj log(1 + αmi−ni) (87)

given in the inequality 75, via the same procedure described in Subsection 3.3 (LLL-algorithm).
We recall that Γ′4 6= 0.

We apply Lemma 3.4 with the data:

t := 3, τ1 := log a, τ2 := logα, τ3 := log(1 + α−λ
′
),

x1 := kj − ki, x2 := kjni − kinj, x3 := kj.
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We set X := 3.99× 10163 as an upper bound to |xi| < 13n2 for all i = 1, 2, 3, and C := (20X)5.
A computer in Mathematica search allows us to conclude, together with the inequality (75), that

8× 10−660 < min
1≤λ≤2661

|Γ′4| < 16n2α
−ν′ , with ν ′ := min{ni, nj −mj}

which leads to ν ′ ≤ 6643. As we have noted before, ν ′ = n1 (so n1 ≤ 6643) or ν ′ = nj −mj .
Next, we suppose that nj −mj = ν ′ ≤ 6643. Since λ′ ≤ 2661, we have

λ′ := min
1≤i≤2

{ni −mi} ≤ 2661 and χ′ := max
1≤i≤2

{ni −mi} ≤ 6643.

Now, returning to the inequality (81) which involves

Γ′5 : = (k2 − k1) log a+ (k2n1 − k1n2) logα

+k2 log(1 + αm1−n1)− k1 log(1 + αm2−n2) 6= 0, (88)

we use again the LLL-algorithm to estimate the lower bound for |Γ′5| and thus, find a bound for
n1 that is better than the one given in Lemma 6.2.

We distinguish the cases λ′ < χ′ and λ′ = χ′.

7.2 The case λ′ < χ′

We take λ′ ∈ [1, 2661] and χ′ ∈ [λ′ + 1, 6643] and apply Lemma 3.4 with the data:

t := 4, τ1 := log a, τ2 := logα, τ3 := log(1 + αm1−n1), τ4 := log(1 + αm2−n2),

x1 := k2 − k1, x2 := k2n1 − k1n2, x3 := k2, x4 := −k1.

We also put X := 3.99 × 10163 and C := (20X)9. As before, after a computer search in
Mathematica together with the inequality 81, we can confirm that

9.9× 10−1317 < min
1≤λ≤2661

λ+1≤χ≤6643

|Γ′5| < 20n2α
−n1 . (89)

This leads to the inequality

αn1 < 2.02× 101317n2. (90)

Subsitituting for the bound n2 given in Lemma 6.2, we get that n1 ≤ 11948.

7.3 The caseλ′ = χ′

In this case, we have

Λ′5 := (k2 − k1)(log a+ log(1 + αm1−n1)) + (k2n1 − k1n2) logα 6= 0.

We divide through the inequality 81 by (k2 − k1) logα to obtain∣∣∣∣ | log a+ log(1 + αm1−n1)|
logα

− k2n1 − k1n2

k2 − k1

∣∣∣∣ < 70n2

αn1(k2 − k1)
(91)
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We now put

τλ′ :=
| log a+ log(1 + α−λ

′
)|

logα

and compute its continued fractions [a
(λ′)
0 , a

(λ′)
1 , a

(λ′)
2 , . . .] and its convergents

p
(λ)
0 /q

(λ′)
0 , p

(λ′)
1 /q

(λ′)
1 , p

(λ′)
2 /q

(λ′)
2 , . . . for each λ′ ∈ [1, 2661]. Furthermore, for each case we find an

integer tλ′ such that q(λ′)
tλ′

> N := 3.07× 10162 > n2 > k2 − k1 and calculate

a(N) := max
1≤λ′≤2661

{
a

(λ′)
i : 0 ≤ i ≤ tλ′

}
.

A computer search in Mathematica reveals that for λ′ = 2466, tλ′ = 298 and i = 295, we
have that a(N) = a

(2466)
295 = 2818130. Hence, combining the conclusion of Lemma 3.2 and the

inequality (91), we get

αn1 < 70× 2818132n2(k2 − k1) < 1.86× 10333,

so n1 ≤ 2690. Hence, we obtain that n1 ≤ 11948 holds in all cases (ν ′ = n1, λ′ < χ′ or λ′ = χ′).
By the inequality (60), we have that

log ρ ≤ k1 log ρ ≤ n1 logα + log 5 < 3410.

By considering the second inequality in (68), we can conclude that n2 ≤ 8.17 × 1039(log n2)2,
which yields n2 < 2.76 × 1044, by a simple application of Lemma 3.5 as before. Below, we
summarise the first cycle of our reduction process:

n1 ≤ 11948 and n2 ≤ 2.76× 1044. (92)

As in the previous case, from the above, we note that the upper bound on n2 represents a very good
reduction of the bound given in Lemma 6.2. Hence, we expect that if we restart our reduction
cycle with the new bound on n2, then we get a better bound on n1. Thus, we return to the
inequality (46) and take N := 2.76× 1044. A computer search in Mathematica reveals that

q88 > N > n2 > k2 − k1 and a(N) := max{ai : 0 ≤ i ≤ 88} = a55 = 397,

from which it follows that λ ≤ 738. We now return to (87) and we put X := 2.76 × 1044 and
C := (10X)5 and then apply the LLL algorithm in Lemma 3.4 to λ ∈ [1, 738]. After a computer
search, we get

8.6× 10−183 < min
1≤λ′≤738

|Γ′4| < 16n2α
−ν′ ,

then ν ′ ≤ 1838. By continuing under the assumption that nj −mj = ν ≤ 1838, we return to (88)
and put X := 2.76× 1044, C := (10X)9 and N := 2.76× 1044 for the case λ′ < χ′ and λ′ = χ′.
After a computer search, we confirm that

8× 10−365 < min
1≤λ≤738

λ+1≤χ≤1838

|Γ′5| < 6n2α
−n1 ,

gives n1 ≤ 3304, and a(N) = a
(160)
125 = 155013, leads to n1 ≤ 774. Hence, in both cases

n1 ≤ 3304 holds. This gives n2 ≤ 4× 1042 by a similar procedure as before, and k1 ≤.
We record what we have proved.
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Lemma 7.1. Let (ki, ni,mi) be a solution to Xi = Pni + Pmi , with 3 ≤ mi < ni for i = 1, 2 and
1 ≤ k1 < k2, then

m1 < n1 ≤ 3304, k1 ≤ 3108, and n2 ≤ 4× 1042.

7.4 The final reduction (II)

Returning back to (55) and (57) and using the fact that (X1, X1) is the smallest positive solution
to the Pell equation (2), we obtain

Xk = ρk + %k =

(
(X1 + Y1

√
d

2

)k

+

(
X1 − Y1

√
d

2

)k

=

(
X1 +

√
X2

1 ∓ 4

2

)k

+

(
X1 −

√
X2

1 ∓ 4

2

)k

:= R±k (X1).

Thus, we return to the Diophantine equation Xk1 = Pn1 + Pm1 and consider the equations

R+
k1

(X1) = Pn1 + Pm1 and R−k1(X1) = Pn1 + Pm1 , (93)

with k1 ∈ [1, 3108], m1 ∈ [3, 3304], and n1 ∈ [m1 + 1, 3304].
A computer search in Mathematica on the above equations in (93) shows that there are only

finitely many solutions that we list in Table 4. We note that

3 +
√

5

2
=

(
1 +
√

5

2

)2

and 2 +
√

5 =

(
1 +
√

5

2

)3

,

so these come from the same Pell equation with d = 5. Similarly,

11 +
√

13

2
=

(
3 +
√

13

2

)2

, and
51 + 7

√
53

2
=

(
7 +
√

53

2

)2

these also come from the same Pell equation with d = 13 and d = 53, respectively.
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R+
k1

(X1)

k1 X1 Y1 d ρ

2 3 1 5 (3 +
√

5)/2

2 4 2 3 2 +
√

3

2 5 1 21 (5 +
√

21)/2

3 9 1 77 (9 +
√

77)/2

2 10 4 6 5 + 2
√

6

2 11 3 13 (11 + 3
√

13)/2

2 12 2 35 6 +
√

35

2 13 1 165 (13 + 2
√

165)/2

3 15 1 221 (15 +
√

221)/2

2 25 3 69 (25 + 3
√

69)/2

2 44 2 483 22 +
√

483

2 51 7 53 (51 + 7
√

53)/2

2 88 6 215 44 + 3
√

215

2 2570 4 412806 1285 + 2
√

412806

R−k1(X1)

k1 X1 Y1 d ρ

2 1 1 5 (1 +
√

5)/2

2 2 2 2 1 +
√

2

2 3 1 13 (3 +
√

13)/2

2 4 2 5 2 +
√

5

2 6 2 10 3 +
√

10

2 7 1 53 (7 +
√

53)/2

2 8 2 17 4 +
√

17

2 10 2 26 5 +
√

26

2 11 5 5 (11 + 5
√

5)/2

2 19 1 365 (19 +
√

365)/2

2 22 2 122 11 +
√

122

2 30 2 226 15 +
√

226

2 58 2 842 29 +
√

842

2 88 2 1937 44 +
√

1937

2 178 2 7922 89 +
√

7922

2 3480 2 3027601 1740 +
√

3027601

Table 4: Solutions to R±k1(X1) = Pn1 + Pm1

From the above tables, we set each ρ := ρt for t = 1, 2, . . . 25. We then work on the linear
forms in logarithms Γ′1 and Γ′2, in order to reduce the bound on n2 given in Lemma 7.1. From the
inequality (66), for (k, n,m) := (k2, n2,m2), we write∣∣∣∣k2

log ρt
logα

− n2 +
log a

log(α−1)

∣∣∣∣ < ( 6

logα

)
α−(n2−m2), (94)

for t = 1, 2, . . . 25.
We put

τt :=
log ρt
logα

, µt :=
log a

log(α−1)
, and (At, Bt) :=

(
6

logα
, α

)
.

We note that τt is transcendental by the Gelfond-Schneider’s Theorem and thus, τt is irrational.
We can rewrite the above inequality, 94 as

0 < |k2τt − n2 + µt| < AtB
−(n2−m2)
t , for t = 1, 2, . . . , 25. (95)

We take N := 4 × 1042 which is the upper bound on n2 according to Lemma 7.1 and apply
Lemma 3.3 to the inequality (95). As before, for each τt with t = 1, 2, . . . , 25, we compute its
continued fraction [a

(t)
0 , a

(t)
1 , a

(t)
2 , . . .] and its convergents p(t)

0 /q
(t)
0 , p

(t)
1 /q

(t)
1 , p

(t)
2 /q

(t)
2 , . . .. For

each case, by means of a computer search in Mathematica, we find and integer st such that

q(t)
st > 2.4× 1043 = 6N and εt := ||µtq(t)|| −N ||τtq(t)| > 0.
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We finally compute all the values of bt := blog(Atq
(t)
st /εt)/ logBtc. The values of bt correspond

to the upper bounds on n2 −m2, for each t = 1, 2, . . . , 25, according to Lemma 3.3. We record
the results of the computations for each t in Table 5.

t ρt st qst εt > bt

1 1 +
√

2 78 1.46195× 1044 0.1578 379

2 2 +
√

3 100 8.93366× 1043 0.3147 374

3 (1 +
√

5)/2 82 2.96985× 1043 0.4479 369

4 5 + 2
√

6 80 3.16032× 1043 0.1940 372

5 3 +
√

10 88 4.21425× 1043 0.2358 373

6 (3 +
√

13)/2 91 6.62314× 1043 0.0666 379

7 4 +
√

17 92 1.11753× 1044 0.2387 376

8 (5 +
√

21)/2 73 2.44965× 1043 0.0400 377

9 5 +
√

26 98 3.23107× 1043 0.2333 372

10 6 +
√

35 83 1.87425× 1044 0.1172 381

11 (7 +
√

53)/2 96 1.82440× 1044 0.3875 376

12 (25 + 3
√

69)/2 80 2.40911× 1043 0.2013 371

13 (9 +
√

77)/2 82 2.54747× 1043 0.1470 373

14 11 +
√

122 76 4.91937× 1044 0.4004 380

15 (13 + 2
√

165)/2 86 2.61323× 1043 0.1664 372

16 44 + 3
√

215 80 3.14146× 1043 0.3298 371

17 (15 +
√

221)/2 75 5.70467× 1043 0.4661 371

18 15 +
√

226 79 4.78438× 1043 0.4046 371

19 (19 +
√

365)/2 78 3.05270× 1043 0.1985 372

20 22 +
√

483 75 4.19689× 1043 0.1559 374

21 29 +
√

842 87 8.14707× 1044 0.2964 382

22 44 +
√

1937 87 4.70884× 1043 0.1191 376

23 89 +
√

7922 79 2.43413× 1043 0.4418 369

24 1285 + 2
√

412806 85 2.22078× 1045 0.4501 385

25 1740 +
√

3027601 77 2.33761× 1044 0.3352 378

Table 5: First reduction compuation results (II)

By replacing (k, n,m) := (k2, n2,m2) in the inequality (63), we can write∣∣∣∣k2
log δt
logα

− n2 +
log(a(1 + α−(n2−m2)))

log(α−1)

∣∣∣∣ < ( 10

logα

)
α−n2 , (96)

for t = 1, 2, . . . , 25. We now put

τt :=
log δt
logα

, µt,n2−m2 :=
log(a(1 + α−(n2−m2)))

log(α−1)
, and (At, Bt) :=

(
10

logα
, α

)
.

With the above notations, we can rewrite (96) as

0 < |k2τt − n2 + µt,n2−m2| < AtB
−n2
t , for t = 1, 2, . . . 25. (97)

32



We again apply Lemma 3.3 to the above inequality (97), for

t = 1, 2, . . . , 25, n2 −m2 = 1, 2, . . . , bt, with N := 4× 1043.

We take

εt,n2−m2 := ||µtq(t,n2−m2)|| −N ||τtq(t,n2−m2)|| > 0,

and

bt,n2−m2 := blog(Atq
(t,n2−m2)
st /εt,n2−m2)/ logBtc.

With the help of Mathematica, we obtain the results in Table 6.

t 1 2 3 4 5 6 7 8 9 10 11 12 13

bt,n2−m2 398 404 399 413 390 398 401 397 390 413 401 396 396

t 14 15 16 17 18 19 20 21 22 23 24 25

bt,n2−m2 402 393 395 392 401 396 392 400 401 392 414 395

Table 6: Final reduction computation results (II)

max{bt,n2−m2 : t = 1, 2, . . . , 25 and n2 −m2 = 1, 2, . . . dt} ≤ 414.

Thus, by Lemma 3.3, we have that n2 ≤ 414, for all t = 1, 2, . . . , 25, and by the inequality
(61) we also have that n1 ≤ n2 + 4. From the fact that ρk ≤ 2αn+1, we can conclude that
k1 < k2 ≤ 248. Collecting everything together, our problem is reduced to search for the solutions
for (59) in the following range

1 ≤ k1 < k2 ≤ 248, 0 ≤ m1 < n1 ∈ [3, 414], and 0 ≤ m2 < n2 ∈ [3, 414].

After a computer search on the equation (59) on the above ranges, we obtained the following
solutions, which are the only solutions for the exceptional d cases we have stated in Theorem 2.2:

For the +4 case:

(d = 3) X1 = 4 = P7 + P0 = P6 + P3 = P5 + P5,

X2 = 14 = P11 + P5 = P10 + P8, X3 = 52 = P16 + P6;

(d = 5) X1 = 3 = P6 + P0 = P5 + P3, X2 = 7 = P9 + P0 = P7 + P6,

X3 = 18 = P12 + P5;

(d = 21) X1 = 5 = P8 + P0 = P7 + P3 = P6 + P5,

X2 = 23 = P13 + P5 = P12 + P9, X3 = 2525 = P30 + P11.

For the −4 case:

(d = 2) X1 = 2 = P5 + P0 = P3 + P3, X2 = 14 = P11 + P5 = P10 + P8;

(d = 5) X1 = 1 = P3 + P0, X2 = 4 = P7 + P0 = P6 + P3 = P5 + P5,

X3 = 11 = P10 + P5 = P9 + P7, X4 = 29 = P14 + P3.

This completes the proof of Theorem 2.2.
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