
EasyChair Preprint
№ 4771

How to Implement NoSQL Schemas with
ModelDrivenGuide?

Jihane Mali, Faten Atigui, Ahmed Azough and Nicolas Travers

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 23, 2020



How to Implement NoSQL Schemas with ModelDrivenGuide?
Jihane Mali

jihane.mali@usmba.ac.ma
Université Sidi Mohamed Ben Abdellah

Fès, Morocco

Faten Atigui
faten.atigui@cnam.fr

CEDRIC, Conservatoire National des Arts et Métiers
(CNAM)

Paris, France

Ahmed Azough
ahmed.azough@usmba.ac.ma

Université Sidi Mohamed Ben Abdellah
Fès, Morocco

Nicolas Travers
nicolas.travers@devinci.fr

Léonard de Vinci Pôle Universitaire, Research Center
Paris La Défense, France

ABSTRACT
With the evolution of data in terms of volume, variety and velocity,
designing and developing an Information Systems (IS) requires
studying the best solutions to store and manipulate data while
respecting the user’s requirements. In this demonstration, we show
how to implement an IS using ModelDrivenGuide, which is a semi-
automated approach based on transformation rules starting from a
conceptual model, then going from one logical model to an other
by refinement to finally the chosen physical model.

KEYWORDS
NoSQL, MDA, Meta-Model, Model Transformation, Model Refine-
ment, Ecore, QVT

1 INTRODUCTION
For decades, the storage and the exploitation of data has mainly
relied on relational databases. With the advent of Big Data, the vol-
ume of data has exploded, the heterogeneity has increased tenfold,
causing problems of transformation from traditional databases to
new storage on the Cloud, whether in terms of storage manage-
ment, data query, cost or performance. To deal with these problems,
NoSQL data management systems have appeared since 2009.

Several works have focused on storage and modeling problems
of data using NoSQL systems. Most of the studies have proposed
either (i) a comparative study between RDB (Relational DataBases)
and NoSQL DB (DataBases) and/or how to transform relational data
into dedicated NoSQL system [6, 9, 11] or (ii) how to transform a
conceptual schema into a specific NoSQL DB [1, 3–5] (iii) while
very few studies have proposed criteria for the choice of physical
models and implementation platforms [8, 10].

Our ModelDrivenGuide [2, 7] approach offers logical modeling
suitable for models refinement in order to generate all types of op-
timized physical models by relying on a common 5Families meta-
model (4 NoSQL families & the Relational model). Based on trans-
formation rules, it provides a functional process that integrates the
use case to generate the different SQL and/or NoSQL solution(s)
adapted to business requirements.

© 2020, Copyright is with the authors. Published in the Proceedings of the BDA 2020
Conference (27-30 October 2020, Paris, France). Distribution of this paper is permitted
under the terms of the Creative Commons license CC-by-nc-nd 4.0.
© 2020, Droits restant aux auteurs. Publié dans les actes de la conférence BDA 2020
(27 au 30 octobre 2020, Lyon, France). Redistribution de cet article autorisée selon les
termes de la licence Creative Commons CC-by-nc-nd 4.0.

2 MODELDRIVENGUIDE: FROM CONCEPTUAL
MODEL TO PHYSICAL MODELS

We suggest a model driven approach that offers steps to generate
a logical model for each family. Our approach focuses on model
transformation, starting from conceptual to logical then to physical
models, and on model refinement to go from one logical model to
another. The peculiarity of this approach is to allow the optimization
of the data model directly during the transformation process instead
of the last step. This helps to make a choice of implementation
according to the context of use. In order to formalize the process,
we adopted a Model-Driven Architecture (MDA1).

Our ModelDrivenGuide approach (Figure 1) starts from a UML
class diagram and considers two Platform Independent levels corre-
sponding to the conceptual (PIM1) and logical (PIM2) levels, as well
as a Platform Specific level related to the different target platforms.

The PIM1 (Platform Independent Model) of the first level is an
UML class diagram that serves as a basis for modeling the user
requirements and the context of use.

The PIM2 is the second level independent model, common to
the five families of models. It allows to carry out refinement rules by
generating recursively all possible denormalized models by relying
on merge and split rules. We mention that a heuristic is applied to
guide the generation of data models in order to avoid cycles and
useless models. It is mainly based on the use case. This heuristic is
not detailed in this demonstration.

The PSMx (Platform Specific Model) are obtained by the trans-
formation of PIM2 models into the compatible target data family
(e.g. nesting for DO, rows for CO, edges for GO, etc.).

This demonstration focuses especially on the PIM2 5Families
meta-model used to generate all possible data models, on transfor-
mation, and on refinement rules.

2.1 Experimental Environment.
Since our approach is based on (MDA2), we need an infrastructure
suitable for meta-modeling, modeling and models transformations.
We developed our approach using a model transformation envi-
ronment called Eclipse Modeling Framework (EMF3). It is a set of
Eclipse plug-ins which can be used to design a data model and to
generate code or other output based on this model. EMF respects

1MDA: https://www.omg.org/mda/index.htm
2MDA: https://www.omg.org/mda/index.htm
3EMF: https://www.eclipse.org/modeling/emf/

https://www.omg.org/mda/index.htm
https://www.eclipse.org/modeling/emf/


BDA’20, October 27-30, 2020, Paris, France Mali, et al.

Transformation Transformation

Transformation

D
es

cr
ib

es

PIM1

Conceptual Model 
PIM2

Common Logical Model 
PSMx

Physical Model 

...

...

Transformation

Oracle
MySQL

PostgreSQL...

HBase
Spark SQL ...

MongoDB
Cassandra

DynamoDB...

Redis
Riak

Memecached...

Neo4j
OrientDB

CosmosDB...

DocumentColumn

Relational Key/Value

Graph

Ecore Ecore Ecore

QVT 

QVT 

QVT 

QVT 

QVT 

Figure 1: ModelDrivenGuide Approach

the known distinction between a meta-model and a model. A meta-
model describes the structure of a model. A model is a concrete
instance of this meta-model. To implement our approach, we have
used the following tools proposed by EMF: 1) Ecore used for the im-
plementation of all the PIM1, PIM2, and PSMxmeta-models. Inspired
by the object-oriented approach, the Ecore language is based on the
notion of package (EPackage), class (EClass), attribute (EAttribute),
reference link (EReference), data type (EDataType), and enumera-
tion (EEnum); 2) XMI4 a format in which instances of meta-models
are created; and 3) QVTO (QVT Operational) a Model-To-Model
(M2M) transformation tool that implements the QVT language. It
is used to formalize both exogenous transformation rules (from
conceptual to logical model, and from logical to physical model)
and also refinement (endogenous transformation) rules.

3 DEMONSTRATION
Before starting the transformation process, it is necessary to define
the three meta-models that we have in our ModelDrivenGuide ap-
proach since they are going to be needed in any further steps. We
defined the conceptual (class diagram), logical (5Families) and
physical (MongoDB) meta-models using Ecore. We also formalized
the transformation/refinement rules in QVT.

3.1 TPC-C Benchmark Scenario
For this scenario, we have used the TPC-C5 benchmark as an entry.
It gives a full use case mixing at the same time transactions, joins
and aggregations. The TPC-C benchmark simulates the behavior
of a logistic DB on user orders with transaction-oriented stock
management (OLTP). We will focus on the six classes (Warehouse,
District, Customer, Order and OrderLine, Item) in the PIM1.

(1) Instantiate the PIM1 meta-model using TPC-C benchmark’s
class diagram,

(2) Typically, transform the PIM1 into the PIM2 as a normalized
relational model conform to our 5Families common meta-
model,

(3) Apply applied semi-automatic refinement rules recursively,
(4) Transform the chosen model obtained from the refinement

into a MongoDB database. The choice was led by the fact
that MongoDB is one of the rare NoSQL solutions integrating
ACID transactions in sharding (version 4.2) required by the
TPC-C benchmark. However, our approach is extensible by
defining a new PSM for each target database type (without

4XML Metadata Interchange: https://www.omg.org/spec/XMI/About-XMI/
5TPC-C: http://www.tpc.org/TPCC/default5.asp

ACID properties in that case). We can also visualize the JSON
schema of the final output.

3.2 User Model Scenario
This scenario illustrates the whole process by integrating user’s
own data model. The user has to follow the undermentioned steps
while using the ModelDrivenGuide Approach:

(1) Create its own instance of the source meta-model in the XMI
format, in our case the source is the conceptual class diagram
meta-model,

(2) Typically, transform the PIM1 into the PIM2 as a normalized
relational model,

(3) Apply the heuristic to generate a tree of denormalized data
models (using recursively refinement rules),

(4) Choose one or more generated PIM2, and apply its transfor-
mation into the target PSM.

4 CONCLUSION
Our ModelDrivenGuide approach is a MDA-based approach that
aims to improve model transformation. ModelDrivenGuide is a
global approach that generates optimized models based on the com-
mon 5Familiesmeta-model favoring the application of refinement
rules to produce potential target models. This mix between data
modeling and optimization rises to an approach that aims to find
the efficient target model among the 5 families of data.

For future works, we seek to define a generic cost model allowing
to compare the produced solutions and eventually suggest top-k
logical models. This cost model will integrate different dimensions
(storage, bandwidth, CPU/energy impact, etc.) and will help to make
a decision among all produced data models.

REFERENCES
[1] Fatma Abdelhedi, Amal Ait Brahim, Faten Atigui, and Gilles Zurfluh. 2017. MDA-

based Approach for NoSQL Databases Modelling. In International Conference on
Big Data Analytics and Knowledge Discovery. Springer, 88–102.

[2] FatenAtigui, AsmaMokrani, andNicolas Travers. 2020. DataGuide : une approche
pour l’implantation de schémas NoSQL. Extraction et de Gestion des Connaissances
(EGC’20) RNTI-E-36 (2020), 407–408.

[3] G. Daniel, A. Gómez, and J. Cabot. 2019. UMLto[No]SQL: Mapping Conceptual
Schemas to Heterogeneous Datastores. In 2019 13th International Conference on
Research Challenges in Information Science (RCIS). 1–13.

[4] Gwendal Daniel, Gerson Sunyé, and Jordi Cabot. 2016. UMLtoGraphDB: mapping
conceptual schemas to graph databases. In International Conference on Conceptual
Modeling. Springer, 430–444.

[5] Shady Hamouda and Zurinahni Zainol. 2017. Document-oriented data schema
for relational database migration to NoSQL. In 2017 International conference on
big data innovations and applications (innovate-data). IEEE, 43–50.

[6] Chongxin Li. 2010. Transforming relational database into HBase: A case study.
In 2010 IEEE international conference on software engineering and service sciences.
IEEE, 683–687.

[7] Jihane Mali, Ahmed Azgouh, Faten Atigui, and Nicolas Travers. 2020. DataGuide:
AnApproach for Implementing NoSQL Schemas. InDEXA’20. Bratislava, Slovakia,
1–10.

[8] AB Raut. 2017. NoSQL database and its comparison with RDBMS. International
Journal of Computational Intelligence Research 13, 7 (2017), 1645–1651.

[9] Leonardo Rocha, Fernando Vale, Elder Cirilo, Dárlinton Barbosa, and Fernando
Mourão. 2015. A framework for migrating relational datasets to NoSQL. Procedia
Computer Science 51 (2015), 2593–2602.

[10] Clarence JM Tauro, Shreeharsha Aravindh, and AB Shreeharsha. 2012. Com-
parative study of the new generation, agile, scalable, high performance NOSQL
databases. International Journal of Computer Applications 48, 20 (2012), 1–4.

[11] Tamás Vajk, Péter Fehér, Krisztián Fekete, and Hassan Charaf. 2013. Denormaliz-
ing data into schema-free databases. In 2013 IEEE 4th International Conference on
Cognitive Infocommunications (CogInfoCom). IEEE, 747–752.

https://www.omg.org/spec/XMI/About-XMI/
http://www.tpc.org/TPCC/default5.asp

