
EasyChair Preprint
№ 3054

Anytime and Efficient Coalition Formation with
Spatial and Temporal Constraints

Luca Capezzuto, Danesh Tarapore and Sarvapali D. Ramchurn

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 2, 2020

Anytime and Efficient Coalition Formation with

Spatial and Temporal Constraints

Luca Capezzuto[0000−0003−4404−0998], Danesh Tarapore[0000−0002−3226−6861], and
Sarvapali D. Ramchurn[0000−0001−9686−4302]

ECS Centre for Machine Intelligence, University of Southampton, UK
{luca.capezzuto,d.s.tarapore,sdr1}@soton.ac.uk

Abstract The Coalition Formation with Spatial and Temporal con-

straints Problem (CFSTP) is a multi-agent task allocation problem where
the agents are few and cooperative, the tasks are many, spatially dis-
tributed, with deadlines and workloads, and the objective is to find a
schedule that maximises the number of completed tasks. The current
state-of-the-art CFSTP solver, the Coalition Formation with Look-Ahead

(CFLA) algorithm, has two main limitations. First, its time complexity
is quadratic with the number of tasks and exponential with the number
of agents, which makes it not efficient. Second, its look-ahead technique
is not effective in real-world scenarios, such as open multi-agent systems,
where new tasks can appear at any time. Motivated by this, we propose
an extension of CFLA, which we call Coalition Formation with Improved

Look-Ahead (CFLA+). Since CFLA+ inherits the limitations of CFLA,
we also develop a novel algorithm to solve the CFSTP, the first to be
anytime, efficient and approximate, which we call Cluster-based Coalition

Formation (CCF). We empirically show that, in settings where the look-
ahead technique is highly effective, CCF completes up to 20% (resp. 10%)
more tasks than CFLA (resp. CFLA+) while being up to four orders
of magnitude faster. Our results affirm CCF as the new state-of-the-art
algorithm to solve the CFSTP.

Keywords: RoboCup rescue simulation · coalition formation · spatial
and temporal constraints · XD [ST-MR-TA] · anytime · efficient

1 Introduction

According to the Global Risks Report 2020 [26], natural disasters and human-
made environmental disasters are in the top 5 risks in terms of likelihood and in
the top 10 risks in terms of impact. The reason is that they are caused by and are
the cause of other crucial issues, such as extreme weather events, biodiversity loss
and ecosystem collapse, water and food crises, failure of climate-change mitigation
and adaptation, failure of regional or global governance, and profound social
instability. Therefore, a key component of modern society is disaster response [1],
that is, the act of reducing or eliminating the consequences of a disaster [4].

In the field of Multi-Agent Systems (MASs), one of the most important projects
promoting research on disaster response is the RoboCup rescue simulation [15].

Accepted at EUMAS 2020

https://eumas2020.csd.auth.gr/eumas2020/

2 L. Capezzuto et al.

By reproducing the aftermath of an earthquake in a city, this simulation allows
testing coordination approaches that could be enacted by first responders in such
situations. In this work, we are interested in a class of task allocation problems
that can be generated by the RoboCup rescue simulation, namely, those in
which ambulances have to find and rescue victims trapped under rubble, and fire
brigades have to extinguish fires. This class of problems has been characterised by
Ramchurn et al. [24] as Coalition Formation with Spatial and Temporal constraints

Problem (CFSTP)1. In the CFSTP, agents (i.e., ambulances or fire brigades) have
to decide which sequences of tasks (i.e., victims or fires) they are going to execute
(i.e., save or extinguish). Their decision is influenced by how tasks are located in
the disaster area, how much time it is required to reach them, how much work
they require (e.g., how large a fire is) and their deadlines (e.g., estimated time left
before victims perish). Given these conditions, and considering that there could
be many more tasks than agents, it is crucial that agents cooperate with each
other by forming coalitions [27] (i.e., grouping together). Hence, the objective of
the CFSTP is to schedule the right coalitions (e.g., ambulances with the largest
capability) to the right tasks (e.g., sites with the most victims) to ensure that as
many tasks as possible are completed.

In this paper, our interest is in algorithms that solve the CFSTP efficiently

(i.e, that are in the complexity class P [22]) and are anytime (i.e., which can
return partial solutions if they are interrupted before completion). The reason is
that being efficient and anytime is a desirable feature of real-world applications.
To date, approaches based on the distributed Max-Sum algorithm [8] have proven
to be among the most effective at solving the CFSTP, as well as many other
problems [9]. The variants relevant to our scope are Fast Max-Sum (FMS) [24],
Bounded Fast Max-Sum (BFMS) [21], and Binary Max-Sum (BinaryMS) [23].
FMS is anytime and provides optimal solutions in exponential time, but it cannot
solve general CFSTP instances. This limitation is removed in BFMS, but at the
cost of losing the anytime property, and providing only approximate solutions.
On the other hand, BinaryMS is efficient, but not anytime, and it requires a
pre-processing phase with exponential run-time to solve general CFSTP instances.
Other multi-agent approaches make use of social insects [7], automated negoti-
ation [10,12,31] and evolutionary computation [32], but without considering the
anytime property. In the field of multi-robot systems, the CFSTP is also known
as Cross-schedule Dependent Single-Task Multi-Robot Time-extended Assignment

(XD [ST-MR-TA]) [18]. To date, the approaches proposed to solve this equivalent
formulation utilise linear programming [2,16,17], automated negotiation [19] and
memetic algorithms [20]. However, like the above multi-agent approaches that
are not based on Max-Sum, they are not anytime.

Against this background, we focus on the current state-of-the-art algorithm
that solves the CFSTP, namely, the Coalition Formation with Look-Ahead (CFLA)

1 We use the definitions of coalition and coalition formation given by [14,25,27]. Hence,
a coalition is a flat and task-oriented organisation of agents, short-lived and dissolved
when no longer needed, while coalition formation is a consequence of the emergent
behaviour [11] of the MAS, rather than inter-agent coordination (as in game theory).

Anytime and Efficient CFSTP 3

algorithm [25]. Our rationale is that CFLA is anytime and, even though its
computational time is exponential in the worst case, thanks to its design [25,
Section 6] and the performance of current computers, on average it can solve
problems with hundreds of agents and thousands of tasks in minutes.

Our contribution includes: an explanation of CFSTP and CFLA that is
clearer, more concise and more detailed than [25]; an extension of CFLA that
minimises its limitations; a novel anytime, efficient and approximate algorithm
to solve the CFSTP, which outperforms both CFLA and our extension.

The rest of the paper is organised as follows. In Section 2, we formalise
the CFSTP model. Section 3 is dedicated to discuss and enhance the CFLA
algorithm, which culminates in the CFLA+ algorithm. Given that CFLA+ keeps
the core limitations of CFLA, Section 4 presents our novel algorithm. Section 5
reports our empirical evaluation, and Section 6 concludes.

2 The CFSTP model

In this section, we first give our terminology, then characterise coalition allocations
and values, and finally give the constraints and objective function of the CFSTP.

2.1 Basic definitions

Let V = {v1, . . . , vm} be a set of m tasks and A = {a1, . . . , an} be a set of n
agents2. Let LV and LA be respectively the set of all possible task and agent
locations, not necessarily disjoint. Hence, more than one agent or task can be
at the same location. Time t is discrete, that is, t ∈ N, each problem starts at
t = 0 and agents travel or execute tasks in measurable time units. The time
units needed by an agent to travel from one location to another are given by
ρ : A × (LA ∪ LV) × LV → N. Unlike [25], we put A in the domain of ρ to
characterise agents with different speeds3. Task locations do not change over
time, while agent locations can. Each task v has a demand Dv = {wv, dv}, where
wv ∈ R

+ is the workload of v, or the amount of work required to complete v,
and dv ∈ N is the deadline of v, or the time until which agents can work on v.
Our notion of work will be clear in Section 2.3. Hence, workloads can only be
positive, and some tasks might have a deadline of zero4.

We denote the location of agent a at time t by lta ∈ LA ∪ LV , the times at
which a starts and finishes working on task v by sv

a ∈ [0, dv] and fv
a ∈ [sv

a, dv],
respectively, and the latest deadline by dmax = maxv∈V dv.

2.2 Coalition allocations

Agents are cooperative [30] and can work together to complete a task. Let
Part(A) be the set of partitions of A. A subset of agents C ∈ Part(A) is called a

2 Although not necessary, it is typically assumed that m≫ n.
3 In real-world scenarios, this avoids approximating different speeds to the same one.
4 In other words, a problem might have tasks that cannot be completed in time,

independently of the algorithm chosen to solve it.

4 L. Capezzuto et al.

coalition. At time t, the rationale for allocating coalition C to task v is that C can
complete v in the lowest time possible. An agent allocation is denoted by τa→v

t

and represents the fact that agent a works on task v at time t. The set of all

agent allocations is denoted by T = {τa→v
t }a∈A, v∈V, t∈[0, dmax] and contains all the

combinatorially different agent allocations. A coalition allocation is denoted by
τC→v

t and represents the fact that coalition C works on task v at time t. The set of

all coalition allocations is denoted by Γ =
{

τC→v
t |C = {a | τa→v

t ∈ T}
}

. Similar
to T , Γ contains all the combinatorially different coalition allocations. Given
a set of agent allocations T ′ ⊆ T , the set of coalition allocations corresponding

to T ′ is denoted by Θ(T ′) =
{

τC→v
t |C = {a | τa→v

t ∈ T ′}
}

. An agent allocation

τa→v
t can also be denoted as a singleton coalition allocation τ

{a}→v
t .

2.3 Coalition values

Each coalition has a value, given by the function u : Part(A) × V → R
+.

Unlike [25], we put V in the domain of u to characterise the fact that the same
coalition may execute different tasks with different performances. Hence, given a
coalition allocation τC→v

t , the value u(C, v) expresses the amount of work that
coalition C does on task v at each time t. The workload wv decreases linearly
over time, depending only on u(C, v).

2.4 Constraints

There are three constraint types: structural, temporal and spatial. Structural
constraints require that each task v can be allocated to only one coalition at a
time. This is characterised by the following sets:

∀v ∈ V, Γv =
{

Γ ′ ⊆ Γ : τC1→v
t , τC2→v

t ∈ Γ ′ =⇒ C1 = C2

}

(1)

Temporal constraints require that each task v can be completed only within
its deadline dv. This is characterised by the function ∆ : V ×Γ → {0, 1}, defined
as follows:

∆(v, Γ) =

{

1, if ∃ t ≤ dv :
∑

t′≤t, τC→v

t′
∈Γv

u(C, v) ≥ wv

0, otherwise
(2)

Equation 2 utilises Γv (Equation 1) to count only well-formed coalition allocations.
Spatial constraints require that an agent will not start working on a task

before reaching it. This is characterised as follows:

∀a ∈ A, ∀v ∈ V,∀t ≤ dv, s
v
a ≥ t+ ρ(a, lta, lv) (3)

∀a ∈ A,∀v1, v2 ∈ V, fv1

a + ρ(a, lv1
, lv2

) ≤ sv2

a (4)

A set of agent allocations T ′ ⊆ T such that Θ(T ′) satisfies Equation 2 is called
legal. A set of coalition allocations Γ ′ ⊆ Γ that satisfies Equations 2, 3 and 4
is called feasible. Consequently, at time t, if τC1→v1

t and τC2→v2

t are feasible
coalition allocations and lv1

6= lv2
, then C1 ∩ C2 = ∅.

Anytime and Efficient CFSTP 5

2.5 Objective function

The objective function of the CFSTP is to find a feasible set of coalition allocations
that maximises the number of completed tasks. More formally:

arg max
Γ ′⊆Γ

∑

v∈V

∆(v, Γ ′), subject to Equations 3 and 4 (5)

Since, for each agent a, we might need to consider all the possible task
allocations until dmax, the time complexity of Equation 5 is O(|A|·|V |!·(dmax)|V |).

A feasible set of coalition allocations Γ ′ ⊆ Γ is called a solution with degree k

if
∑

v∈V ∆(v, Γ ′) = k, with 0 ≤ k ≤ |V |. Moreover, Γ ′ is called a partial solution

if k > 0 and an optimal solution5 if k = |V |. Hence, the argument of the maxima
in Equation 5 is a solution with the highest degree.

In [25], it is proven that the CFSTP is NP-hard [22], and a generalisation of
the Team Orienteering Problem [3], which is a generalisation of the Travelling
Salesman Problem [29]. As we said in Section 1, CFLA is the current state-of-
the-art CFSTP solver. In the next section, we show how it can be improved.

3 Coalition Formation with improved Look-Ahead

We now present the Coalition Formation with improved Look-Ahead (CFLA+),
an extension of the CFLA algorithm [25]. More precisely, its look-ahead phase
(Section 3.4) has two modifications that, as we shall see in Section 5, enhance
the overall performance.

The concept of CFLA+ is the same as CFLA, but for completeness we briefly
report it in Section 3.1. After that, we detail the procedures that compose
CFLA+, explaining how they differ from the ones of CFLA. Finally, we list the
limitations that CFLA+ continues to keep from CFLA, which are the rationale
for our new algorithm in Section 4.

CFLA and CFLA+ have the same four phases, but [25] describes them in
three algorithms. For readability purposes, we describe them in four algorithms.

3.1 The concept of CFLA
+

CFLA+ is a centralised, anytime and greedy algorithm that approximates Equa-
tion 5 by maximising the working time of the agents and minimising the time
required by coalitions to complete tasks. It is divided into four phases:

1. Defining the legal agent allocations (Section 3.2).
2. For each task v, choosing the best coalition C (Section 3.3).
3. For each task v, doing a 1-step look-ahead (Section 3.4) to define its degree

δv, or the number of tasks that can be completed after the completion of v.
4. At each time t ∈ [0, dmax], allocating a task not yet completed and with the

highest degree (Section 3.5).

We detail them below.
5 Optimal solutions might not exist (see Footnote 4 in Section 2.1).

6 L. Capezzuto et al.

Algorithm 1: getLegalAgentAllocations (Phase 1 of CFLA+)

Input: time t

Output: the set of legal agent allocations at time t

1 Lt ← ∅
2 for a ∈ At

free do // for each free agent a

3 for v ∈ Vunc do // for each uncompleted task v

4 if t + ρ(a, lt
a, lv) ≤ dv then // if a can reach v at t within dv

5 Lt ← Lt ∪ {τ
a→v
t′ }t+ρ(a,lt

a,lv)≤t′≤dv

Algorithm 2: ECF (Phase 2 of CFLA+)

Input: task v, a set of legal agent allocations Lt

Output: ECF coalition C

1 At
v ← define from Lt the agents that can reach v at t within dv

2 C∗
v ← ∅ // the ECF coalition

3 t∗
v ← dv + 1 // time at which C∗

v completes v

4 i← 1
5 while i ≤ |At

v| and C∗
v = ∅ do

6 for C ∈ all combinations of i agents in At
v do

7 if
∑

τC→v

t′
∈Γv , C′⊆C, t′∈[t,dv]

u(C, v) ≥ wv then

8 tminmax ← mintmax

(

wv −
∑

τC→v

t′
∈Γv , C′⊆C, t′∈[t,tmax]

u(C, v)
)

9 if tminmax < t∗
v then

10 t∗
v ← tminmax

11 C∗
v ← C

12 i← i + 1

3.2 Phase 1: defining the legal agent allocations

At time t, Algorithm 1 determines which free agents6 (At
free) can reach which

uncompleted tasks (Vunc) before their deadlines. The resulting set of legal agent
allocations is denoted by Lt. This phase is identical in CFLA.

3.3 Phase 2: Selecting the best coalition for each task

Given a task v and a set of legal agent allocations Lt (computed by Algorithm 1),
Algorithm 2 returns the Earliest-Completion-First (ECF)7 coalition C∗

v that can
be allocated to v. More precisely, the algorithm minimises both the size of C∗

v

and the time at which it completes v. This is achieved by iterating from the
smallest to the largest possible coalition size (line 5) and iterating through all the
possible coalitions of each size (line 6). When the procedure finds a coalition C

6 That is, agents who neither are travelling to nor working on a task.
7 This logic is adapted from the Earliest-Deadline-First (EDF) scheduling [28].

Anytime and Efficient CFSTP 7

Algorithm 3: lookAhead (Phase 3 of CFLA+)

Input: task v, its ECF coalition C∗
v , the set of all agent allocations T

Output: the degree δv of task v

1 δv ← 0
2 fv ← time at which C∗

v completes v

3 for v2 ∈ Vunc \ {v} do

4 if dv2
≥ dv then

5 A
fv

free ← agents that are free at fv // derived from C∗
v and T

6 Adv2 ← select from A
fv

free the agents that can reach v2 within dv2

7 i← 1

8 while i ≤ |Adv2 | do

9 for C ∈ all combinations of i agents in Adv2 do

// if C can complete v2

10 if
∑

τC′
→v

t
∈Γv , C′⊆C, t∈[fv,dv2

] u(C, v) ≥ wv then

11 δv ← δv + 1 + (1− ηv2
)

12 i← |Adv2 | // break external loop too

13 break

14 i← i + 1

that can complete v within its deadline (line 7), then |C| is the minimum size of
the coalitions that can complete v. Hence, C∗

v is identified among the coalitions
that have size |C| (lines 8 − 11).

Algorithm 2 is more concise than the original formulation [25, Algorithm 2].
In particular, we clarify that the minimum coalition size has to be determined
by iterating through the subsets of the combinations8 of At

v, which is the set of
free agents that can reach v at time t.

3.4 Phase 3: defining the degree of each task

Given a task v, Algorithm 3 does a 1-step look-ahead9 to define its degree
δv (Section 3.1). Similarly to Algorithm 2, it checks how many tasks can be
completed after the completion of v (line 8).

Algorithm 3 differs from the original look-ahead phase [25, Algorithm 3]
in two points. First, it only considers uncompleted tasks that have a deadline
greater or equal to dv (line 4): this prevents from counting tasks that can be
completed before the completion of v. In fact, as defined in Section 3.1, δv

represents the number of tasks that can be completed only after the completion
of v, not also those that are completed before that. Second, at line 11, δv is
not just incremented by 1, but also by 1 − ηv2

, where ηv2
is the normalisation

8 The most efficient technique to enumerate all such combinations is the Gray binary
code [6, Section 7.2.1.1].

9 Which can be seen as a brute force phase.

8 L. Capezzuto et al.

Algorithm 4: Overall procedure (Phase 4 of CFLA+)

1 t← 0
2 T ← {τa→v

t }a∈A, v∈V, t∈[0, dmax] // the set of all agent allocations

3 Vunc ← V // uncompleted tasks

4 repeat

5 δmax ← 0 // maximum task degree

6 v∗ ← nil // next task to allocate

7 C∗ ← ∅ // coalition to which v∗ is allocated

8 Lt ← getLegalAgentAllocations(t) // Algorithm 1

9 for v ∈ Vunc do

10 C∗
v ← ECF(v, Lt) // Algorithm 2

11 δv ← lookAhead(v, C∗
v , T) // Algorithm 3

12 if δv > δmax then

13 δmax ← δv

14 C∗ ← C∗
v

15 if v∗ 6= nil and C∗ 6= ∅ then

16 Allocate C∗ to v∗

17 Vunc ← Vunc \ {v
∗}

18 Reduce T according to new agent locations and availability

19 if At
free = A then // all agents are free

20 break

21 t← t + 1

22 until Vunc = ∅ or t > dmax

of wv2
in the interval [wmin, wmax], with wmin and wmax being respectively the

minimum and maximum task workloads. Hence, δv is also a measure of how
much total workload is left after the completion of v. When δv is maximised (line
12 of Algorithm 4), it leads to the remaining tasks with the smallest workloads,
thus increasing the probability of completing more.

3.5 Phase 4: overall procedure of CFLA
+

Algorithm 4 shows the overall procedure. It runs in iterations until all tasks are
completed or the latest deadline is expired. At each time t, it updates the set
of legal agent allocations (line 8). Then, it determines which task to allocate to
which coalition (lines 9 − 18). If no other tasks can be allocated, the algorithm
stops early (line 19). Algorithm 4 can be seen as a myopic approach [24], in
which a long-term problem (to allocate all tasks) is divided into a number of
short-term problems (to allocate a task with the highest degree at each time t).

3.6 Analysis and discussion

Algorithm 1 iterates through all free agents and uncompleted tasks. Assuming
that line 4 requires constant time, the time complexity is α = O(|A| · |V |).

Anytime and Efficient CFSTP 9

Algorithm 2 iterates (line 5) from coalition size 1 to |At
v|, where At

v is the
set of agents that can reach task v at time t. This requires O(|A|) time. For
each s ≤ |At

v|, all possible coalitions of size s could be examined (line 6), which
requires O(2|A|) time in case At

v = A. Assuming that line 8 requires O(dmax)
time, the total time complexity is β = O(|A| · 2|A| · dmax).

Algorithm 3 iterates through all uncompleted tasks, which requires O(|V |)
time, and its loop at line 8 is computationally identical to line 5 in Algorithm 2.
Hence, the time complexity is γ = O(|V | · 2|A|).

Since it uses the previous algorithms, Algorithm 4 has a time complexity of

O (dmax · (α+ |V | · (β + γ))) = O
(

(dmax · |V |)2 · 2|A|
)

(6)

Therefore, despite having a lower complexity than an optimal CFSTP solver
(Section 2.5), CFLA+ has a run-time that increases quadratically with the number
of tasks and exponentially with the number of agents. This makes the algorithm
not efficient, hence not suitable for systems with limited computational resources.
Other limitations are as follows:

1. It can allocate only one task per time [25, Section 7]. More formally, at each
time, if one or more tasks are allocable, the worst- and best- case guarantee
of CFLA+ is to find a partial solution with degree k = 1.

2. In general, greedily allocating a task with the highest degree now does not
necessarily ensure that uncompleted tasks can all be successfully allocated
in future. This is particularly relevant in an open MAS10, where there is no
certainty of having further uncompleted tasks.

3. The more the tasks can be grouped by degree, the more the look-ahead phase
becomes a costly random choice. In other words, at time t, if some tasks
V

′

t ⊆ V have all maximum degree, then Algorithm 4 selects v∗ randomly
from V

′

t . Hence, the larger V
′

t is, the less relevant Algorithm 3 becomes.
4. In Algorithm 4, all tasks have the same weight. That is, tasks with earlier

deadlines might not be allocated before tasks with later deadlines. This is
independent of the order in which the uncompleted tasks are elaborated (line
9). In fact, the computation of δmax (line 12) would not be affected.

These limitations prevent CFLA+ from scoring higher percentages of com-
pleted tasks. Because of them, we decided to develop a new CFSTP solver that
is anytime, efficient and approximate. We present it in the next section.

4 Cluster-based Coalition Formation

The Cluster-based Coalition Formation (CCF) is a centralised, anytime and
greedy algorithm that operates at the agent level, rather than at the coalition
level. It is divided into two phases:

10 Here, we mean open as in open system [13]. Therefore, in an open MAS, at any time
agents can join in or out, and new tasks can appear.

10 L. Capezzuto et al.

Algorithm 5: getTaskAllocableToAgent (used in Phase 1 of CCF)

Input: time t, agent a

1 vt
a ← (nil, nil) // array of indices 0 and 1

2 tmin ← (dmax + 1, dmax + 1) // like above

3 dmin ← (dmax + 1, dmax + 1) // like above

4 for v ∈ V do // for each uncompleted task

5 i← 0 // v is unallocated

6 if other agents are travelling to or working on v then

7 i← 1 // v is allocated but still uncompleted

8 tarr ← t + ρ(a, lt
a, lv)

9 if tarr ≤ dv and tarr < tmin[i] and dv < dmin[i] then

10 vt
a[i]← v

11 tmin[i]← tarr

12 dmin[i]← dv

13 if vt
a[0] 6= nil then // prioritise unallocated tasks

14 return vt
a[0]

15 return vt
a[1]

1. For each agent a, defining the closest and most urgent uncompleted task that
can be allocated to a.

2. For each task v, defining the minimum coalition of agents to which v has to
be allocated.

We describe Algorithm 5, which is used in the first phase, in Section 4.1 and
Algorithm 6, which does the two phases, in Section 4.2.

4.1 Selecting the best task for each agent

Given a time t and an agent a, Algorithm 5 returns the uncompleted task v

that is allocable, the most urgent and closest to a. By allocable we mean that a
can reach v before deadline dv, while most urgent means that v has the earliest
deadline. The algorithm prioritises unallocated tasks, that is, it first tries to find
a task to which no agents are travelling, and on which no agents are working
(vt

a[0]). Otherwise, it returns an already allocated but still uncompleted task such
that a can reach it and contribute to its execution (vt

a[1]). This ensures that an
agent becomes free only when no other tasks are allocable and uncompleted.

Algorithm 5 does not enforce constraints on the workloads. As we shall see
in Section 4.2, it is Algorithm 6 that does it, by allocating a task v to a coalition
C only when C has the minimum size and can complete v within dv.

4.2 Overall procedure of CCF

The overall procedure is described in Algorithm 6. The repeat-until structure
is the same as CFLA+, to preserve the anytime property. Phases 1 and 2 are
represented respectively by the loops at lines 5 and 16.

Anytime and Efficient CFSTP 11

Algorithm 6: Overall procedure of CCF (Phases 1 and 2)

Input: tasks V , agents A, task locations LV , initial agent locations LA, task
demands {Dv}v∈V

Output: A set of coalition allocations Γ ′

1 t← 0
2 Γ ′ ← ∅ // the partial solution to return

3 Vallocable ← ∅ // allocable tasks

4 repeat

5 for a ∈ A do // Phase 1
6 if a ∈ At

free then

7 v ← getTaskAllocableToAgent(t, a) // Algorithm 5

8 if v 6= nil then

9 if v 6∈ Vallocable then

10 Vallocable ← Vallocable ∪ {v}

11 At
v ← At

v ∪ {a}

12 else

13 Update a’s location
14 if a reached the task v it was assigned to then

15 Set a’s status to working on v

16 for v ∈ V do // Phase 2
17 Ct

v ← all agents working on v at time t

18 if v ∈ Vallocable then

19 Πt
v ← list of all agents in At

v sorted by arrival time to v

20 C∗ ← ∅
21 for i← 1 to Πt

v do

22 C∗ ← first i agents in Πt
v

23 λi ← arrival time to v of the i-th agent in Πt
v

24 ϕv ← 0 // amount of wv done at λi

25 for j ← 1 to i− 1 do

26 Cj ← first j agents in Πt
v

27 ϕv ← ϕv + (λj+1 − λj) · u(Cj ∪ Ct
v, v)

28 if (dv − λi) · u(C∗, v) ≥ wv − ϕv then

29 break // C∗ is the minimum coalition to complete v

30 Tv =
⋃

a∈C∗

{

τa→v
λa

}

// λa is a’s arrival time to v

31 Γ ′ ← Γ ′ ∪Θ(Tv) // add Θ(Tv) (Section 2.2) to Γ ′

32 Vallocable ← Vallocable \ {v}

33 if Ct
v 6= ∅ then

34 wv ← wv − u(Ct
v, v)

35 if wv ≤ 0 then

36 Set free all agents in Ct
v

37 V ← V \ {v}

38 t← t + 1

39 until V = ∅ or t > dmax or all agents are free

12 L. Capezzuto et al.

Phase 1 loops through all agents. Here, an agent a may either be free or
reaching a task location. In the first case (line 6), if an uncompleted task v can
be allocated to a (lines 7 − 8), then v is flagged as allocable (line 9) and a is
added to the set of agents At

v to which v could be allocated at time t (line 11). In
the second case (line 12), a is travelling to a task v, hence its location is updated
(line 13) and, if it reached v, it is set to working on v (line 14).

Phase 2 visits each uncompleted task v. If v is allocable (line 18), then it is
allocated to the smallest coalition of agents in At

v (defined in Phase 1) that can
complete it (lines 19 − 32). In particular, at lines 24 − 27, ϕv is the amount of
workload wv done by all the coalitions formed during the arrival to v of the first
i− 1 agents in Πt

v (defined at line 19). After that, if there are agents working
on v (line 33), its workload wv is decreased accordingly (line 34). If wv drops to
zero or below, then v is completed (lines 35 − 37). The algorithm stops (line 39)
when all the tasks have been completed, or the latest deadline is expired, or no
other tasks are allocable and uncompleted (Section 4.1).

4.3 Analysis and discussion

The approach of CCF transforms the CFSTP from a 1-k task allocation to a
series of 1-1 task allocations. In other words, instead of allocating each task to
a coalition of k agents, we have that coalitions are formed by clustering (i.e.,
grouping) agents based on the closest and most urgent tasks. Algorithm 5 runs
in ψ = O(|V |) time, assuming that the operation at line 8 has constant time. In
Algorithm 6, the time complexity of Phase 1 is O(|A| · ψ) = O(|A| · |V |), while

Phase 2 runs in O(|V | · |A|2) because: in the worst case, At
v = A and line 19 sorts

A in Ω(|A| · log |A|) time using any comparison sort algorithm [5]; the loop at

line 21 runs in O(|A|2) time. Since the repeat-until structure is executed at most

dmax times, the time complexity of Algorithm 6 is O(dmax · |V | · |A|2). CCF does
not have the limitations of CFLA+ because:

1. It can allocate at least one task per time. More formally, at each time, if one
or more tasks are allocable, CCF guarantees to find a partial solution with
degree 1 ≤ k ≤ |A|.

2. Each agent is always assigned to the allocable task that is closest and with
the earliest deadline.

3. It runs in polynomial time and does not have a look-ahead phase. Thus, it is
efficient and can be used in open systems.

Theorem 1. CCF is correct.

Proof. We prove by induction on time t.
At t = 0, a task v is selected for each agent a such that v is allocable, the

most urgent and closest to a (Section 4.1). This implies that the agent allocation
τa→v

0 is legal (Section 2.4). Then, Phase 2 of Algorithm 6 (Section 4.2) allocates
v to a only if it exists a coalition C such that |C| is minimum, τC→v

0 is feasible
(Section 2.4) and a ∈ C.

Anytime and Efficient CFSTP 13

At t > 0, for each agent a, there are two possible cases: a task v has been
allocated to a at time t′ < t, or a is free (i.e., idle). In the first case, a is either
reaching or working on v (lines 12 − 15 in Algorithm 6), hence τa→v

t is legal
and τC→v

t is feasible, where a ∈ C. In the second case, a is either at its initial
location or at the location of a task on which it finished working at time t′ < t.
Thus, as in the base case, if it exists a coalition C and a task v such that |C| is
minimum, τC→v

t is feasible and a ∈ C, then v is allocated to a.

As we said above, CCF can allocate between 1 and |A| tasks at each time.
However, its greedy approach does not allow to define the quality of the partial
solution it converges to11, independently of the problem being solved.

In the current literature, no algorithm that solves the CFSTP is simultaneously
anytime, efficient and approximate (Section 1). Consequently, CCF is the first to
have such properties.

5 Empirical evaluation

We implemented CFLA, CFLA+ and CCF in Java12, and replicated the ex-
perimental setup of [25] because we wanted to evaluate how well CFLA+ and
CCF perform in settings where the look-ahead technique is highly effective. For
each test configuration, we solved 100 random CFSTP instances and plotted the
average and standard deviation of: percentage of completed tasks; agent travel
time13; task completion time, or the time at which a task has no workload left;
problem completion time, or the time at which no other tasks can be allocated.

5.1 Setup

Let U(l, u) and U I(l, u) be respectively a uniform real distribution and a uniform
integer distribution with lower bound l and upper bond u. Our parameters are
defined as follows:

– All agents have the same speed.
– The initial agent locations are randomly chosen on a 50 by 50 grid, where

the travel time between two points is given by the Manhattan distance14.
– Tasks are fixed to 300, while agents range from 2 to 40, in intervals of 2

between 2 and 20 agents, and in intervals of 5 between 20 and 40 agents.
– The coalition values are defined as u(C, v) = |C| ·k, where k ∈ U(1, 2). Hence,

coalition values depend only on the number of agents involved, and all tasks
have the same difficulty.

– Deadlines dv ∈ U I(5, 600) and workloads wv ∈ U I(10, 50).

Unlike [25], we set the number of maximum agents to 40, instead of 20,
because it allows, in this setup, to complete all tasks in some instances.

11 That is, we cannot characterise the degree of the partial solution obtained by CCF
before running Algorithm 6.

12 https://git.soton.ac.uk/cmi/gopal/cfstp
13 See Section 2.1.
14 Also known as taxicab metric or ℓ1 norm.

https://git.soton.ac.uk/cmi/gopal/cfstp

14 L. Capezzuto et al.

0 10 20 30 40
0

20

40

60

80

100

Number of agents

C
o
m

p
le

te
d

ta
sk

s
(%

)
(a)

0 10 20 30 40
0

10

20

30

40

Number of agents

A
g
en

t
tr

av
el

ti
m

e

(b)

0 10 20 30 40
10

15

20

25

Number of agents

T
a
sk

co
m

p
le

ti
o
n

ti
m

e

(c)

0 10 20 30 40
200

300

400

500

600

Number of agents

P
ro

b
le

m
co

m
p

le
ti

o
n

ti
m

e

(d)

cfla cfla+ ccf

Figure 1. Tests on instances with 300 tasks and up to 40 agents.

5.2 Results

In terms of completed tasks (Figure 1a), the best performing algorithm for
instances with up to 18 agents is CFLA+, while the best performing algorithm
for instances with at least 20 agents is CCF. CFLA is outperformed by CFLA+

in all instances except those with 2 agents, and by CCF in instances with at
least 10 agents. The reason why the performance of CFLA and CFLA+ does
not improve significantly starting from instances with 20 agents is that the more
agents (with random initial locations) there are, the more tasks are likely to be
grouped by degree15. CFLA+ has a similar trend to CFLA because it has the
same limitations, but it performs better thanks to its improved look-ahead phase.

Regarding agent travel times (Figure 1b), it can be seen that CCF is up to three
times faster than CFLA and CFLA+. This is due to Algorithm 5, which allocates
tasks to agents also based on their proximity. To explain why agent travel times

15 See Limitation 3 described in Section 3.6.

Anytime and Efficient CFSTP 15

increase with all algorithms16, let us consider a toy problem with one agent a1 and
one task v. If we introduce a new agent a2 such that ρ(a2, l

0
a2
, lv) > ρ(a1, l

0
a1
, lv),

then the average travel time increases. In our scenario, this happens because the
initial locations of the agents are random.

In general, task completion times (Figure 1c) decrease because the more
agents there are, the faster the tasks are completed. The completion of task
v is related to the size of the coalition C to which v is allocated: the highest
the completion time, the smallest the size of C, hence the highest the working
time of the agents in C. Task completion times are inversely related to agent
travel times. Since CCF has the smallest agent travel times and allocates tasks
to the smallest coalitions, it consequently has the highest task completion times.
Therefore, in CCF, agents work the highest amount of times, and the number of
tasks attempted at any one time is the greatest.

The problem completion times (Figure 1d) are in line with the task completion
times (Figure 1c) since the faster the tasks are completed, the less time is needed
to solve the problem. The reason why the times of CFLA and CFLA+ do not
decrease significantly from 20 agents up is linked to their performance (see the
discussion on Figure 1a above). On the other hand, the fact that the times of
CCF decrease more consistently than those of CFLA and CFLA+ indicates that
CCF is the most efficient asymptotically. In other words, CCF is likely to solve
large-scale problems in fewer time units than CFLA and CFLA+.

In terms of computational times, CCF is significantly faster than CFLA and
CFLA+. For example, in instances with 40 agents and 300 tasks, on average17

CCF is 45106% ± [2625, 32019] (resp. 27160% ± [1615, 20980]) faster than CFLA
(resp. CFLA+). The run-time improvement of CFLA+ is due to line 4 of
Algorithm 3, thanks to which the look-ahead phase elaborates fewer tasks.

6 Conclusions

In this paper, we proposed two novel approximate algorithms to solve the CFSTP.
The first is CFLA+, an improved version of CFLA, and the second is CCF, which
is the first to be anytime and efficient. CFLA+ can be used in place of CFLA
for small or offline problems, while CCF provides a baseline for benchmarks with
large-scale problems. Given that it significantly outperforms CFLA and is more
applicable than CFLA+, we can consider CCF to be the new state-of-the-art
algorithm to solve the CFSTP.

The limitation of CCF is that it cannot define the quality of of its approxim-
ation (Section 4.3). In particular, the fact that it maximises the agent working
times (Section 5) implies that some agents may take longer to complete some
tasks and therefore might not work on others. Thus, if an optimal solution exists,
CCF cannot guarantee to obtain it.

16 This behaviour is also reported, but not explained, in [25].
17 On a machine with an Intel Core i5-4690 processor (quad-core 3.5 GHz, no hyper-

threading) and 8 GB DDR3-1600 RAM.

16 L. Capezzuto et al.

Future work aims at developing the first anytime and optimal algorithm to
solve the CFSTP. We also want to create distributed versions of CCF and our
future algorithm, to define a large-scale benchmark from real-world datasets and
to test on hard problems generated with the RoboCup rescue simulation.

Acknowledgments

We thank Mohammad Divband Soorati, Ryan Beal and the anonymous reviewers
for their helpful comments and suggestions. This research is sponsored by the
AXA Research Fund. Danesh Tarapore acknowledges support from a EPSRC
New Investigator Award grant (EP/R030073/1).

References

1. Alexander, E.D.: Principles of Emergency Planning and Management. Oxford
University Press (2002)

2. Bogner, K., Pferschy, U., Unterberger, R., Zeiner, H.: Optimised scheduling in
human–robot collaboration–a use case in the assembly of printed circuit boards.
International Journal of Production Research 56(16), 5522–5540 (2018)

3. Chao, I.M., Golden, B.L., Wasil, E.A.: The team orienteering problem. European
Journal of Operational Research 88(3), 464–474 (1996)

4. Coppola, D.P.: Introduction to International Disaster Management. Elsevier (2006)
5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.

MIT press, 3rd edn. (2009)
6. Donald, K.E.: The Art of Computer Programming, Volume 4, Fascicle 2: Generating

All Tuples and Permutations. Pearson Education (2005)
7. Dos Santos, F., Bazzan, A.L.C.: Towards efficient multiagent task allocation in the

robocup rescue: a biologically-inspired approach. AAMAS 22(3), 465–486 (2011)
8. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination

of low-power embedded devices using the max-sum algorithm. In: Proceedings of
the 7th International Conference on Autonomous Agents and Multiagent Systems.
vol. 2, pp. 639–646 (2008)

9. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems
and applications: A survey. JAIR 61, 623–698 (2018)

10. Gallud, X., Selva, D.: Agent-based simulation framework and consensus algorithm
for observing systems with adaptive modularity. Syst. Eng. 21(5), 432–454 (2018)

11. Gell-Mann, M.: The Quark and the Jaguar: Adventures in the Simple and the
Complex. Macmillan (1995)

12. Godoy, J., Gini, M.: Task allocation for spatially and temporally distributed tasks.
In: Proceedings of the 12th International Conference on Intelligent Autonomous
Systems. pp. 603–612. Springer (2013)

13. Hewitt, C.: The challenge of open systems, pp. 383–395. Cambridge University
Press (1990)

14. Horling, B., Lesser, V.: A survey of multi-organizational paradigms. The Knowledge
Engineering Review 19(4), 281–316 (2005)

15. Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A.,
Shimada, S.: Robocup rescue: Search and rescue in large-scale disasters as a domain
for autonomous agents research. In: International Conference on Systems, Man,
and Cybernetics. vol. 6, pp. 739–743. IEEE (1999)

Anytime and Efficient CFSTP 17

16. Koes, M., Nourbakhsh, I., Sycara, K.: Constraint optimization coordination archi-
tecture for search and rescue robotics. In: Proceedings of International Conference
on Robotics and Automation. pp. 3977–3982. IEEE (2006)

17. Korsah, G.A.: Exploring Bounded Optimal Coordination for Heterogeneous Teams
with Cross-Schedule Dependencies. Ph.D. thesis, Carnegie Mellon University (2011)

18. Korsah, G.A., Stentz, A., Dias, M.B.: A comprehensive taxonomy for multi-robot
task allocation. The International Journal of Robotics Research 32(12), 1495–1512
(2013)

19. Krizmancic, M., Arbanas, B., Petrovic, T., Petric, F., Bogdan, S.: Cooperative
aerial-ground multi-robot system for automated construction tasks. IEEE Robotics
and Automation Letters 5(2) (2020)

20. Liu, C., Kroll, A.: Memetic algorithms for optimal task allocation in multi-robot
systems for inspection problems with cooperative tasks. Soft Computing 19(3),
567–584 (2015)

21. Macarthur, K., Farinelli, A., Ramchurn, S., Jennings, N.R.: Efficient, supersta-
bilizing decentralised optimisation for dynamic task allocation environments. In:
International Workshop on Optimization in Multi-Agent systems (OPTMAS). pp.
25–32 (2010)

22. Papadimitriou, C.H.: Computational Complexity. Pearson (1993)
23. Pujol-Gonzalez, M., Cerquides, J., Farinelli, A., Meseguer, P., Rodriguez-Aguilar,

J.A.: Efficient inter-team task allocation in robocup rescue. In: Proceedings of
the 2015 International Conference on Autonomous Agents and Multiagent Systems.
pp. 413–421. International Foundation for Autonomous Agents and Multiagent
Systems (2015)

24. Ramchurn, S.D., Farinelli, A., Macarthur, K.S., Jennings, N.R.: Decentralized
coordination in robocup rescue. The Computer Journal 53(9), 1447–1461 (2010)

25. Ramchurn, S.D., Polukarov, M., Farinelli, A., Truong, C., Jennings, N.R.: Coalition
formation with spatial and temporal constraints. In: Proceedings of the 9th
International Conference on Autonomous Agents and Multiagent Systems. vol. 3,
pp. 1181–1188 (2010)

26. Schwab, K.: The global risks report. Tech. rep., World Economic Forum (2020),
https://www.weforum.org/reports/the-global-risks-report-2020

27. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation.
Artificial Intelligence 101(1-2), 165–200 (1998)

28. Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo, G.C.: Deadline scheduling
for real-time systems: EDF and related algorithms, vol. 460. Springer Science &
Business Media (2013), reprint of the original 1998 edition

29. Tsiligirides, T.: Heuristic methods applied to orienteering. Journal of the Opera-
tional Research Society 35(9), 797–809 (1984)

30. Weiss, G. (ed.): Multiagent systems. MIT press, second edn. (2013)
31. Ye, D., Zhang, M., Sutanto, D.: Self-adaptation-based dynamic coalition formation

in a distributed agent network: A mechanism and a brief survey. IEEE Transactions
on Parallel and Distributed Systems 24(5), 1042–1051 (2013)

32. Zhou, J., Zhao, X., Zhang, X., Zhao, D., Li, H.: Task allocation for multi-agent
systems based on distributed many-objective evolutionary algorithm and greedy
algorithm. IEEE Access (2020)

https://www.weforum.org/reports/the-global-risks-report-2020

	Anytime and Efficient Coalition Formation with Spatial and Temporal Constraints

