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Abstract

There are several statements equivalent to the famous Riemann hy-
pothesis. In 2011, Solé and Planat stated that the Riemann hypothesis
is true if and only if the inequality ζ(2) ·

∏
q≤qn

(1 + 1
q ) > eγ · log θ(qn)

holds for all prime numbers qn > 3, where θ(x) is the Chebyshev
function, γ ≈ 0.57721 is the Euler-Mascheroni constant, ζ(x) is the
Riemann zeta function and log is the natural logarithm. In this note,
using Solé and Planat criterion, we prove that the Riemann hypothesis
is true.
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1 Introduction

The Riemann hypothesis is the assertion that all non-trivial zeros have real
part 1

2 . It is considered by many to be the most important unsolved prob-
lem in pure mathematics. It was proposed by Bernhard Riemann (1859).
The Riemann hypothesis belongs to the Hilbert’s eighth problem on David
Hilbert’s list of twenty-three unsolved problems. This is one of the Clay
Mathematics Institute’s Millennium Prize Problems. In mathematics, the
Chebyshev function θ(x) is given by

θ(x) =
∑
q≤x

log q

with the sum extending over all prime numbers q that are less than or
equal to x, where log is the natural logarithm. Leonhard Euler studied the
following value of the Riemann zeta function (1734).

Proposition 1.1. It is known that[1, (1) pp. 1070]:

ζ(2) =

∞∏
k=1

q2k
q2k − 1

=
π2

6
,
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where qk is the kth prime number (We also use the notation qn to denote
the nth prime number).

Franz Mertens obtained some important results about the constants B
and H (1874). We define H = γ − B such that B ≈ 0.2614972128 is the
Meissel-Mertens constant and γ ≈ 0.57721 is the Euler-Mascheroni con-
stant [4, (17.) pp. 54].

Proposition 1.2. We have [2, Lemma 2.1 (1) pp. 359]:

∞∑
k=1

(
log(

qk
qk − 1

)− 1

qk

)
= γ −B = H.

In mathematics, Ψ(n) = n ·
∏

q|n

(
1 + 1

q

)
is called the Dedekind Ψ func-

tion, where q | n means the prime q divides n. We say that Dedekind(qn)
holds provided that ∏

q≤qn

(
1 +

1

q

)
>

eγ

ζ(2)
· log θ(qn).

Next, we have Solé and Planat Theorem:

Proposition 1.3. Dedekind(qn) holds for all prime numbers qn > 3 if and
only if the Riemann hypothesis is true [6, Theorem 4.2 pp. 5].

There are several statements out from the Riemann hypothesis condition.

Proposition 1.4. Unconditionally on Riemann hypothesis, there are in-
finitely many prime numbers qn such that Dedekind(qn) holds [6, Theo-
rem 4.1 pp. 5].

The following property is based on natural exponentiation:

Proposition 1.5. [3, pp. 1]. For x < 1.79:

ex ≤ 1 + x+ x2.

Putting all together yields a proof for the Riemann hypothesis using the
Chebyshev function.

2 What if the Riemann hypothesis were false?

Several analogues of the Riemann hypothesis have already been proved.
Many authors expect (or at least hope) that it is true. However, there are
some implications in case of the Riemann hypothesis might be false.
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Lemma 2.1. If the Riemann hypothesis is false, then there are infinitely
many prime numbers qn for which Dedekind(qn) fails (i.e. Dedekind(qn)
does not hold).

Proof. The Riemann hypothesis is false, if there exists some natural number
x0 ≥ 5 such that g(x0) > 1 or equivalent log g(x0) > 0:

g(x) =
eγ

ζ(2)
· log θ(x) ·

∏
q≤x

(
1 +

1

q

)−1

.

We know the bound [6, Theorem 4.2 pp. 5]:

log g(x) ≥ log f(x)− 2

x

where f was introduced in the Nicolas paper [5, Theorem 3 pp. 376]:

f(x) = eγ · log θ(x) ·
∏
q≤x

(
1− 1

q

)
.

When the Riemann hypothesis is false, then there exists a real number
b < 1

2 for which there are infinitely many natural numbers x such that
log f(x) = Ω+(x

−b) [5, Theorem 3 (c) pp. 376]. According to the Hardy and
Littlewood definition, this would mean that

∃k > 0, ∀y0 ∈ N,∃y ∈ N (y > y0) : log f(y) ≥ k · y−b.

That inequality is equivalent to log f(y) ≥
(
k · y−b · √y

)
· 1√

y , but we note

that
lim
y→∞

(
k · y−b · √y

)
= ∞

for every possible positive value of k when b < 1
2 . In this way, this implies

that

∀y0 ∈ N,∃y ∈ N (y > y0) : log f(y) ≥ 1
√
y
.

Hence, if the Riemann hypothesis is false, then there are infinitely many
natural numbers x such that log f(x) ≥ 1√

x
. Since 2

x = o( 1√
x
), then it would

be infinitely many natural numbers x0 such that log g(x0) > 0. In addition,
if log g(x0) > 0 for some natural number x0 ≥ 5, then log g(x0) = log g(qn)
where qn is the greatest prime number such that qn ≤ x0. Actually,∏

q≤x0

(
1 +

1

q

)−1

=
∏
q≤qn

(
1 +

1

q

)−1

and
θ(x0) = θ(qn)

according to the definition of the Chebyshev function.
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3 Central Lemma

Lemma 3.1.

∞∑
k=1

(
1

qk
− log(1 +

1

qk
)

)
= log(ζ(2))−H.

Proof. We obtain that

log(ζ(2))−H = log(
∞∏
k=1

q2k
q2k − 1

)−H

=
∞∑
k=1

(
log(

q2k
(q2k − 1)

)

)
−H

=

∞∑
k=1

(
log(

q2k
(qk − 1) · (qk + 1)

)

)
−H

=

∞∑
k=1

(
log(

qk
qk − 1

) + log(
qk

qk + 1
)

)
−H

=

∞∑
k=1

(
log(

qk
qk − 1

)− log(
qk + 1

qk
)

)
−H

=

∞∑
k=1

(
log(

qk
qk − 1

)− log(1 +
1

qk
)

)
−

∞∑
k=1

(
log(

qk
qk − 1

)− 1

qk

)

=

∞∑
k=1

(
log(

qk
qk − 1

)− log(1 +
1

qk
)− log(

qk
qk − 1

) +
1

qk

)

=

∞∑
k=1

(
1

qk
− log(1 +

1

qk
)

)
by Propositions 1.1 and 1.2.

4 A New Criterion

Theorem 4.1. Dedekind(qn) holds if and only if the inequality

∞∑
k=1

(
1

qk
− (χ{x: x>qn}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn)

is satisfied for the prime number qn, where the set S = {x : x > qn}
contains all the real numbers greater than qn and χS is the characteristic
function of the set S (This is the function defined by χS(x) = 1 when x ∈ S
and χS(x) = 0 otherwise).
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Proof. When Dedekind(qn) holds, we apply the logarithm to the both sides
of the inequality:

log(ζ(2)) +
∑
q≤qn

log(1 +
1

q
) > γ + log log θ(qn)

log(ζ(2))−H +
∑
q≤qn

log(1 +
1

q
) > B + log log θ(qn)

∞∑
k=1

(
1

qk
− log(1 +

1

qk
)

)
+
∑
q≤qn

log(1 +
1

q
) > B + log log θ(qn)

after of using the Lemma 3.1. Let’s distribute the elements of the previous
inequality to obtain that

∞∑
k=1

(
1

qk
− (χ{x: x>qn}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn)

when Dedekind(qn) holds. The same happens in the reverse implication.

5 The Main Insight

Theorem 5.1. The Riemann hypothesis is true if the inequality

θ(qn+1) ≥ θ(qn)
1+ 1

qn+1

is satisfied for all sufficiently large prime numbers qn.

Proof. For large enough prime qn, if Dedekind(qn+1) holds then

∞∑
k=1

(
1

qk
− (χ{x: x>qn+1}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn+1)

by Theorem 4.1. That is equivalent to

∞∑
k=1

(
1

qk
− (χ{x: x>qn}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn+1)− log(1 +

1

qn+1
)

after subtracting the value of log(1 + 1
qn+1

) to the both sides. Thus,

∞∑
k=1

(
1

qk
− (χ{x: x>qn}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn) +

(
log log θ(qn+1)− log log θ(qn)− log(1 +

1

qn+1
)

)
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since log log θ(qn)− log log θ(qn) = 0. If we obtain that(
log log θ(qn+1)− log log θ(qn)− log(1 +

1

qn+1
)

)
≥ 0

then

∞∑
k=1

(
1

qk
− (χ{x: x>qn}(qk)) · log(1 +

1

qk
)

)
> B + log log θ(qn)

which means that Dedekind(qn) holds by Theorem 4.1. Hence, it is enough
to guarantee that(

log log θ(qn+1)− log log θ(qn)− log(1 +
1

qn+1
)

)
≥ 0

to assure that Dedekind(qn) holds for a large enough prime number qn when
Dedekind(qn+1) holds. Since there are infinitely many prime numbers qn+1 >
5 such that Dedekind(qn+1) holds, then we can guarantee that Dedekind(qn)
holds as well when(

log log θ(qn+1)− log log θ(qn)− log(1 +
1

qn+1
)

)
≥ 0

by Proposition 1.4. Furthermore, if the inequality(
log log θ(qn+1)− log log θ(qn)− log(1 +

1

qn+1
)

)
≥ 0

holds for all pairs (qn, qn+1) of consecutive large enough primes such that
qn < qn+1, then we can confirm that Dedekind(qn) always holds for all large
enough prime numbers qn by Theorem 4.1. As result, if the inequality(

log log θ(qn+1)− log log θ(qn)− log(1 +
1

qn+1
)

)
≥ 0

is satisfied for all sufficiently large prime numbers qn, then there won’t ex-
ist infinitely many prime numbers qn such that Dedekind(qn) fails and so,
the Riemann hypothesis must be true by Lemma 2.1. Let’s distribute the
elements of the previous inequality to obtain that

θ(qn+1) ≥ θ(qn)
1+ 1

qn+1 .
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6 The Main Theorem

Theorem 6.1. The Riemann hypothesis is true.

Proof. The Riemann hypothesis is true when

θ(qn+1) ≥ θ(qn)
1+ 1

qn+1

is satisfied for all sufficiently large prime numbers qn because of the Theorem
5.1. That is the same as

e ≥ e
log θ(qn)

log θ(qn+1)
·
(
1+ 1

qn+1

)

since x
1

log x = e for x > 1. In addition,

e
log θ(qn)

log θ(qn+1) ≤ 1 +
log θ(qn)

log θ(qn+1)
+

(
log θ(qn)

log θ(qn+1)

)2

since log θ(qn)
log θ(qn+1)

< 1.79 by Proposition 1.5. Hence, it is enough to show that

e

(
1− 1

qn+1+1

)
≥ 1 +

log θ(qn)

log θ(qn+1)
+

(
log θ(qn)

log θ(qn+1)

)2

.

Using the same Proposition 1.5, we notice that

e≫
(
1 +

1

qn+1 + 1
+

1

(qn+1 + 1)2

)
·

(
1 +

log θ(qn)

log θ(qn+1)
+

(
log θ(qn)

log θ(qn+1)

)2
)

holds as long as the prime number qn+1 gets larger and larger, where ≫
means “much greater than”. Consequently, the inequality

θ(qn+1) ≥ θ(qn)
1+ 1

qn+1

is satisfied for all sufficiently large prime numbers qn and therefore, the
Riemann hypothesis is true.

7 Conclusions

Practical uses of the Riemann hypothesis include many propositions that are
known to be true under the Riemann hypothesis and some that can be shown
to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothe-
sis is closely related to various mathematical topics such as the distribution
of primes, the growth of arithmetic functions, the Lindelöf hypothesis, the
Large Prime Gap Conjecture, etc. Certainly, a proof of the Riemann hy-
pothesis could spur considerable advances in many mathematical areas, such
as number theory and pure mathematics in general.
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