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Abstract. Automation is necessary since traditional EEG assessments are 

tedious and time-consuming, particularly the outpatient kind. For this 

manuscript, the researchers focused on constructing a three-class EEG 

classifier using FeExt and RBFNN, which stands for Radial Basis 

Functional Neural Network. If FeExt is finished, RBFnn may be trained to 

equally recognize the trends. Seizure signals are one of the various 

anomalies that may be identified using the EEG signal. Stable, interactive, 

and seizure signals are the three different types of EEG signals. This 

manuscript's goal is to classify EEG signals using RBFnn. EEG signal data 

were relied on the CHB-MIT Scalp EEG dataset. There are 55 various 

FeExt schemes investigated, and a classifier is constructed that is relatively 

quick and accurate. The 10 morphological features of the literature were 

not explored or compared with the extraction techniques. According to 

research, the multilayer perceptron with momentum learning rule is the 

best classifier topology, and the FeExt algorithms PCA, Bi-gonal 2.2, coif1, 

DCT, db9, Re-Bi-gonal 1.1, and sym2 perform better than others. The 

recorded results may be effectively classified for EEG rhythm for quick 

examination by a neurology professional. Therefore, quick, accurate 

diagnosis that saves time. Using a similar method, the EEG rhythm 

categorization for other brain illnesses may be used. 
 

Keywords: Electroencephalogram (EEG), Radial Basis Functional Neural 

Network (RBFnn), EEG rhythm Classifier. 
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EEG analysis forms the basis of brain disease (Neurons disease) diagnosis and is preferred 

since it is non-invasive, reliable, and less costly than other methods. It utilized to analyze 

the activity of the brain by cerebral waves recording that setting the head electrodes along 

the scalp. Diagnoses consistent with EEG are typically performed manually by 

practitioners of medicine. The key challenge in diagnosing brain failure is to evaluate each 

EEG rhythm and to correlate the distortions found in different brain diseases [1][20]. Due 

to irregular brain signal can occur spontaneously, monitoring a (24-hour/7 days) EEG 

signal becomes very repetitive and time-consuming since it can involve massive of EEG 

signals. It is therefore required to automate the entire EEG signals classification process 

and preferably diagnose these signals accurately [2][21]. Each scalp area produces waves 

that allow reflecting the cerebral-health status. The EEG analysis shows many anomalies 

in reported signal waves in the case of diseases. In order to facilitate clinical diagnosis, the 

detection of these anomalies helps the physician to estimate the disorder and its level. This 

process can be also used in biomedical researches to investigate cerebral disease 

characteristics. The major problem associated with EEG analysis is the amount of EEG 

signals available, especially for ambulatory EEG and the inter-patient variation in the 

morphology of the EEG signals. It becomes a time-consuming task for classifying/ 

separating the EEG signal and is also prone to errors induced by manual intervention. This 

manuscript describes the design of an automated EEG classifier [3][22]. Three types of 

EEG signals are considered here, healthy, interictal, and seizure signals. The EEG data 

were collected from the database of CHB-MIT Scalp EEG database. Generally,  the FeExt 

schemes of Transform and morphological are mostly preferred. The three transformation 

mechanisms are discussed with three other morphological FeExt in this manuscript: DFT, 

PCA, and DWT [4][23]. Average classification accuracy exceeding 98.2 percent was 

reached by the classifier. The methodology of the proposed system begins from The 

EEG data is collecting from the CHB-MIT Scalp EEG dataset. forty-one different 

feature extraction schemes are examined, along with a compact set of statistical 

morphological features and a reasonably accurate and fast classifier is designed. Ten 

morphological features and these feature extraction methods have not yet been 

thoroughly examined and compared in the literature. The bipolar EEG channels 

were selected for analysis. The EEG data used in our study were from different 

patients ( 24-h EEG recorded ) from both epileptic patients and normal subjects.  

Digitized data were stored on an optical disc for further processing. 
 

The manuscript was organized as follows:  Section two, The Description of Dataset 

was introduced.  Section Three, Literature of the Related Works. Changing The 

Features of the Domain was presented in Section Four.  Findings and Discussion, are 

described in Section Five.  And finally, in Section Six, The Conclusion was presented. 



 
Fig. 1. The Proposed System Structure 

2 The Description of Dataset  

This manuscript utilized the CHB-MIT Scalp EEG database. The portable wireless 

headset Emotive is utilized by the Brain-Computer Interfaces (BCI) applied in this work. 

In total, “16 Sensors”, “2 Reference Signals and 14 Channels” are available: “AF3, F7, 

F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4”[5]. Fig. 1 depicts the Emotive 

headset showing the proper placement of its electrodes. The sensors are pre-dampened 

with a saline solution, then applied to the scalp according to the 10-20 international 

standard as shown in Fig. 2 [6]. The headset’s 14 channels are sampled at a rate of 128 

Hz, then digitized with a 14-bit-per-sample resolution before being applied to a built-in 

fifth-order Butterworth digital filter that cuts-off frequencies above 64 Hz.  Furthermore, 

two notch filters suppress the interference of 50/60 Hz caused by the power lines [7]. All 

the resulted sensor signals are included in the 0.2 to 64 Hz frequency band and are 

transmitted wirelessly via a proprietary encoding/modulation on a 2.4 GHz carrier to a 

USB module on the PC [8]. In Fig. 2, the first two sensor readings are the left front sensor 

(AF3 and F7) and the right front sensor (AF4 and F4) are the last two sensor readings. 

Blinks impact the frontal sensors mainly. Two involuntary blinks occur, seen in the 

signals as sharp rises and falls. Voluntary continuous blinking can easily be detected at the 

end of the signal [9]. 

 



 
 

Fig. 2. Separation of EEG Epoch Sample Showing 2- Involuntary Blinks of the Eye Followed by a 

Voluntary One's Series. (A) An 8-s EEG Signals, (B) 14-Channel of EEG Signals, (C) Calculated 

Thresholds for the 14 Channels (First and Eighths were Classified as Art factual Components), (D) 

Extracted Involuntary Eye Blink Features of 14-Channel Signals. 

 

EEG signals utilized in the manuscript was collected from this data set consisting of  5-

sets, such as “Group A”, “Group B”, “Group C”, “Group D”, and “Group E”, obtained 

accord the following:  “Group (A)” to “Group (B)”: This consists of a normal EEG signal 

with eyes open / close, respectively. “Group (C)” to “Group (D)”: During the seizure-free 

hemisphere formation interval of the brain's hemisphere, EEG is recorded. (i.e. Inter Ictal 

(in Latin,) (Seizure in English). “Group (E)”: here, EEG during seizure disorder shall be 

recorded (i.e. Ictal)[10]. 

3 Literature Related Works 

This part includes a thorough discussion with many other machine learning classifiers 

previous similar studies on functional extraction using linear and nonlinear approaches. 

Many epileptic seizure identification methods according to linearity and non-linearity of 

EEG signals [11] have currently been published. Function extraction strategies are crucial 

to differentiating between non-seizure, seized and normal EEG behavior with machine 

learning algorithms in the methods that these studies suggest. This includes extraction of 

the subband frequency, analyzing the entropy, utilize of wavelet degradation, biggest 

exponent from Lyapunov, fractal estimation, exponent Hurst and cumulative-high-order. 

Kumar et al. [12] has recently suggested fuzzy approximate entropy (fApEn) and 

extraction method of EEG dependent WT. Studies have suggested method of overcoming 

a classic wavelet transformation computational load, as stated by Chen et al. [13] for 

epileptic seizure behavior classification, RBFnn and logistic regression. In addition, the 

epileptic seizer events were categorized by the utilize of RBFnn and logistic regression.  

Kumar et al. [14] and the SVN for functional classification recently reported fApEn 

method. EEG was breaking up into subbands of discreet wavelet transforms then 

measured for the disorderly behavior of EEG signals by fApEN of each subband. The 

authors along with the RBF have recorded highest rating precision with the SVN 

classifier. The literature review showed that most experiments of signal processing 



techniques and machine learning strategies for seizure activities were not able to achieve 

optimal outcomes seizure-free signals of the EEG or from seizure-free EEG activity from 

stable EEG data. FeExt of EEG is further helpful in classifying, recognizing patterns and 

detecting events. Hand-designed EEG extraction techniques cause poor analysis. 

Recurring auto encoders FeExt for EEG are then utilized [15]. Also, the echo-state 

network  FxExt  offers better grading and clustering. The classification of motor imaging 

is based on b and l spatial rhythm distribution. Gradient descent and recursive techniques 

of classification offer less precision and pace. Consequently, the EEG classification is 

performed by the Multilayer Perceptron Neural Network (MLP-NN) [16]. The speed and 

the accuracy of the convergence are measured and matched the metaheuristic algorithm 

efficiency. Neurocognitive ability is the human's mental/cognitive potential and is utilized 

for research on neurology. The Neuro-cognitive effect is sleep scoring. The recurring 

neural network [17] with the utilize of long-term memory-blocks increase the accuracy of 

the classification involves sleep labeling, non-fast movement of the eyes and phase N1 in 

sleep, this mean a transition between drowsiness/wakefulness. Deep learning is utilized 

for the detection of temporal dependency in EEG [18].  For capturing high-level trends in 

EEG, LSTM [19] will be utilized. LSTM utilizes  a fully linked layer for extracting stable, 

epileptic features and Softmax-layer for the extraction of expected output labels, and it 

also maintains a high detection efficiency in the detection of devices, such as eyes and 

muscles movements, and background noises in captured EEG, etc. The transformation 

between sleep periods in the EEG and extracting its features of the time-invariant are 

some of the main difficulties. In [20], the authors utilized bidirectional methods CNN and 

LSTM to pass features accurate and F1 values for different data sets, contrasting their 

findings and various neural network techniques with statistics. 
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4 Changing The Features of the Domain 

In changing domains, signals may be properly represented. There are a number of benefits 

to representing a signal in morphing domains, including as Frequency domain 

representation decreases the size of the input vector by removing irrelevant or superfluous 



information, which is particularly advantageous when using signal neural network 

architectures, compression for effective data storage, and noise reduction [21]. In the 

literature, there is a lot of use of transforms such the DFT, DCT, PCA, and DWT in 

combination with the EEG. Only major transform domain components, such as signal 

shape, may be maintained without considerable information loss. The parameters used to 

pick features were 99 percent signal energy retention and percent root mean difference. 

These components are then used to create the training input vector for the RBFnn [22]. 

Table 1. Examining the performance of several RBFnn models 

 

RBFnn 

Model 

Best Configuration Fusibility 

Accuracy 

(%) 

Standard 

Accuracy 

(%) 

Stroke 

Accuracy 

(%) 

Average 

Accuracy 

(%) 

Time/standard/1000Epochs 

seconds) 

 MLP Single hidden layer, 

10 Hidden Layer 

neurons, Momentum 

learning 

90.33 

 

90.88 

 

93.55 

 

91.173336 

 

25.981 

 

SOFM 8 x 8 size of the 

Mapping  

89 94.98 88.87 89.3445545 305.119 

RBF 50 clusters, kernel 

adatron 

 

89.33 

 

91.18 

 

88.66 

 

95.522251 

 

371.223 

 

SVN Null 91 93.27 91 98.246346 610 

 

5 Findings and Discussion 

Table 2 lists the results of all the schemes' performance. The performances of each 

transform category are assessed in terms of percent average accuracy, percent stroke 

accuracy, and optimum data pre-processing time in order to narrow the search for 

the best strategy. Bi gonal 2.2, coif1, db9, Re_ Bi gonal 1.1, sym2, DCT, and PCA are 

the schemes that perform better. In the case of FFT, however, the data pre-

processing time for various transformations is shown in Fig. 3. Transforms like FFT, 

DCT, PCA, and DWT may be used to FeExt for RBFnn-based pattern categorization 

of EEG signals. EEG signal amplitude, Mean Power Spectral Density (MPSD), Peaks 

distance, Energy of the Signal, Peaks area, Singular Decomposition Value (SVD), 

Area under the auto-correlation curve, and signal interval are just a few of the 

statistical morphological features that can be used with RBFnn-based EEG 

classification. This collection of statistical characteristics is small, and the results are 

represented in a feature vector with a decreased dimension. 

 



 
 

Fig. 3.  Pre-processing Time consumed by best-performing schemes. 

 

Table 2. The identifications of the Patients (P_ID) in the Health Status (H_St) may be 0=Healthy, or 

1 Non-Healthy. 

 
P_ID H_St P_ID H_St  P_ID H_St P_ID H_St P_ID H_St P_ID H_St 

1 1 11 1 21 1 31 0 41 0 51 0 

2 1 12 1 22 1 32 0 42 0 52 0 

3 1 13 1 23 1 33 0 43 0 53 0 

4 1 14 1 24 1 34 0 44 0 54 0 

5 1 15 1 25 1 35 0 45 0 55 0 

6 1 16 1 26 1 36 0 46 0 - - 

7 1 17 1 27 1 37 0 47 0 - - 

8 1 18 1 28 1 38 0 48 0 - - 

9 1 19 1 29 1 39 0 49 0 - - 

10 1 20 1 30 1 40 0 50 0 - - 

 
Table 3.  The effectiveness of different FeExt systems 

 

Sr. 

No. 

Structure of 

FeExt 

Number 

of Nuron 

in 

Hidden 

Layer 

Accuracy 

of the 

Average 

(%) 

Number 

of 

Nuron 

in 

Hidden 

Layer 

Stroke 

Accuracy 

(%) 

Preprocessing-

Data Time 

1 Bi_gonal 

1.1 

31 94.25667 27.85 94.75 27.68604 

2 Bi_gonal 

1.3 

22 94.02333 23.85 94.45 28.41851 

3 Bi_gonal 

1.5 

38 94.12333 38.85 94.35 29.08835 

4 Bi_gonal 

2.2 

46 94.42333 13.85 94.55 29.11511 

5 Bi_gonal 

2.4 

22 94.05667 30.85 94.55 29.49316 

6 Bi_gonal 

2.6 

23 93.99 14.85 94.25 30.15026 



7 Bi_gonal 

2.8 

30 94.22333 15.85 94.45 30.84684 

8 Bi_gonal 

3.1 

15 94.32333 18.85 94.35 30.6519 

9 Bi_gonal 

3.3 

43 94.02333 18.85 94.25 31.26219 

10 Bi_gonal 

3.5 

29 94.29 29.85 94.45 31.87712 

11 Bi_gonal 

3.7 

29 94.35667 20.85 94.65 32.5647 

12 Bi_gonal 

3.9 

25 93.99 34.85 94.35 33.17013 

13 Bi_gonal 

4.4 

34 94.02333 34.85 94.55 33.47596 

14 Bi_gonal 

5.5 

13 93.95667 13.85 94.25 34.04615 

15 Bi_gonal 

6.8 

23 94.05667 1.85 94.25 35.06008 

16 coif1 29 94.15667 7.85 94.55 22.83888 

17 coif2 5 93.99 18.85 94.15 23.55712 

18 coif3 23 94.05667 23.85 94.35 24.37332 

19 coif4 38 93.95667 38.85 94.25 25.27603 

20 coif5 19 93.95667 18.85 94.25 26.30116 

21 db1 24 94.25667 11.85 94.75 22.03059 

22 db2 37 94.15667 37.85 94.65 22.57694 

23 db3 20 94.22333 28.85 94.75 23.09459 

24 db4 23 94.22333 17.85 94.75 23.52142 

25 db5 14 94.15667 15.85 94.65 24.12922 

26 db6 16 94.22333 2.85 94.55 24.59219 

27 db7 7 94.12333 11.85 94.55 25.08093 

28 db8 41 94.05667 35.85 94.45 25.55431 

29 db9 19 94.35667 19.85 94.65 27.41787 

30 db10 46 93.50111 46.85 93.08 26.94038 

31 Re_ 

Bi_gonal 

1.1 

6 94.29 17.85 94.75 27.68604 

32 Re_ 

Bi_gonal 

1.3 

32 94.09 24.85 94.45 29.72013 

42 Re_ 

Bi_gonal 

3.9 

2 93.82333 8.85 94.05 34.3755 

43 Re_ 

Bi_gonal 

4.4 

18 93.99 22.85 94.55 34.22256 

44 Re_ 

Bi_gonal 

5.5 

4 93.95667 4.85 94.45 34.818 

45 Re_ 

Bi_gonal 

6.8 

3 93.99 34.85 94.35 35.81682 

46 sym2 27 94.22333 27.85 94.55 23.02003 

7 sym3 26 94.15667 20.85 94.75 23.45988 

48 sym4 21 94.09 22.85 94.65 23.80114 

54 FFT 17 94.59 17.85 94.85 129.2217 

55 PCA 20 94.12333 17.85 94.15 6.036395 

6 Conclusion 

RBFnn model consisting of single-layer MLP with momentum learning was found to 

perform best concerning average accuracy, stroke accuracy, and training time. It was 

confirmed that a minimum of 200 rhythm/class is sufficient to train the classifier. This 



experimentation is important since it highlights the power of the RBFnn model to learn 

from a comparatively small amount of data. This is a welcome result that entails the 

possibility of a patient, adaptable (customizable) diagnostic system. 

Upon experimenting with 55 different combinations of feature vector formation for the 

three-class problem, it was found that the best-performing schemes in terms of percentage 

average accuracy, percentage stroke accuracy, and low data pre-processing time are: DCT, 

Bi_gonal 2.2, coif1, PCA, Re_ Bi_gonal 1.1, sym2, and db9 with the combinations often 

statistical morphological features each. PCA is a good candidate for FeExt since it offers 

good accuracy as well as a compact feature set. 
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