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Abstract—In this paper, a robust labeled multi-Bernoulli
(RLMB) filter for the multi-target tracking (MTT) scenarios
with inaccurate and time-varying process and measurement
noise covariances is proposed. The process noise covariance and
measurement noise covariance are modeled as inverse Wishart
(IW) distributions, respectively. The state together with the
predicted error and measurement noise covariances are inferred
based on the variational Bayesian (VB) inference. Moreover, a
closed-form implementation of the proposed RLMB filter is given
for linear Gaussian system and the predictive likelihood function
is calculated by minimizing the Kullback-Leibler (KL) divergence
by the VB lower bound. Simulation results illustrate that the
proposed RLMB filter outperforms the existing LMB filter in
the tracking performance.

Index Terms—variational Bayesian, labeled multi-Bernoulli
filter, inverse Wishart distribution, inaccurate noise covariances,
multi-target tracking

I. INTRODUCTION

The finite set statistics (FISST) contributes a rigorous statis-
tical theoretical framework for studying multi-target tracking
problems. In this framework, the multi-target tracking problem
is described as estimating the set values of the target state
set and the measurement set, which are modeled as random
finite sets (RFSs), respectively. FISST directly extends the
Bayesian recursion formula for single-target tracking to multi-
target tracking problems, unifying the mathematical forms
of single-target tracking and multi-target tracking. Because
of the complexity of the joint probability distribution and
multiple integrals of multiple target states, some principled
approximations have been proposed. Mahler proposed the
probability hypothesis density (PHD) filter in [1], which is
a recursive filter that propagating the first-order moments of
multi-target. Subsequently, Mahler proposed the cardinality
PHD (CPHD) filter [2], which is a generalization of the PHD
filter. In the recursive process of the CPHD filter, the posterior
PHD of states and posterior distributions of the number of
targets are calculated and propagated simultaneously, so it
has a better performance than the PHD filter. The multi-
target multi-Bernoulli (MeMBer) filter utilizes independent
Bernoulli process to represent and handle the multi-target
tracking problem [3]. Vo et al. proved that the MeMBer filter
has some problems in estimating the cardinality of targets, and
an advanced approach named cardinality-balanced MeMBer
(CBMeMBer) filter is proposed in [4].

Since the elements in the multi-target state set and the
measurement set are out of order, the above-mentioned filters
cannot directly obtain the multi-target tracks. To solve this
problem, Vo et al. generalized the concept of RFS to labeled
RFS by augmenting the target state with a label variable that
can distinguish target identity, whats more, the rigorous δ-
generalized labeled multi-Bernoulli (δ-GLMB) filter [5], [6]
was derived under the framework of multi-target Bayesian fil-
tering. Reuter et al. utilized a first-order approximate matching
model to approximate the GLMB posterior distribution to the
labeled multi-Bernoulli (LMB) distribution, and then proposed
the LMB filter [7], which is an efficient implementation
method of the δ-GLMB filter.

In the traditional MTT filters implementation method, the
process noise covariance and measurement noise covariance
are usually described as two given variables through heuris-
tics, which are generally used to describe model uncertainty.
However, in practical MTT applications, the accurate prior
knowledge about process noise covariance and measurement
noise covariance is usually unknown and time-varying. Heuris-
tic process noise covariance and measurement noise covariance
prior statistics are likely to cause large tracking errors or even
filter divergence [8].

The VB approximation is not only used to compute the
approximate posterior for which analytical solution does not
exist, but also is employed in the situations, where the s-
tatistics of measurement noise is unknown [9], [10], [11],
[12]. Therefore, VB approximation is introduced into RFS
framework to deal with the MTT problem with unknown noise
statistical characteristics. Adaptive PHD filters based on VB
were proposed in [13], [14], [15], [16]. In [17] and [18],
the VB approach was extended to the CBMeMBer filter. To
improve performance in low signal-to-noise ratio situations,
[19], [20] and [21] introduced the VB approach into the δ-
GLMB filter and LMB filter framework, respectively.

However, the aforementioned VB multi-target filter is on-
ly suitable for MTT scenarios with unknown measurement
noise covariance by choosing appropriate conjugate prior
distributions. Multi-target filters for unknown process noise
covariance still present a great challenge, because process
noise covariance does not appear in a direct conjugate prior
form like measurement noise. Ardeshiri et al. [22] presented
a batch-processing VB algorithm for joint estimation of the



dynamic system state, the measurement noise covariance and
the process noise covariance, with the noise covariance matri-
ces being identified off-line. Instead of estimating the process
noise covariance matrix directly, Huang et al. [23] proposed a
novel VB adaptive Kalman filter in which the inverse Wishart
distribution was used as a prior for the predicted error covari-
ance and measurement noise covariance. The approach of [23]
is an on-line recursive method but it needs a nominal process
noise covariance matrix at each time step as the parameter of
the algorithm. Moreover, Ma et al. [24] developed a novel VB
based adaptive Kalman filter for state estimation with unknown
process noise covariance by introducing a new latent variable.
To the best of our knowledge, it is always a challenge to
design a MTT filter in the presence of unknown process noise
covariance and unknown measurement noise covariance.

In this paper, a robust LMB (RLMB) filter with inaccurate
process noise covariance and measurement noise covariance
is proposed. Simulation experiments show that the proposed
algorithm has stronger robustness and target tracking accuracy
than the existing LMB filters.

The rest of this paper is organized as follows. Section II
presents a brief description of the background for the LMB
RFS and the RLMB filter. The closed-form implementation of
the proposed RLMB filter is given in Section III. Numerical
results and analyses are illustrated in Section IV, and finally,
the conclusions are given in Section V.

II. BACKGROUND

A. Problem Formulation

Consider the following discrete-time linear stochastic sys-
tem as shown by the state-space model

xk = Fk|k−1xk−1 + wk−1 (1)

zk = Hkxk + vk (2)

where xk ∈ Rn is the state vector, zk ∈ Rm is the
measurement vector, k is the discrete time index, Fk|k−1 is
the state transition matrix, Hk is the measurement matrix;
wk−1 ∼ N (·; 0, Qk−1) and vk ∼ N (·; 0, Rk) are the Gaussian
process and measurement noises with zero mean and covari-
ances Qk−1 and Rk, respectively, and they are independent of
each other. The prior distribution of the initial state vector x0 is
assumed to be a Gaussian distribution with mean vector x̂0 and
covariance P0, which can be denoted as x0 ∼ N (xk; x̂0, P0).

To illustrate the problem, the above dynamic model and
measurement model can be expressed in the form of the
probability density function (PDF) as shown below

p(xk|xk−1) = N (xk;Fk|k−1xk−1, Qk−1) (3)

p(zk|xk) = N (zk;Hkxk, Rk) (4)

where N (·;µ,Σ) denotes the Gaussian PDF with mean µ
and corresponding covariance Σ, and p(xk|xk−1) is the state
transition PDF, p(zk|xk) is the likelihood PDF. The one-step

predicted PDF can be obtained by the following approximate
method, and the result is also a Gaussian distribution, i.e

p(xk|z1:k−1) = N (xk|x̂k|k−1, Pk|k−1) (5)

where x̂k|k−1 = Fk|k−1x̂k−1 is the predicted state vector,
Pk|k−1 is the prediction error covariance, which can be cal-
culated by

Pk|k−1 = Fk|k−1Pk−1F
T
k|k−1 +Qk−1 (6)

where [·]T represents the transpose operator, and x̂k−1 and
Pk−1 are respectively the state estimation vector and corre-
sponding estimation error covariance at time k − 1.

In target tracking applications, the true process noise co-
variance Qk−1 and measurement noise covariance Rk are
usually unknown and time-varying. For unknown Rk, the
approximate value is commonly obtained by VB inference.
However, since Qk−1 appears in the prediction step of Kalman
filter and the available information is very limited, similar
method cannot be used to obtain approximation Qk−1. It
can be seen from formula (6) that an inaccurate Qk−1 will
result in an inaccurate Pk|k−1. For the above reasons, the
inverse Wishart (IW) distribution [26] [27] was selected as
the conjugate prior distribution to model the prediction error
covariance and measurement noise covariance in [23]. The
target state xk is augmented by Pk|k−1 and Rk to obtain the
augmented state, which is estimated jointly via VB inference.

B. LMB RFS and RLMB Filter

Before introducing labeled RFS, some notations throughout
this paper are defined:
• The inner product function

〈f, g〉 ,
∫
f(x)g(x)dx

• The multi-target exponential function

hX ,

{
1,∏

x∈X h(x),
X = ∅

otherwise

where h(x) denotes a real-valued function.
• The generalized Kronecker delta function

δY (X) ,

{
1,
0,

if X = Y
otherwise

• The inclusion function

1Y (X) ,

{
1,
0,

if X ⊆ Y
otherwise

In order to incorporate target tracks in the framework of
the multi-target Bayesian filtering, the concept of labeled RFS
is introduced in [5]. For each target, the state x is augmented
with a unique label ` = (k, i), where k is the time of birth and
i is a unique index to distinguish targets born at time k. Then
the labeled single target state is denoted as x = (x, `) ∈ X×L,
where X is the dynamic state space and L is the discrete label
space. Likewise, the labeled multi-target state is denoted as
X = {x1, . . . , xn} = {(x1, `1), . . . , (xn, `n)} ⊆ X× L, where
`1, . . . , `n are distinct from each other.



Define the function L: X × L → L. For a labeled single-
target state x, L (x) = L ((x, `)) = `. Likewise, for a labeled
multi-target state X, L (X) = {L (x) : x ∈ X}, and the labels
must be distinct, i.e., δ|X| (|L (X)|) = 1. For simplicity, the
distinct label indicator is denoted as ∆ (X) = δ|X| (|L (X)|).

An LMB RFS can be completely determined by a parameter
set π = {r(`), p(`)(x)}`∈L, where r(`) and p(`)(x) are the
existence probability and the spatial distribution, respectively.
Thus, the density of an LMB RFS π = {r(`), p(`)(x)}`∈L is
given by

π(X) = ∆(X)w(L(X))pX (7)

where

w(L) =
∏
i∈L

(1− r(i))
∏
`∈

1L(`)r(`)

1− r(`)
(8)

p(x, `) = p(`)(x) (9)

Further, the multi-target birth density is an LMB RFS with
state space X and birth label space B which is given by

πB(X) = ∆(X)wB(L(X))[pB ]
X (10)

where

wB(I) =
∏
i∈B

(
1− r(i)

B

)∏
`∈L

1B(`)r
(`)
B

1− r(`)
B

(11)

pB(x, `) = p
(`)
B (x) (12)

In the proposed RLMB filter, the augmented target state...
x , (x, P̃ , R), where x is the kinematic state of a target
including position and velocity, P̃ the predicted error covari-
ance, R is the measurement noise covariance. The multi-target
augmented state set can be given by

...
X = {(...

x, `)}Ni=1 (13)

where i and N represent the target indexes and the number of
targets, respectively.

Proposition 1: Suppose that the multi-target prior density
and the multi-target birth density are both the LMB RFS, that
is π =

{(
r(`), p(`)(

...
x)
)}
`∈L and πB =

{(
r

(`)
B , p

(`)
B (

...
x)
)}

`∈B
,

respectively, then the multi-target predicted density is also an
LMB RFS

π+ =
{(
r

(`)
+,S , p

(`)
+,S(

...
x+)

)}
`∈L

⋃{(
r

(`)
B , p

(`)
B (

...
x)
)}

`∈B
(14)

where ...
x+ , (x+, P̃+, R+) (15)

r
(`)
+,S = r(`)

(∫
pS(

...
x, `)p (

...
x, `) d

...
x

)
(16)

p
(`)
+,S(

...
x+) =

∫
pS(

...
x, `)f(

...
x+|

...
x, `)p (

...
x, `) d

...
x∫

pS(
...
x, `)p (

...
x, `) d

...
x

(17)

f(
...
x+|

...
x, `) = f(x+|x, `)f(R+|R, `)f(P̃+|P̃ , `) (18)

where
...
x+ is the predicted augmented state, pS(

...
x, `) is the

probability of survival of the target, f(
...
x+|

...
x, `) is the transi-

tion joint PDF of the augmented state, f(x+|x, `) denotes the

target transition PDF, f(R+|R, `) and f(P̃+|P̃ , `) represent
the transition PDFs of measurement noise covariance and
prediction error covariance, respectively.

Before the update step, the LMB representation of the
predicted multi-target density needs to be converted into a δ-
GLMB representation. The predicted LMB can be converted
to a single component δ-GLMB similar to (29) [7]. Then, we
can obtain the update of the LMB filter with the augmented
state.

Proposition 2: Suppose that the multi-target predict-
ed density is an LMB RFS with parameter set π+ ={(
r

(`)
+ , p

(`)
+ (

...
x)
)}

`∈L+

, then the posterior density is

π
(...
X|Z

)
≈
{(
r(`), p(`)(

...
x)
)}

`∈L+

(19)

where

r(`) =
∑

(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z) · 1I+(`) (20)

p(`)(
...
x) =

1

r(`)

∑
(I+,θ)∈F(L+)×ΘI+

w(I+,θ)(Z) · 1I+(`)p(θ)(
...
x, `) (21)

w(I+,θ)(Z) ∝ w+(I+)
[
η

(θ)
Z

]I+
(22)

p(θ)(
...
x, `|Z) =

p+(
...
x, `)ψZ(

...
x, `; θ)

η
(θ)
Z (`)

(23)

η
(θ)
Z (`) =

∫
p+(

...
x, `)ψZ(

...
x, `; θ)d

...
x (24)

ψZ(
...
x, `; θ) =δ0(θ(`))qD(

...
x, `)

+ (1− δ0(θ(`)))
pD(

...
x, `)g(zθ(`)|

...
x, `)

κ(zθ(`))

(25)

and Z is the set of measurements, pD(
...
x, `) denotes the

detection probability associated with the augmented state and
label, qD(

...
x, `) is the missed detection probability, ΘI+ is

the space of mappings θ: I+ → {0, 1, . . . , |Z|}, such that
θ(i) = θ(i′) means i = i′, g(z|...x, `) is the single target
likelihood function for z given (

...
x, `), and κ(·) is the Poisson

clutter density.

III. A CLOSED-FORM SOLUTION

In the following, the proposed RLMB filter is implemented
based on fixed-point iteration method. The joint PDF of the
augmented state

...
xk , (xk, P̃k, Rk) is modeled in the form of

a Gaussian and IW distributions mixture as follow:

pk(
...
xk) = N (xk;mk, Pk)IW(P̃k; tk, Tk)IW(Rk;uk, Uk)

(26)
Suppose that the survival probability and detection proba-

bility of the target are independent of the augmented state,
i.e

pS(
...
x, `) = pS (27)

pD(
...
x, `) = pD (28)



Suppose that the spatial distributions of the birth tracks can
be denoted as a mixture of Gaussian and IW distributions,

p
(`)
B (

...
x) =

J
(`)
B∑
j=1

w
(`)
B,jN (x|m(`)

B,j , P
(`)
B,j)IW(P̃ |t(`)B,j , T

(`)
B,j)

× IW(R|u(`)
B,j , U

(`)
B,j)

(29)

where J (`)
B is the number of the mixture of Gaussian and IW

distributions, w(`)
B,j , m

(`)
B,j and P

(`)
B,j represent the weight, the

sate, and the according estimation error covariance of the jth
mixed component, respectively. t(`)B,j and u

(`)
B,j represent the

degrees of freedom of IW distributions, T (`)
B,j and U (`)

B,j are the
corresponding scale matrices.

A. Prediction

Suppose that the multi-target posterior density is an LMB
RFS with the augmented state space and parameter set πk−1 =

{r(`)
k−1, p

(`)
k−1(

...
x)}

`∈L, where the posterior probability densities
p` of all labeled Bernoulli tracks ` ∈ L are given by a mixture
of Gaussian and IW distributions

p
(`)
k−1(

...
x) =

J
(`)
k−1∑
j=1

w
(`)
j,k−1N (x|m(`)

j,k−1, P
(`)
j,k−1)

× IW(P̃ |t(`)j,k−1, T
(`)
j,k−1)× IW(R|u(`)

j,k−1, U
(`)
j,k−1)

(30)

then the predicted LMB distribution is represented by the
union of surviving and new born tracks:

πk|k−1 =
{(
r

(`)
k|k−1,S , p

(`)
k|k−1,S(

...
xk|k−1)

)}
`∈L⋃{(

r
(`)
k,B , p

(`)
k,B(

...
x)
)}

`∈B

(31)

The above parameters can be calculated as follows:

r
(`)
k|k−1,S = r

(`)
k−1pS (32)

p
(`)
k|k−1,S(

...
xk|k−1) =

J
(`)
k−1∑
j=1

w
(`)
j,k|k−1,SN (x|m(`)

j,k|k−1.S , P̃
(`)
j,k|k−1,S)

× IW(P̃ |t(`)j,k|k−1,S , T
(`)
j,k|k−1,S)

× IW(R|u(`)
j,k|k−1,S , U

(`)
j,k|k−1,S)

(33)

where
w

(`)
j,k|k−1,S = w

(`)
j,k−1 (34)

m
(`)
j,k|k−1.S = Fk|k−1m

(`)
j,k−1 (35)

P̃
(`)
j,k|k−1,S = Fk|k−1P

(`)
j,k−1F

T
k|k−1 + Q̃k−1 (36)

t
(`)
j,k|k−1,S = n+ τ + 1 (37)

T
(`)
j,k|k−1,S = τP̃

(`)
j,k|k−1,S (38)

u
(`)
j,k|k−1,S = ρ(u

(`)
j,k−1 −m− 1) +m+ 1 (39)

U
(`)
j,k|k−1,S = ρU

(`)
j,k−1 (40)

where Q̃k−1 is the nominal process noise covariance, τ ≥ 0
is a tuning parameter, ρ ∈ (0, 1] is a forgetting factor,{(
r

(`)
k,B , p

(`)
k,B(

...
x)
)}

`∈B
is the LMB RFS of the birth targets,

which can be given by (29).

B. Update

Suppose that the multi-target predicted density is an LMB
RFS with the predicted spatial distribution of a track ` is a
mixture of Gaussian and IW distributions:

p
(`)
k|k−1(

...
x) =

J
(`)

k|k−1∑
j=1

w
(`)
j,k|k−1N (x|m(`)

j,k|k−1, P̃
(`)
j,k|k−1)

× IW(P̃ |t(`)j,k|k−1, T
(`)
j,k|k−1)

× IW(R|u(`)
j,k|k−1, U

(`)
j,k|k−1)

(41)

the posterior density is calculated by

p
(θ)
k (

...
x, `|Z) =

J
(`)
k∑
j=1

w
(θ,`)
j,k N (x|m(θ,`)

j,k , P
(θ,`)
j,k )

× IW(P̃ |t(θ,`)j,k , T
(θ,`)
j,k )

× IW(R|u(θ,`)
j,k , U

(θ,`)
j,k )

(42)

w
(θ,`)
j,k =

w
(θ,`)
Z,j

J
(`)
k∑
j=1

w
(θ,`)
Z,j

(43)

If θ(`) = 0,
w

(θ,`)
Z,j = w

(`)
j,k|k−1(1− pD) (44)

m
(θ,`)
j,k = m

(`)
j,k|k−1, P

(θ,`)
j,k = P̃

(`)
j,k|k−1 (45)

t
(θ,`)
j,k = t

(`)
j,k|k−1, T

(θ,`)
j,k = T

(`)
j,k|k−1 (46)

u
(θ,`)
j,k = u

(`)
j,k|k−1, U

(θ,`)
j,k = U

(`)
j,k|k−1 (47)

If a measurement is associated to track `, i.e. θ(`)>0, the
measurement likelihood function (25) is given by

ψZ(
...
x, `; θ) =

pDg(zθ(`)|
...
x, `)

κ(zθ(`))

=
pD

κ(zθ(`))
N
(
zθ(`);Hkx,R

) (48)

Substituting (41) and (48) into the numerator of (23) ,

p
(`)
k|k−1(

...
x)ψZ(

...
x, `; θ)

=
pD

κ(zθ(`))

J
(`)

k|k−1∑
j=1

w
(`)
j,k|k−1N (x|m(`)

j,k|k−1, P̃
(`)
j,k|k−1)

× IW(P̃ |t(`)j,k|k−1, T
(`)
j,k|k−1)IW(R|u(`)

j,k|k−1, U
(`)
j,k|k−1)

×N
(
zθ(`);Hkx,Rk

)
(49)



Since there is no analytical solution in (49), the approximate
solution is obtained by VB method. Moreover, to obtain the
measurement updated posterior distribution (23), the predictive
likelihood function η

(θ)
Z (`) is required to have an analytical

solution. However, it can be seen from (24) and (49) that
the calculation of η(θ)

Z (`) needs to solve multiple integrals.
Fortunately, the above two problems can be solved by part (a)
and part (b) of the following Lemma 1, respectively.

Lemma 1: Let x, P̃ , R and z be random variables with the
following joint density

p(x, P̃ , R, z) = p(z|x,R)p(x)p(P̃ )p(R) (50)

and
p(z|x,R) = N (z;Hx,R) (51)

p(x) = N (x;mk|k−1, P̃k|k−1) (52)

p(P̃ ) = IW(P̃ ; tk|k−1, Tk|k−1) (53)

p(R) = IW(R;uk|k−1, Uk|k−1) (54)

Then,
(a) The posterior density p(x, P̃ , R|z) can be approximated

by minimizing the KL divergence by the product of densities
q(x), q(P̃ ) and q(R), where

q(x) = N (x;mk, Pk) (55)

q(P̃ ) = IW(P̃ ; tk, Tk) (56)

q(R) = IW(R;uk, Uk) (57)

and the parameters mk, Pk, tk, Tk, uk, Uk can be obtained
by repeating the following iterations

A
(i)
k = P

(i)
k +

(
m

(i)
k −mk|k−1

)(
m

(i)
k −mk|k−1

)T
(58)

t
(i+1)
k = tk|k−1 + 1 (59)

T
(i+1)
k = A

(i)
k + Tk|k−1 (60)

B
(i)
k = HkP

(i)
k HT

k +
(
zk −Hkm

(i)
k

)(
zk −Hkm

(i)
k

)T
(61)

u
(i+1)
k = uk|k−1 + 1 (62)

U
(i+1)
k = B

(i)
k + Uk|k−1 (63)

P̃
(i+1)
k =

T
(i+1)
k

t
(i+1)
k − n− 1

(64)

R
(i+1)
k =

U
(i+1)
k

u
(i+1)
k −m− 1

(65)

K
(i+1)
k = P̃

(i+1)
k HT

k (HkP̃
(i+1)
k HT

k +R
(i+1)
k )

−1
(66)

m
(i+1)
k = mk|k−1 +K

(i+1)
k

(
zk −Hkmk|k−1

)
(67)

P
(i+1)
k = P̃

(i+1)
k −K(i+1)

k HkP̃
(i+1)
k (68)

where a(i) denotes the value of the variable a at the ith iter-
ation, and the initial conditions are given by m(0)

k = mk|k−1,

P
(0)
k = P̃k|k−1, tk|k−1 = n + τ + 1, Tk|k−1 = τP̃k|k−1,
uk|k−1 = ρ(uk−1 −m− 1) +m+ 1, Uk|k−1 = ρUk−1.

(b) The predictive likelihood function p(z) =∫
p(x, P̃ , R, z)dxdP̃dR can be approximated via minimizing

the KL divergence by the variational lower bound

q̂(z) = exp{−0.5m log(2π)− 0.5E[log |Rk|]

− 0.5tr
(
E[R−1

k ]E[(zk −Hkxk)(zk −Hkxk)
T

]
)

− 0.5E[log |P̃k|k−1|] + 0.5E[log |Pk|]

− 0.5tr
(
E[P̃−1

k|k−1]E[(xk −mk|k−1)(xk −mk|k−1)
T

]
)

+ 0.5tr
(
E[log |P−1

k |]E[(xk −mk)(xk −mk)
T

]
)

+ 0.5(tk|k−1 − n− 1)(log |Tk|k−1| − n log 2)

− log Γ[0.5(tk|k−1 − n− 1)]− 0.5tk|k−1 log(E[|P̃k|])
− 0.5tr(E[P̃−1

k ]Tk|k−1) + log Γ[0.5(tk − n− 1)]

+ 0.5(tk − n− 1)(n log 2− log |Tk|)

+ 0.5tk logE[|P̃k|] + 0.5tr
(
E[P̃−1

k ]Tk

)
+ 0.5(uk|k−1 −m− 1)(log |Uk|k−1| −m log 2)

− log Γ[0.5(uk|k−1 − n− 1)]

− 0.5uk|k−1 log(E[|Rk|])− 0.5tr(E[R−1
k ]Uk|k−1)

+ 0.5(uk −m− 1)(m log 2− log |Uk|)
+ log Γ[0.5(uk −m− 1)]

+ 0.5uk logE[|Rk|] + 0.5tr
(
E[R−1

k ]Uk
)
}

(69)

Proof: The proof of part (a) in Lemma 1 can be referred to
[23], and the proof of part (b) can be found in Appendix A.

Corollary 1: The joint density can be approximated by
approximate densities q(x), q(P̃ ), q(R) and q(z) as follows

p(x, P̃ , R, z) ≈ q(x)q(P̃ )q(R)q(z) (70)

then

N (x;mk|k−1, P̃k|k−1)N (z;Hx,R)

× IW(P̃ ; tk|k−1, Tk|k−1)IW(R;uk|k−1, Uk|k−1)

≈ N (x;mk, Pk)IW(P̃ ; tk, Tk)IW(R;uk, Uk)q(z)

(71)

Using Lemma 1, Corollary 1 and (23), (42), (49), the posterior
density is calculated by

w
(θ,`)
Z,j = w

(`)
j,k|k−1

pDqi(zθ(`))

κ(zθ(`))
(72)

where final values of these parameters are obtained by repeat-
ing the iterations as follows

A
(θ,`)(i)
j,k =P

(θ,`)(i)
j,k +

(
m

(θ,`)(i)
j,k −mk|k−1

)
×
(
m

(θ,`)(i)
j,k −mk|k−1

)T (73)

t
(θ,`)(i+1)
j,k = t

(`)
j,k|k−1 + 1 (74)

T
(θ,`)(i+1)
j,k = A

(θ,`)(i)
j,k + T

(`)
j,k|k−1 (75)



B
(θ,`)(i)
j,k =HkP

(θ,`)(i)
j,k HT

k +
(
zθ(`) −Hkm

(θ,`)(i)
j,k

)
×
(
zθ(`) −Hkm

(θ,`)(i)
j,k

)T (76)

u
(θ,`)(i+1)
j,k = u

(`)
j,k|k−1 + 1 (77)

U
(θ,`)(i+1)
j,k = B

(θ,`)(i)
j,k + U

(`)
j,k|k−1 (78)

P̃
(θ,`)(i+1)
j,k =

T
(θ,`)(i+1)
j,k

t
(θ,`)(i+1)
j,k − n− 1

(79)

R
(θ,`)(i+1)
j,k =

U
(θ,`)(i+1)
j,k

u
(θ,`)(i+1)
j,k −m− 1

(80)

K
(θ,`)(i+1)
j,k =P̃

(θ,`)(i+1)
j,k HT

k

× (HkP̃
(θ,`)(i+1)
j,k HT

k +R
(θ,`)(i+1)
j,k )

−1 (81)

m
(θ,`)(i+1)
j,k = m

(`)
j,k|k−1 +K

(θ,`)(i+1)
j,k

(
zθ(`) −Hkm

(`)
j,k|k−1

)
(82)

P
(θ,`)(i+1)
j,k = P̃

(θ,`)(i+1)
j,k −K(θ,`)(i+1)

j,k P̃
(θ,`)(i+1)
j,k (83)

and the initial conditions are given by m
(θ,`)(0)
j,k = m

(`)
j,k|k−1,

P
(θ,`)(0)
j,k = P̃

(`)
j,k|k−1, t(`)j,k|k−1 = n + τ + 1, T (`)

j,k|k−1 =

τP̃
(`)
j,k|k−1, u(`)

j,k|k−1 = ρ(u
(`)
j,k−1−m−1) +m+ 1, U (`)

j,k|k−1 =

ρU
(`)
j,k−1.
The predicted likelihood function qi(zθ(`)) can be obtained

according to (69) using these final values.

IV. NUMERICAL SIMULATION

The estimation performance of the proposed RLMB filter
is illustrated in a multi-target tracking scenario with unknown
and time-varying process noise covariance and measurement
noise covariance (referred as RLMB-QR). We compare it with
the LMB filter with nominal processes noise covariance and
measurement noise covariance (nominal-LMB), as well as the
existing RLMB filter considering only unknown measurement
noise covariance (RLMB-R) [21] under the same simulation
conditions. The cardinality statistics and the optimal subpattern
assignment (OSPA) distance [25] are used to evaluate these
filters estimation performance with c = 100 and p = 2.

Considering a two dimensional surveillance region
[−1000, 1000]m × [−1000, 1000]m, the kinematic state
xk = [px,k, ṗx,k, py,k, ṗy,k]T of each target includes the
position (px,k, py,k) and velocity (ṗx,k, ṗy,k), and sensor
measurements are noisy vectors of the position. The state
transition matrix Fk|k−1 and observation matrix Hk are given
by

Fk|k−1 = I2 ⊗
[
1 T
0 1

]
, Hk = I2 ⊗ [1 0] (84)

where the sampling period is T = 1s and In is the n-
dimensional identity matrix; ⊗ denotes the Kronecker product.
The true process noise covariance and measurement noise
covariance are given by

Qk =

{
Q0

4Q0

if k < kp
else (85)

Rk =

{
R0

4R0

if k < km
else (86)

where kp = 31s and km = 51s denote the time step parameters
of the true process noise covariance and measurement noise
covariance change, respectively, and Q0 and R0 denote the
nominal process noise covariance and measurement noise
covariance, respectively.

Q0 = σw
2I2 ⊗

[
T 3/3 T 2/2
T 2/2 T

]
(87)

R0 = σv
2I2 (88)

where σw = 5 and σv = 5 represent the standard deviations
of the process noise and measurement noise, respectively.

The birth model is an LMB RFS with intensity πB =

{r(i)
B , p

(i)
B (

...
x)}4i=1, where r(i)

B = 0.03, and

p
(i)
B (

...
x) = N (x;m

(i)
B , PB)IW(P̃ ; tB , VB)IW(R;uB , UB)

(89)
where m

(1)
B = [0.1, 0, 0.1, 0]T , m(2)

B = [400, 0,−600, 0]T ,
m

(3)
B = [−800, 0,−200, 0]T , m

(4)
B = [−200, 0, 800, 0]T ,

PB = diag([10, 10, 10, 10]
T

)
2
, tB = 10, TB = 9Q0,

uB = 10, UB = 16R0 .
The survival probability is pS = 0.99 and the detection

probability is pD = 0.98. Clutter is a Poisson RFS with
intensity κ(z) = λcV u(z), where λc = 2.5×10−6m2 denotes
the average clutter intensity, V = 4 × 106m2 is the volume
of the surveillance region, and u(·) represents a uniform
distribution over the region (giving an average of 10 clutter per
scan). The tuning parameter τ = 3, forgetting factor ρ = 0.99,
and the number of iterations N = 3.

The true trajectories of targets are shown in Fig.1. Different
colored lines represent different targets. And the circles and
triangles are the starting and ending points of each target,
respectively.
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Fig. 1. True target trajectories.

To further verify the effectiveness of the proposed RLMB-
QR filter, it is compared with other filters under different



clutter densities over 100 Monte Carlo (MC) trials in the same
simulation conditions, and the ideal-LMB filter with true noise
covariances Qk,Rk is used as a reference.

Fig.2 shows the cardinality statistics versus time for differ-
ent filters. It can be seen that the target number estimation of
the nominal LMB filter has serious target loss, and the existing
RLMB-R filter also has a large estimation bias, especially after
50s. Since the 50th second, the measurement noise covariance
has changed. However, the proposed RLMB-QR filter has a
little performance loss compared to the ideal LMB filter.

Fig.3 shows the means of the OSPA distance versus time
over 100 MC trials. It is noted that the OSPA distance of the
four filters has increased to different degrees from the 50th
second, but the proposed RLMB-QR filter still has the tracking
performance comparable to that of the ideal filter. However,
both the existing RLMB-R filter and the nominal-LMB filter
have filtering divergence problems.
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Fig. 2. Cardinality statistics for different filters.

V. CONCLUSION

Based on the LMB filter and VB approximation, a RLMB
filter with adaptive ability to both process noise covariance
and measurement noise covariance is proposed, In addition, a
closed-form solution of the proposed RLMB filter is derived
using Gaussian and inverse Wishart distributions mixtures.
Simulation experiments show that the proposed RLMB filter
still has desirable tracking performance in the presence of
unknown and time-varying process noise covariance and mea-
surement noise covariance, and it has comparable performance
to the ideal LMB filter.
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APPENDIX A

For the proof of part (b) of the Lemma 1, the logarithm of
the predictive likelihood function is decomposed as follows
[26]

log p(z) = C +KL
[
q(x)q(P̃ )q(R)

∥∥∥p(x, P̃ , R |z )
]

(90)

where

C =

∫
q(x)q(P̃ )q(R) log

p(x, P̃ , R, z)

q(x)q(P̃ )q(R)
dxdP̃dR

= E[log(p(x, P̃ , R, z))]− E[log(q(x)q(P̃ )q(R))]

(91)

Since the first term on the right hand side of (90) can
be minimized by the variational inference, the predictive
likelihood function p(z) can be approximated by [26]

p(z) ≈ exp(C) (92)

Substituting (50)-(57) into (91) respectively, we can get

C = E[logN (zk;Hkxk, Rk)]

+ E[logN (xk;mk|k−1, P̃k|k−1)]

+ E[log IW(P̃k; tk|k−1, Tk|k−1)]

+ E[log IW(Rk;uk|k−1, Uk|k−1)]

− E[logN (xk;mk, Pk)]

− E[log IW(P̃k; tk, Tk)]

− E[log IW(Rk;uk, Uk)]

(93)

using the definition and properties of Gaussian density and IW
density, (93) can be calculated as

C = −0.5m log(2π)− 0.5E[log |Rk|]

− 0.5tr
(
E[R−1

k ]E[(zk −Hkxk)(zk −Hkxk)
T

]
)

− 0.5E[log |P̃k|k−1|] + 0.5E[log |Pk|]

− 0.5tr
(
E[P̃−1

k|k−1]E[(xk −mk|k−1)(xk −mk|k−1)
T

]
)

+ 0.5tr
(
E[log |P−1

k |]E[(xk −mk)(xk −mk)
T

]
)

+ 0.5(tk|k−1 − n− 1)(log |Tk|k−1| − n log 2)

− log Γ[0.5(tk|k−1 − n− 1)]− 0.5tk|k−1 log(E[|P̃k|])
− 0.5tr(E[P̃−1

k ]Tk|k−1) + log Γ[0.5(tk − n− 1)]

+ 0.5(tk − n− 1)(n log 2− log |Tk|)

+ 0.5tk logE[|P̃k|] + 0.5tr
(
E[P̃−1

k ]Tk

)
+ 0.5(uk|k−1 −m− 1)(log |Uk|k−1| −m log 2)

− log Γ[0.5(uk|k−1 − n− 1)]

− 0.5uk|k−1 log(E[|Rk|])− 0.5tr(E[R−1
k ]Uk|k−1)

+ 0.5(uk −m− 1)(m log 2− log |Uk|)
+ log Γ[0.5(uk −m− 1)]

+ 0.5uk logE[|Rk|] + 0.5tr
(
E[R−1

k ]Uk
)

(94)

The predicted likelihood function q̂(z) shown in (69) can
be obtained by substituting (94) into (92).


