
EasyChair Preprint

№ 186

Andrologger: Collecting and Correlating Events

to Identify Suspicious Activities in Android

Pradeep Tiwari and T Velayutham

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 30, 2018

Andrologger: Collecting and Correlating Events to
Identify Suspicious Activities in Android

Pradeep Kumar Tiwari
Central Research Laboratory
Bharat Electronics Limited

Bengaluru, India
pradeepkumart@bel.co.in

T Velayutham
Central Research Laboratory
Bharat Electronics Limited

Bengaluru, India
tvelayutham@bel.co.in

Abstract— With the tremendous increase in android
smartphone users and easy availability; industry,
government and enterprises are trying to tap into these
device’s usage possibility for organization’s work purpose.
This could significantly reduce the costs and add
capabilities earlier un-existed for the enterprises. However,
organizations should be prepared to deal with the risk
associated with it. These devices will contain plethora of
information and data regarding work which when
compromised can pose significant challenge to internal
investigations comprising policy violations, data theft,
intellectual property theft, sabotage, social engineering
attacks. In android forensics the earlier approaches and
capabilities usually are limited to physical access with
forensic tools, though useful but not exposed to full
potential. In this paper, we propose a tool, Andrologger
which has the capability of automatically collecting data
and user events from the device and sent to enterprise
server for monitoring and analysis. This data can then be
co-related with various activities to suggest a suspected
user, beforehand. Andrologger will help investigators and
analysts with the real data from the user and their
activities and can also be used for user behavior analysis
during work-hours by the organizations.

Keywords—Andrologger; Data Collection; Suspiciousness;
Enterprise; Android Forensics; BYOD

I. INTRODUCTION

Android’s availability in abundance [12] and flexibility to
tailor its use has opened a lot of opportunity to the enterprises
to adopt it in their environment. Some organizations have
already adopted it as part of their BYOD policies [Citrix,
2014] [11] and at the same time other government, enterprises
and organizations are forced to adopt it in order to effectively
survive in the competitive environment. Bring Your Own
Device (BYOD) brings several benefits [10] to the
organization including cost effectiveness in implementing
certain policies, technology familiarity as users are adept to it.
However at the same time it poses certain challenges to deal
with. The challenges include physical security of the device,
data theft from the device including intellectual property theft,
sabotage, espionage and social engineering attacks.

Android OS uses custom linux [13] flavor for their platform,
which uses sandboxing technique to prevent inter application
data leakage and uses permission based protection [14] to the
critical resources of the hardware. However there exists
literatures [15] [16] suggesting data leakage from android
devices through the use of android permissions. Ensuring the
security of data lying on the phones becomes major concern
for today’s user through strict enforcement of MDM policies.
There exist few Mobile Device Management (MDM) systems
for the management of devices in enterprise environment
[Pettey, 2012] [17] and it is expected that 75% of enterprises
will be going to adopt third party MDMs in their premises.
Researches on existing MDMs show that they lack many
features at the enterprise level. According to the 2014/2015
survey from Computer Security Institute Computer Crime and
Security [18], 61.5% of the respondents reported that internal
audits were carried out as part of security mechanism in their
organizations. Moreover, 44% of the partner companies
reported that there were user-content monitoring programs and
data-loss prevention programs in place (Richardson, 2015)
[18]. These indicators show that the organizations are aware of
internal threats and also taking measures to mitigate them.
However, they lack the technology to monitor them
automatically and continuously. This unavailability of
technological option for its solution has led to the project of
Andrologger.

The research work makes the following contributions:

 Automated data collection tool covering user
activities over a period of time with customization
options.

 Extending the list of data sets to include events from
Bluetooth, MMS, Gallery and their combinations.

 Detecting Suspiciousness through conjunction of
various data sets through an UI provided at the server
as well as on user device.

 Tested the application in a team of 5 for 10 days and
identified the general usage trends gaining insights
into the user behavior and later classifying them.

The andrologger application though asks for exhaustive list
of permissions from android system in order to work, but at
the same time it gives the user transparency over the data

collection. The data was collected from the Moto G4 Plus
android phone running with Marshmallow version of android.
It was then sent to the central server running Ubuntu 14.04
installed with MySql 5.7, Apache 2.4.17 and PHP 5.0. The
application gives support from version 4.0 having 97.4% users
[9] to android 7.0. The andrologger application is available on
github [19] for its full-fledged functionality testing.

II. BACKGROUND AND RELATED WORK

From android’s framework, in order to get certain values it
has to go through the layered architecture which protects the
resources using permission. For example, In order to get GPS
latitude and longitude the API LocationManager class from
application framework level should interface itself with C
library libgps.so at the middleware level, which will finally
call the kernel driver responsible for getting the current
location. The sequences of events are as follows:

Application Application Framework Middleware
Library Kernel Driver

Android security framework at different levels is describes
below:

a) At Application Level: Permissions are used for
protection of resources of device as well as resources
of the application itself. For example, if two
applications A1 and A2 with permissions P1 and P2
respectively want to use each other’s resources, A1
has to declare in its manifest file permission P2 and
P1 in case of A2. Hence protecting resources at
application level.

b) At Framework Level: All applications run in
sandboxed environment. The inter process
communication is implemented using the component
called Binder which is different from traditional
linux. It is optimized for low powered devices.

Fig1: Binder Communication Model1

c) At Linux Kernel Level: At kernel level the
applications are sandboxed with uids and gids (User
ID and Group Ids). In android each application is
considered as a user in OS perspective. OS makes
fair separation of privileges between resources at the
application level.

There was not much literature, we could find in the area of
android forensics. However the book [3] by A Hoorg on
android forensics gave real insight into the techniques and
approaches. One research related to android forensics, carried
out by Timothy Vidas et. al. [2] on android forensics
concentrates on taking the image of the device through special
boot and collect data for investigation, which is useful in more
sensitive cases, but can’t be pertained to enterprise
environment. Another interesting study on whatsapp forensics
[4] from InfoSec could increase the current work and facilitate
with more data. Other approaches [5] [6] focused on anti-
forensics techniques deployed on android smartphones to
examine their effectiveness. Studies [7] [8] majorly focused on

data collection from physical devices or from specific
application.

III. PROPOSED DESIGN AND IMPLEMENTATION

A. System Architecture

 The proposed system architecture can be referred from
following diagram where each layer gives an abstraction. The
andrologger service starts running after user accepts the
consent of being monitored in the enterprise environment.
Once user consent banner is accepted, andrologger’s
WatcherService starts executing in the background performing
storage, collection and transfer events. The service keeps an
eye on all the events defined in the schema of the application.
The service keeps collecting the data and storing in local sqlite
database, which is flushed out once transferred to the enterprise
server.

Fig2: Andrologger System Architecture

Table I lists the watchers of the andrologger application which
extends the earlier work on monitoring discussed in the related
work.

TABLE I. COMPONENTS USED IN ANDROLOGGER

Data Set
Collection Components Used

Alarms
Content

Observers
Broadcast
Receivers

1. Device Id (e.g. IMEI)

2. GPS Location

3. GPS Settings (On/Off)

4. Device Accounts*

5.
Application
Install/Uninstall

6. Blutooth Status

7.
Browser Navigation
History

8. Browser Searches

9. Calender Events

10.
Call Logs
(Incoming/Outgoing/Misse
d)

11. SMS (Incoming/Outgoing)

Data Set
Collection Components Used

Alarms
Content

Observers
Broadcast
Receivers

12.
Screen Lock Status (e.g
Unlocked)

13.
Third party Application
Logs (logcat)

14. MMS Status

15. Pictures Added

* To get device accounts information there exists direct APIs
to access them, there was no need to register any alarm or

content observer for the same.
Alarms are used for time-based operations outside lifetime of
the application. For example, an alarm is used to start a long-
running task, such as running a service once a day to
download a weather forecast. They help fire an activity at the
said time. With the help of alarms we achieved tracking of the
events periodically.
Content Observers listens to the changes in the data. So
whenever there is change in data of either of the client, it
records that.
Broadcast Receivers attends to system wide notifications sent
by the system. For example, the battery status is sent to each
and every application to respond accordingly.

B. The Approach

The above approach diagram gives the flow of events from
one activity to another. The consent banner is popped and
depending on the input from the user the application
andrologger responds to the activity. If the consent banner is
accepted, andrologger runs in the background traversing for
the Call logs, Browser, Contacts, GPS, Calender, Device
Account, Package Manager, Messaging, Screen On/Off
activities and store them in a local sqlite database. Same time
the inference engine (Suspiciousity Watchdog) runs for the
detection of suspicious activities. If a particualar
event/activity is found to be suspicious, it is flagged to
enterprise server/user. And periodically the stored log database
is flushed to the enterprise server and removed from local
database to avoid the memory overhead in local system.
Some rules for suspiciousness are as follows:

a) From ContactWatcher, if a new contact is added,
which was not existing earlier in phonebook,
provided with the phone, may pose a concern for the
investigator.

b) CallWatcher which monitors incoming and outgoing
calls from the device can help in identifying calls
made to unknown or unidentified numbers through a
normal search.

c) Similar to CallWatcher, SMS and MMS detectors
identifies messaging communication, which could be
very helpful for investigators, as this module also
gives the body of message and its content as well.
However sometimes, the timestamp of sender may
not match with the local timestamp. So the content
with time zone will form a unique event.

d) One of the most important event watcher is
LocationWatcher which records changes in GPS co-
ordinates. For example, two events, one a picture has
been taken and, second the GPS co-ordinates are also
recorded. These two events can help in identifying
from which place the picture was taken. If found in a
confidential zone, immediately reported to the
investigator.

Fig3: Proposed Methodology and the flow chart
1) User Consent

Fig4: Consent Monitoring Banner

User consent dialog box is being implemented with
AlertDialog builder of android API. Once user accepts the

1. Zhauniarovich, Yury. "Android Security (and Not) Internals." Web,

consent banner, it is logged and WatcherService starts running
in the background as shown in the code below.

Fig5: Consent Banner Accept and Reject Options
And if user rejects the consent agreement the service
WatcherService, if running, is stopped and logged to the
administrator.

2) Data Collection Components Stored/Transferred
a) Device Id and Accounts* (e.g. IMEI/ IMSI): The

getDeviceId() method from the TelephonyManager
API class was used to directly access phone’s device
ID. And the AccountManager.get().getAccounts()
method was used to get the associated accounts on
the phone. In order to get the accounts information
android.permission.GET_ACCOUNTS and
android.permission.READ_PHONE_STATE
permission was to be declared in the
AndroidManifest file.

b) GPS Location: The GPS location of the phone was
retrieved using LocationManager API of android
framework. The getLastKnownLocation() method of
the API class which runs every hour, by default give
GPS co-ordinates periodically. An alarm is to be
registered for the same. In order to access these
values
android.permission.ACCESS_FINE_LOCATION
permission was to be declared in the
AndroidManifest file of the application.

c) GPS Settings (On/Off): In android system,
whenever a setting related to GPS is changed
manually (enabled/ disabled), a broadcast notification
is sent to whole system, which is recorded by
LocationWatcher.

d) Application Install/Uninstall: Whenever an android
application is installed or uninstalled a system-wide
broadcast notification is sent. There is no need to
declare permissions in the manifest file. Although it
should register a broadcast receiver and intent filter
for Intent.PACKAGE_ADDED and
Intent.PACKAGE_REMOVED events.

e) Bluetooth Status: To get the status of Bluetooth,
BlutoothAdapter API should be implemented. It
indicates status and support for the hardware. And the
API should be accompanied with the permission,
android.permission.BLUETOOTH.

f) Browser Navigation History: From android’s built
in browser, URLs are accessed through an alarm,

registered to its API. To avoid battery drainage and
power saving, the content provider accesses the
bookmarks history through
android.provider.Browser.BOOKMARKS_URI URI
every six hours, by default. To gain access to this data
permission,
android.browser.permission.READ_HISTORY_BOO
KMARKS need to be declared in the manifest file of
the application.

g) Browser Searches: Browser searches are not the
URLs, they are searches made with the keywords into
the inbuilt browser. There is no data set available for
this to be retrieved with ContentObservers. Browser
searches can be collected through an alarm registered
as process running every six hours. The same
permission
android.browser.permission.READ_HISTORY_BOO
KMARKS is needed to get access to browser
searched.

h) Calendar Events: Android gave support to access
calendar events from API level 19 onwards (Ice-
cream Sandwich). An alarm was configured to scan
content provider URI,
content://com.android.calendar/event_entities every
twelve hours. Since this content provider doesn’t give
direct access to calendar database, we created a
separate table to collect the same, which is populated
with existing events from the google calendar during
its first run and keeps itself updated against new
events. In order to get access to calendar data,
permission, android.permission.READ_CALENDAR
need to be declared in the AndroidManifest file.

i) Call Logs (Incoming/Outgoing/Missed): Telephony
related details can be retrieved using two methods,
first, via broadcast notification and second, using
content providers. Whenever there is change in state
of the phone (idle, ringing or vibrating) a system
wide broadcast notification is sent which can be
retrieved through broadcast receivers. However, in
few cases of missed calls, broadcast receiver couldn’t
identify the change of state and went unnoticed. So,
to ensure all the logs are captured and avoid false
positives content URI,
android.provider.CallLog.Calls.CONTENT_URI was
used to get access all the logs Incoming, Outgoing,
Missed and even the timestamp information of calls.
To get access the call logs database,
android.permission.READ_CONTACTS permission
was needed to be declared in the AndroidManifest
file.

j) SMS (Incoming/Outgoing): For incoming messages,
a broadcast receiver was registered to retrieve them.
The incoming messages contain extra information
such as sender’s address, timestamp and its content.
And for outgoing messages an implicit content
observer was registered with the URI,
content://sms/out and the change notifications are

observed from “draft” to “pending” to “sent”.
Andrologger records only sent message statuses to
avoid duplicate entries. In order to get the ability to
collect the SMS information, permissions
android.permission.RECEIVE_SMS,
android.permission.READ_SMS, and
android.permission.READ_CONTACTS needed to be
declared in the AndroidManifest file of the
Andrologger application.

k) Screen Lock Status (e.g Unlocked): To get screen
lock status (e.g. Locked, Unlocked, or “off” states)
no extra permission was required. The intent-filters
should be made to handle
Intent.ACTION_USER_PRESENT,
Intent.ACTION_SCREEN_ON, and
Intent.ACTION_SCREEN_OFF intents through
broadcast receivers.

l) Third party Application Logs (logcat): Android has
a built in logging system in its SDK, logcat in
android.util.Log. Logcat temporarily stores the logs
in /dev/log/main which is discarded as soon as a new
log is available to avoid overhead on the system.
Andrologger’s logging system for third party
application (any application which is not registered in
the Package Manager) was made sophisticated to
handle logs efficiently with the help of tags, debug
mode disabled logging etc. An alarm was registered
to collect logs every hour. Andrologger required the
permission, android.permission.READ_LOGS in
AndroidManifest file of the application to get access
of logs.

m) MMS Status: This is challenging task in android to
extract multimedia messages from the device. For
incoming MMS messages, it was easy to get
information about through broadcast receivers.
However, for outgoing MMS messages, when tried
with content observers URI content://mms activity
got crashed, but gave information about sender,
receiver and timestamp.

n) Pictures Added: Pictures can give a lot of
information about an event. They contain timestamp,
location, description, tagged people etc. Usually short
information can be gathered using broadcast
receivers, as a notification is sent throughout system
when a picture is clicked. However to get more
information a content observer is registered to the
android gallery through URI,
android.provider.MediaStore.Images.Media.EXTERN
AL_CONTENT_URI. Whenever a change notification
is sent, gallery is scanned for changes and recorded in
the events table of sqlite database. There is no need to
declare any additional permission in the application’s
manifest file.

C. Data Flow Diagram

Fig6: Data Flow Diagram for Andrologger

In the enterprise environment, regular update to server is
equally important. The forensic data is being collected and
stored locally in sqlite database, which is updated periodically
as set by andrologger.properties file in app’s assets directory.

Fig7: Setting Intervals and Options for Data Collection
(andrologger.properties)
Once the application is configured, the local database is sent
over secure http protocol to the server, specified in the url.
And once the acknowledgement is received from server, local
database file is flushed and new file is created.

IV. EVALUATION AND ANALYSIS

A. Suspicious Communication and Contacts

In this research, we pointed the suspicious communication if
one of following occurs:

a) Andrologger’s ContactWatcher detecting newly
added contacts, which were not added already in the
enterprise list, could pose a threat. A flag can be set
to such contacts for further investigation.

b) CallWatcher of Andrologger could detect a
suspicious call from known bad individual outside
the organization or external to organization’s
phonebook.

c) SMS and MMS Detectors are very helpful for
investigators as Andrologger can collect the body of
the message. Specific text or keywords could be
tracked for suspicious activity to gain further insight
into an event. However there were few limitations
with MMS like few a times there was no text
available in MMS body and sometime the timestamp
got changed.

d) Combination with Location, Gallery and Contacts
could give further insight for events related to data

leakage or suspicious camera usage. E.g. A picture
attached with MMS being sent to a particular
contact. This event can lead to identification of
contact which is secretly snooping into the
enterprises confidential assets.

B. General Usage Trends

Fig8: Usage Trends of User over a Week Time
The general trend of user activity shows that user in general
turns on and off the screen, sometimes without doing any
activity. And the second important user behavior that we
identified is the intense use of web browser for searches and
visiting URL’s. However, as Andrologger in each run checks
for new Contacts, new Calender events and new device
accounts, the activities related to the same seems to be
minimal. The usage for the purpose of calling and messaging
seems to be optimal.

C. Location

User’s last known location can help in various ways to the
investigators to locate the device, track the movement of the
user. The alarm set to listen for GPS changes, though being set
very optimally to conserve battery, sometime result in
inaccurate location. It happened because sometimes user
manually turned the GPS OFF or ON, resulting in data loss.
As android suggests, on each reboot the last known location
data is lost, resulting the device untraceable unless the location
is turned ON again. The LocationWatcher of Andrologger
collects latitude, longitude, deviceID and capture time from
one data capture event.

Fig9: LocationWatcher from Andrologger

In a week’s usage only four significant locations could be
traced, which may have happened due to not much usage of

any navigation application. If any navigation app like Google
Maps would have been used, data capture would have been
more. Also from calendar events (a separate table in
andrologger’s database) tagged with location would help
investigator in finding user’s appointments, meetings,
scheduled holidays and leaves.

D. Browser Activities

Andrologger tracks and records all browser related activities
and being stored in the events table of the database. An
investigator could detect the improper usage of internet in the
organization and also can find the intention of user from the
browser searches keywords. Also, if there is suspicion of
intellectual property data theft, it could be tracked down to
searches made to upload data to the third party websites. An
event from internet history includes deviceID, timestamp,
keyword or URL.

Fig10: BrowserWatcher from Andrologger Identifying
Improper Usage

E. Malicious Application

Application installation and removal from the device are of
utmost importance to the investigators. These applications
could be malware, or data stealing applications. Andrologger
puts a clear watch on each application installs and uninstall.
AppWatcher records package name, install time, and the
operation on the application as seen in below picture.

Fig11: AppWatcher indicating Application Change Status

There is also logging for all the third party application with
proper filtering mechanisms in place using logcatWatcher. The
filters include logs generated from com.android, com.google
and com.sec.android. More filtering mechanisms could also be
applied on the same.

V. CHALLENGES: ANTI-FORENSICS

 As a point to note that Andrologger is susceptible to many
attacks such as root detection, application uninstalls and
process termination by the user itself. We could apply third
party root enforcement techniques to ensure no root attacks are
performed. However, still it poses the risk of evidence
alteration. The data directory of the application can be
accessed through android debug bridge and destroyed by the
attacker or replaced with other or false evidence. Even during
the logging of events an intent-filter registered with
com.andrologger could get access of the logs and can be
altered.

So to enforce policy level agreements from enterprise, the
application should run at the system level like the
com.google.android processes which runs in higher privileged
mode.

VI. CONCLUSION AND FUTURE SCOPE

 We tried to cover most of the useful events happening on a
device and helped investigators and enterprise monitoring the
organization efficiently; however there still exists space to
collect additional data such as user pattern of using the device
over a longer period to categorize user into threat or Suspect
or Friend category. Also the application usage frequency could
help in deciding that on what applications user is spending
more time. This could help the investigator in identifying the
intent of the users from a particular category.
Another area to look into for future scope is on how to avoid
the application from becoming victim of tampering
mechanisms. And in longer term the integration of such
application with the OEM itself would channelize the work
into the wheel.

Acknowledgment
 We would like to acknowledge the contribution and support
given from our organization, Bharat Electronics Ltd,
Bangalore in order to carry out this work efficiently. We would
also like to acknowledge our friends who equally helped us in
doing the same.

References

[1] Enck, W., Octeau, D., McDaniel, P., & Chaudhuri, S. (2011, August). A
Study of Android Application Security. In USENIX security symposium
(Vol. 2, p. 2).

[2] Vidas, Timothy, Chengye Zhang, and Nicolas Christin. "Toward a
general collection methodology for Android devices." digital
investigation 8 (2011): S14-S24.

[3] Hoog, Andrew. Android forensics: investigation, analysis and mobile
security for Google Android. Elsevier, 2011.

[4] Sahu, Shubham. "An Analysis of WhatsApp Forensics in Android
Smartphones." International Journal of Engineering Research 3.5
(2014): 349-350.

[5] Lee, Xinfang, et al. "Design and implementation of forensic system in
Android smart phone." The 5th Joint Workshop on Information Security.
2009.

[6] Distefano, Alessandro, Gianluigi Me, and Francesco Pace. "Android
anti-forensics through a local paradigm." digital investigation 7 (2010):
S83-S94.

[7] Mahajan, Aditya, M. S. Dahiya, and H. P. Sanghvi. "Forensic analysis of
instant messenger applications on android devices." arXiv preprint
arXiv:1304.4915 (2013).

[8] Lessard, Jeff, and Gary Kessler. "Android Forensics: Simplifying Cell
Phone Examinations." (2010).

[9] https://developer.android.com/about/dashboards/index.html, accessed
January 2017.

[10] Scarfo, Antonio. "New security perspectives around BYOD."
Broadband, Wireless Computing, Communication and Applications
(BWCCA), 2012 Seventh International Conference on. IEEE, 2012.

[11] https://www.citrix.com/glossary/byod.html, accessed January 2017.

[12] https://www.statista.com/topics/876/android/, accessed January 2017.

[13] Rogers, Rick, et al. Android application development: Programming
with the Google SDK. O'Reilly Media, Inc., 2009.

[14] Enck, William, Machigar Ongtang, and Patrick McDaniel.
"Understanding android security." IEEE security & privacy 7.1 (2009):
50-57.

[15] Tiwari, Pradeep Kumar, and Upasna Singh. "Android Users Security via
Permission Based Analysis." International Symposium on Security in
Computing and Communication. Springer International Publishing,
2015.

[16] Wei, Fengguo, Sankardas Roy, and Xinming Ou. "Amandroid: A precise
and general inter-component data flow analysis framework for security
vetting of android apps." Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2014.

[17] http://www.gartner.com/newsroom/id/2010217, accessed January 2017.

[18] https://cours.etsmtl.ca/gti619/documents/divers/CSIsurvey2010.pdf,
accessed January 2017.

[19] https://github.com/pradeeptewary/andrologger/, accessed June 2017

https://github.com/pradeeptewary/andrologger/
https://cours.etsmtl.ca/gti619/documents/divers/CSIsurvey2010.pdf
http://www.gartner.com/newsroom/id/2010217
https://www.statista.com/topics/876/android/
https://www.citrix.com/glossary/byod.html

	I. Introduction
	II. Background and Related Work
	III. Proposed Design and Implementation
	A. System Architecture
	B. The Approach
	1) User Consent
	2) Data Collection Components Stored/Transferred

	C. Data Flow Diagram

	IV. Evaluation and Analysis
	A. Suspicious Communication and Contacts
	B. General Usage Trends
	C. Location
	D. Browser Activities
	E. Malicious Application

	V. Challenges: Anti-Forensics
	VI. Conclusion and Future Scope
	Acknowledgment
	References

