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ABSTRACT
Here, we develop a unversal method of [effective] constructing a [finite] Hilbert-
style axiomatization of the logic of a given finite disjunctive/implicative matrix with
equality determinant [and finitely many connectives] (in particular, any/ implica-
tive four-valued expansion of Belnap’s four-valued logic /[as well as any  Lukasiewicz
finitely-valued logic]). As a by-product, we also prove that the poset of all disjunc-
tive/axiomatic extensions of the logic is dual to the finite distributive lattice of all
relatively-hereditary subsets of the set of all consistent submatrices of the matrix
[to be found effectively together with their finite relative axiomatizations and both
sound and complete matrix semantics].

KEYWORDS
Logic; calculus; sequent; matrix.

1. Introduction

Though various universal approaches to (mainly, many-place) sequent axiomatizations
of finitely-valued logics (cf., e.g., Pynko (2014) as well as both its and its references’
bibliographies) have being extensively developed, the problem of their standard (viz.,
Hilbert-style) axiomatizations (especially, on a generic level) has deserved much less
emphasis.

On the other hand, the general study Pynko (2004) has suggested a universal method
of [effective] constructing a multi-conclusion two-side (as opposed to the above ap-
proaches) sequent calculus with structural rules and Cut Elimination Property for
a given finite matrix with equality determinant [and finitely many connectives]. In
this paper, providing the matrix involved is disjunctive/implicative, we advance the
mentioned study by [effective] transforming any [finite] sequential table for the ma-
trix (viz., a collection of context-free schemas of uniquely-chosen introduction rules
for the matrix and all compound non-nullary connectives not belonging to the equal-
ity determinant) and minimal sequent axioms with uniquely-ordered disjoint sides
without duplicates consisting of solely either elements of the equality determinant or
their values on nullary connectives true in the matrix, actually giving a Gentzen-style
axiomatization of the logic of the matrix in Pynko (2004), to a [finite] Hilbert-style
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axiomatization of the logic. As a by-product of this advanced elaboration, we also
prove that the poset of all disjunctive/axiomatic extensions of the logic is dual to the
finite distributive lattice of all relatively-hereditary subsets of the set of all consistent
submatrices of the matrix [to be found effectively together with their finite relative
axiomatizations and both sound and complete matrix semantics].

Our general approach, first of all, covers, aside from respective fragments of the
classical logic, two especially representative infinite classes of finitely-valued logics:
both four-valued expansions of Belnap’s useful four-valued logic Belnap (1977), which
were started to be studied in Pynko (1999) on an advanced level, and  Lukasiewicz
finitely-valued logics  Lukasiewicz (1920). In addition, it covers miscellaneous three-
valued para-consistent/-complete logics. Although most interesting of these are ax-
iomatic/disjunctive extensions of appropriate four-valued expansions of Belnap’s four-
valued logic, there are certain interesting exceptions (like HZ Ha lkowska and Zajac
(1988)) deserving a particular emphasis, for which finite Hilbert-style axiomatizations
have not been found yet.

The rest of the paper is as follows. We entirely follow the standard conventions (as
for Hilbert-style calculi) as well as those adopted in both Pynko (1999) and Pynko
(2004) — as to sequent calculi. Section 2 is a concise summary of mainly those basic
issues underlying the paper, which have proved beyond the scopes of the mentioned pa-
pers, those presented therein being normally (though not entirely) briefly summarized
as well for the exposition to be properly self-contained. In Section 3 we present a uni-
form formalism for covering both Hilbert- and Gentzen-style calculi without repeating
practically same issues concerning calculi of both kinds, and recall some key results
concerning disjunctive and implicative logics (mainly belonging to a logical folklore)
and sequent calculi with structural rules going back to Pynko (1999). Then, Section 4
is a preliminary study of minimal disjunctive Hilbert- as well as Gentzen-style (both
multi- and single-conclusion) calculi to be used further. Section 5 then contains the
main generic results of the paper. Finally, in Section 6 we apply it to disjunctive and
implicative positive fragments of the classical logic (mainly, with improving Dyrda and
Prucnal (1980)), to  Lukasiewicz finitely-valued logics and to both four-valued expan-
sions of Belnap’s four-valued logic and their disjunctive extensions as well as to the
three-valued logic HZ Ha lkowska and Zajac (1988), applications to which look espe-
cially acute, because of the infiniteness of its Hilbert-style axiomatization originally
found in Zbrzezny (1990). Finally, Section 7 is a brief summary of principal definitive
contributions of the paper.

2. Basic issues

Notations like img, dom, ker, hom, πi, R−1 and Q ◦ R as well as related notions are
supposed to be clear.

2.1. Set-theoretical background

We follow the standard set-theoretical convention, according to which natural numbers
(including 0) are treated as finite ordinals (viz., sets of lesser natural numbers), the
ordinal of all them being denoted by ω (cf., e.g., Mendelson (1979)). The proper class
of all ordinals is denoted by ∞. Likewise, functions are viewed as binary relations.
In addition, singletons are often identified with their unique elements, unless any
confusion is possible.

2



Given a set S, the set of all subsets of S [of cardinality ∈ K ⊆ ∞] is denoted
by ℘[K](C). A subset of C is said to be proper, whenever it is distinct from S. An
enumeration of S is any bijection from |S| onto S. As usual, given any equivalence
relation θ on S, by νθ we denote the function with domain S defined by νθ(a) , θ[{a}],
for all a ∈ S, in which case ker νθ = θ, whereas we set (T/θ) , νθ[T ], for every T ⊆ S.
Next, any S-tuple (viz., a function with domain S) is often written in the sequence
form t̄, its s-th component (viz., the value under argument s) πs(t̄), where s ∈ S,
being written as ts, in that case. As usual, given two more sets A and B, any relation
between them is identified with the equally-denoted relation between AS and BS

defined point-wise. Further, elements of S∗ , (S0 ∪ S+), where S+ , (
⋃
i∈(ω\1) S

i),
are identified with ordinary finite tuples/[comma separated] sequences [in which case,
as usual, semicolon instead of comma is sometimes used as sets elements separator to
avoid any confusion], the binary concatenation operation on S∗ being denoted by ∗, as
usual. Then, any � : (S×S) → S determines the equally-denoted mapping � : S+ → S
as follows: by induction on the length (viz., domain) l of any ā ∈ S+, put:

(�ā) ,

{
a0 if l = 1,
(�(ā�(l − 1))) � al−1 otherwise.

Likewise, given a one more set T , any � : (S×T ) → T determines the equally-denoted
mapping � : (S∗ × T ) → T as follows: by induction on the length (viz., domain) l of
any ā ∈ S∗, for all b ∈ T , put:

(ā � b) ,

{
b if l = 0,
a0 � (((ā�(l \ 1)) ◦ ((+1)�(l − 1))) � b) otherwise.

Given any R ⊆ S2, put R1 , R and R0 , ∆S , {〈s, s〉 | s ∈ S}, functions of the
latter kind being said to be diagonal/identity.

A [dual] Galois retraction between posets 〈P,5〉 and 〈Q,.〉 is any couple 〈f, g〉 of
anti-monotonic [resp., monotonic] mappings f : P → Q and g : Q → P such that
(g ◦ f) = ∆P and (f ◦ g) ⊆ .[−1], in which case case the former poset is said to be a
[dual] Galois retract of the latter, while f is a dual embedding [resp., an embedding]
of the former into the latter. (Galois retractions are exactly Galois connections with
injective/surjective left/right component; cf. Pynko (2000). Moreover, dual Galois re-
tractions between 〈P,5〉 and 〈Q,.〉 are exactly Galois retractions between 〈P,5〉 and
〈Q,.−1〉.)

Let A be a set. It is said to be a(n) (inclusion) anti-chain, whenever max⊆(A) = A.
A U ⊆ ℘(A) is said to be upward-directed, provided, for every S ∈ ℘ω(U), there

is some T ∈ U such that (
⋃
S) ⊆ T . A closure system over A is any C ⊆ ℘(A)

such that, for every S ⊆ C, it holds that (A ∩
⋂
S) ∈ C. An operator over A is any

unary operation O on ℘(A). This is said to be (monotonic) [idempotent] {transitive}
〈inductive/finitary/compact〉, provided, for all (B, )D ∈ ℘(A) 〈resp., any upward-
directed U ⊆ ℘(A)〉, it holds that (O(B))[D]{O(O(D)} ⊆ O(D)〈O(

⋃
U) ⊆

⋃
O[U ]〉.

A closure operator over A is any monotonic idempotent transitive operator over A.
A [minimal] covering of A is any C ⊆ ℘(A) such that A = (

⋃
C) [and no proper

subset of C is a covering of A], in which case, providing A is finite, max(C) ⊆ C is
a covering of C, and so any [minimal] covering of a finite set includes a minimal one
[resp., is an anti-chain]. A partition of A is any covering of A with pair-wise disjoint
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non-empty elements, in which case it is a minimal covering of A. (Clearly, in case
A 6= ∅, C contains a non-empty set, and so is non-empty and, being an anti-chain,
does not contain ∅. In particular, if |A| ∈ 3 and C is an anti-chain, then C is either
{A} or {{a} | a ∈ A}, both — but the former not being minimal, if A = ∅ — being
partitions of A, so a covering of a no-more-than-two-element set is minimal iff it is
a partition of the set. On the other hand, in case A has three distinct elements a, b
and c, both coverings {A \ {a}, A \ {b}} ( {A \ {a}, A \ {b}, A \ {c}} of A are anti-
chains, the former being minimal, but is not a partition of A.) Providing A is finite,
a minimal covering enumeration scheme (MCES, for short) for A is any set M of
injective elements of ℘(A)∗ such that the function eM : M → ℘(℘(A)), f 7→ (img f) is
injective with img eM being the set of all minimal coverings of A. (Clearly, if |A| = 0/1,
then ∅/{〈0, A〉} is the only MCES for A. Likewise, if |A| = 2, then any MCES for A
is of the form {〈0, A〉} ∪ {〈i, {ai}〉 | i ∈ (dom ā)}, where ā is an enumeration of A.)

2.1.1. Disjunctivity versus multiplicativity

Fix any δ : A2 → A. Given any X,Y ⊆ A, set δ(X,Y ) , δ[X × Y ]. Then, a closure
operator C over A is said to be [K-]δ-multiplicative [where K ⊆ ∞] provided

δ(C(X ∪ Y ), a) ⊆ C(X ∪ δ(Y, a)), (2.1)

for all (X ∪ {a}) ⊆ A and all Y ∈ ℘[K](A).1 Next, C is said to be δ-disjunctive,
provided, for all a, b ∈ A and every X ⊆ A, it holds that

C(X ∪ {δ(a, b)}) = (C(X ∪ {a}) ∩ C(X ∪ {b})), (2.2)

in which case the following clearly hold, by (2.2) with X = ∅:

δ(a, b) ∈ C(a), (2.3)
δ(a, b) ∈ C(b), (2.4)

a ∈ C(δ(a, a)), (2.5)
δ(b, a) ∈ C(δ(a, b)), (2.6)

C(δ(δ(a, b), c)) = C(δ(a, δ(b, c))), (2.7)

for all a, b, c ∈ A.

Lemma 2.1. Let C be a [finitary] closure operator over A. Then, (i)⇔ (ii)⇔(iii)⇐
[⇔](iv), where:

(i) C is δ-disjunctive;
(ii) (2.3), (2.5) and (2.6) hold and C is singularly-δ-multiplicative;
(iii) (2.3), (2.5) and (2.6) hold and C is finitely-δ-multiplicative;
(iv) (2.3), (2.5) and (2.6) hold and C is δ-multiplicative.

Proof. First, (ii/iii) is a particular case of (iii/iv), respectively. [Next, (iii)⇒(iv) is by
C’s being finitary.]

Further, assume (i) holds. Consider any (X ∪ {a, b}) ⊆ A and any c ∈ C(X ∪ {b}),
in which case δ(c, a) ∈ C(X ∪{b}), by (2.3). Moreover, by (2.4), we also have δ(c, a) ∈

1In this connection, “finitely-/singularly-” means “ω-/{1}-”, respectively.
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C(X∪{a}). Thus, by (2.2), we get δ(c, a) ∈ (C(X∪{b})∩C(X∪{a}) = C(X∪{δ(b, a)}).
In this way, (ii) holds.

Next, assume (ii) holds. In that case, both (2.3) and so, by (2.6), (2.4) hold, and
so does the inclusion from left to right in (2.2). Conversely, consider any c ∈ (C(X ∪
{b}) ∩ C(X ∪ {a})), where (X ∪ {a, b}) ⊆ A. Then, by (2.6) and (2.1) with Y = {a}
and b instead of a, we have δ(b, c) ∈ C(X∪{δ(a, b)}). Likewise, by (2.5) and (2.1) with
Y = {b} and c instead of a, we have c ∈ C(X ∪ {δ(b, c)}). Therefore, we eventually
get c ∈ C(X ∪ {δ(a, b)}). Thus, (i) holds.

Finally, assume (i) holds. By induction on any n ∈ ω, let us show that C is n-δ-
multiplicative. For consider any (X ∪ {a}) ⊆ A, any Y ∈ ℘n(A), in which case n 6= 0,
and any b ∈ C(X ∪ Y ). In case Y = ∅, (2.1) is by (2.3). Otherwise, take any c ∈ Y ,
in which case Y ′ , (Y \ {c}) ∈ ℘n−1(A), and put X ′ , (X ∪ {c}) ⊆ A, in which
case (X ′ ∪ Y ′) = (X ∪ Y ), and so b ∈ C(X ′ ∪ Y ′). Hence, by induction hypothesis, we
get δ(b, a) ∈ C(X ′ ∪ δ(Y ′, a)) = C({c} ∪ (X ∪ δ(Y ′, a))). Moreover, by (2.4), we have
δ(b, a) ∈ C({a}∪ (X ∪ δ(Y ′, a))). Therefore, as Y = (Y ′∪{c}), by (2.2), we eventually
get δ(b, a) ∈ C({δ(c, a)} ∪ (X ∪ δ(Y ′, a))) = C(X ∪ δ(Y, a)). Thus, as (

⋃
ω) = ω, we

conclude that C is finitely-δ-multiplicative, and so (iii) holds, as required.

2.2. Algebraic background

Unless otherwise specified, all along the paper, we deal with a fixed but arbitrary signa-
ture Σ of primary (propositional) connectives of finite arity to be treated as operation
(viz., function) symbols. Given any α ∈ ℘∞\1(ω), Fmα

Σ denotes the absolutely-free
Σ-algebra freely-generated by the set Vα , {xi | i ∈ α} of (propositional) vari-
ables, its endomorphisms/elements of its carrier Fmα

Σ being called (propositional)
Σ-substitutions/formulas, in case α = ω. As usual, a secondary (propositional) con-
nective of Σ of arity n ∈ ω is any element of Fmmax(n,1)

Σ , any primary F ∈ Σ of
arity n ∈ ω being naturally identified with the secondary one F (xi)i∈n. The function
Var : Fmω

Σ → ℘ω(Vω), assigning to every ϕ ∈ Fmω
Σ the finite set of all variables actually

occurring in ϕ, is defined in the standard recursive way by induction on construction
of ϕ. For any Π ⊆ Fmω

Σ, set Fmα
Π , (

⋂
{Vα ⊆ S ⊆ Fmα

Σ | ∀σ ∈ hom(Fmω
Σ,Fmω

Σ) :
(σ[Vω] ⊆ S) ⇒ (σ[Π] ⊆ S)}) ⊆ Fmα

Σ.
As usual, (logical) Σ-matrices (cf. Loś and Suszko (1958)) are treated as first-order

model structures (viz., algebraic systems; cf. Mal’cev (1965)) of the first-order sig-
nature Σ ∪ {D} with unary truth predicate D. In general, [Σ-matrices are denoted
by Calligraphic letters (possibly, with indices), their underlying ] algebras [viz., their
Σ-reducts] being denoted by [corresponding] Fraktur letters (possibly, with [same] in-
dices [if any]), their carriers being denoted by corresponding Italic letters (with same
indices, if any). Any Σ-matrix A is traditionally identified with the couple 〈A, DA〉.
This is said to be [in]cosistent/truth[-non]-empty, if ((A \DA)/DA) 6= [=]∅. Given a
class M of Σ-matrices, S[∗](M) denotes the class of all [consistent] submatrices of mem-
bers of M, M being said to be [consistently] hereditary, whenever it includes S[∗](M).
In general, S[∗](M) is the least [consistently] hereditary class including M and called
the one generated by M. As usual, the class of all models of any first-order theory T

of the first-order signature Σ∪{D} is denoted by Mod(T), T being said to axiomatize
Mod(T)[∩M relatively to M].
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2.2.1. Equality determinants for matrices

According to Pynko (2004), an equality determinant for a Σ-matrix A is any Υ ⊆ Fm1
Σ

such that any a, b ∈ A are equal, whenever, for all υ ∈ Υ, υA(a) ∈ DA iff υA(b) ∈ DA,
in which case Υ ∩Var−1[{V1}] is so.

3. Abstract propositional languages and calculi

A(n) (abstract) Σ-[propositional ]language is any triple of the form L = 〈FmL,=L,
VarL〉, where FmL is a set, whose elements are called L-formulas, while =L :
hom(Fmω

Σ,Fmω
Σ) → (FmL)FmL , preserving compositions and diagonality, any Σ-

substitution σ being naturally identified with =L(σ), unless any confusion is possi-
ble, whereas VarL : FmL → ℘ω(Vω), the language subscript being in general nor-
mally omitted, unless any confusion is possible, such that, for every Φ ∈ FmL and
any Σ-substitutions σ and ς such that (σ� VarL(Φ)) = (ς� VarL(Φ)), it holds that
σ(Φ) = ς(Φ). Given any V ⊆ Vω, set FmL(V ) , (FmL ∩Var−1

L [℘ω(V )]).
Then, elements/subsets of RuL , (℘ω(FmL) × FmL) are referred to as L-

rules/calculi, any L-rule R = 〈Γ,Φ〉 being normally written in either conventional
displayed Γ

Φ or non-displayed Γ|Φ form, Φ/any element of Γ being called the/a con-
clusion/premise of R, rules of the form Φ|Ψ, where Ψ ∈ Γ, being said to be inverse to
R. As usual, L-rules without premises are called L-axioms and are identified with their
conclusions, calculi consisting of merely axioms being said to be axiomatic. In general,
any function f with domain FmL (including Σ-substitutions) but VarL determines the
equally-denoted function with domain RuL as follows: for any R = 〈Γ,Φ〉 ∈ RuL, we
set f(R) , 〈f [Γ], f(Φ)〉, whereas put VarL(R) , (VarL(Φ) ∪

⋃
VarL[Γ]) ∈ ℘ω(Vω).

Next, an L-logic is any closure operator C on FmL that is structural in the sense
that, for every Σ-substitution σ and all Γ ⊆ FmL, it holds that σ[C(Γ)] ⊆ C(σ[Γ]).
This is said to be [in]consistent, if C(∅) 6= [=] FmL, the only inconsistent L-logic
℘(FmL) × {FmL} being denoted by ICL, and to satisfy an L-rule Γ|Φ, whenever
Φ ∈ C(Γ), L-axioms satisfied by C being called its theorems. Then, an L-logic C ′ is
said to be a [proper] extension of C, provided C ⊆ C ′[6= C], C being referred to as a
[proper] sublogic of C ′, respectively. In that case, an L-calculus C is said to axiomatize
C ′ relatively to C, provided C ′ is the least extension of C satisfying each rule in C,
extensions of C relatively axiomatized by axiomatic calculi being said to be axiomatic.
Next, C+0 , ((C�℘∞\1(FmL)) ∪ {〈∅,∅〉}), being the greatest sublogic of C without
theorems, is called the theorem-less version of C. Likewise, the L-logic C`, defined by
C`(X) , (

⋃
C[℘ω(X)]), for all X ⊆ FmL, being the greatest finitary sublogic of C,

is called the finitarization of C. Finally, ≡C , {〈Φ,Ψ〉 ∈ Fm2
L | C(Φ) = C(Ψ)} is an

equivalence relation on FmL.
Further, an L-formula Φ is said to be derivable from Γ ⊆ FmL in an L-calculus C, if

there is a C-derivation of Φ from Γ, i.e., a proof of Φ (in the standard proof-theoretical
sense) by means of axioms in Γ (as hypotheses) and rules in the set SIΣ(C) , {σ(R) |
R ∈ C, σ ∈ hom(Fmω

Σ,Fmω
Σ)} of all (substitutional) Σ-instances of rules in C. Then, an

L-rule is said to be derivable in C, if there is a C-derivation of it (viz., a C-derivation of
its conclusion from the set of its premises). The extension CnC of the diagonal Σ-logic
relatively axiomatized by C is called the derivability/consequence of C and said to be
axiomatized by C, in which case it is finitary and, for all (Γ∪{Φ}) ⊆ FmL, Φ ∈ CnC(Γ)
iff Φ is derivable from Γ in C. (Conversely, any finitary L-logic is axiomatized by the
set of all L-rules satisfied in it to be identified with the logic, in which case finitary
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L-logics become actually particular cases of L-calculi.) An S ⊆ FmL is said to be
C-closed, if, for every (Γ|Φ) ∈ SIΣ(C), it holds that (Γ ⊆ S) ⇒ (Φ ∈ S), in which case,
by induction on the length of C-derivations, it is CnC-closed, that is, S ∈ (img CnC),
and so, in particular, CnC(∅) ⊆ S.

3.1. Hilbert-style calculi

The Σ-language HΣ with the first component Fmω
Σ, the diagonal second compo-

nent and the third component Var is called the Hilbert-style/sentential Σ-langu-
age, HΣ-rules/-axioms/-calculi/-logics being traditionally referred to as (Hilbert-
style/sentential) Σ-rules/-axioms/-calculi/-logics, respectively (cf. Loś and Suszko
(1958)).

From the model-theoretic point of view, any Σ-rule Γ|φ is viewed as (the universal
closure of) the first-order basic Horn formula (

∧
Γ) → φ under the standard identifi-

cation of any Σ-formula ψ with the first-order atomic formula D(ψ) we follow tacitly,
Σ-calculi being treated as equality-free universal Horn theories of the first-order sig-
nature Σ ∪ {D}.

Given any class M of Σ-matrices and any α ∈ ℘∞\1(ω), we have the closure op-
erator CnαM over Fmα

Σ, defined by CnαM(X) , (Fmα
Σ ∩

⋂
{h−1[DA] ⊇ X|A ∈ M, h ∈

hom(Fmα
Σ,A)}), for all X ⊆ Fmα

Σ, in which case:

CnαM(X) = (Fmα
Σ ∩CnωM(X)), (3.1)

because hom(Fmα
Σ,A) = {h� Fmα

Σ |h ∈ hom(Fmω
Σ,A)}, for any Σ-algebra A, as A 6= ∅,

being a[n inconsistent] Σ-logic, whenever α = ω [and every member of M is incon-
sistent], and called the one of/defined by M, in that case. (Due to Loś and Suszko
(1958)/the Compactness Theorem Mal’cev (1965), this is well known to be finitary,
whenever both M and all members of it are finite.)

Remark 3.1. Since any Σ-rule [without premises] is [not] true in any truth-empty
Σ-matrix, given any class M of Σ-matrices and any non-empty class S of truth-empty
Σ-matrices, the logic of S ∪M is the theorem-less version of the logic of M.

A Σ-matrix A is said to be �-disjunctive/-implicative, where � is a (possibly, sec-
ondary) binary connective of Σ, whenever, for all a, b ∈ A, it holds that ((a 6∈ / ∈
DA) ⇒ (b ∈ DA)) ⇔ ((a �A b) ∈ DA)/, in which case it is Y�-disjunctive, where
(x0 Y� x1) , ((x0 � x1) � x1). Finally, A is said to be a model of a Σ-logic C, whenever
C is a sublogic of the logic of A, the class of all them being denoted by Mod(C), that
fits well the model-theoretic conventions adopted above, in case C is finitary.

3.1.1. Disjunctive sentential logics and matrices

Throughout the rest of the paper, unless otherwise specified, Y is supposed to be any
(possibly, secondary) binary connective of Σ.

Lemma 3.2. Let M be a class of Y-disjunctive Σ-matrices. Then, the logic of M is
Y-multiplicative, and so Y-disjunctive.

Proof. Consider any (X ∪ Y ∪ {ψ}) ⊆ Fmω
Σ, any φ ∈ CnM(X ∪ Y ), any A ∈ M and

any h ∈ hom(Fmω
Σ,A) such that (h(φ) YA h(ψ)) = h(φ Y ψ) 6∈ DA, in which case

h(φ) 6∈ DA 63 h(ψ), for A is Y-disjunctive, and so h(ϕ) 6∈ DA, for some ϕ ∈ (X ∪Y ), in
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which case h(ϕYψ) = (h(φ)YAh(ψ)) 6∈ DA, and so (φYψ) ∈ CnM(X∪(Y Yψ)). Then,
Lemma 2.1(iv)⇒(i) completes the proof, for CnM satisfies (2.3), (2.5) and (2.6).

Given a Σ-rule Γ|φ and a Σ-formula ψ, put ((Γ|φ) Y ψ) , ((Γ Y ψ)|(φ Y ψ)). (This
notation is naturally extended to Σ-calculi member-wise.)

Theorem 3.3. Let C be a finitary Σ-logic. Then, C is Y-disjunctive iff (2.3), (2.5)
and (2.6) hold and, for any axiomatization C of C, every (Γ|φ) ∈ SIΣ(C) and each
ψ ∈ Fmω

Σ, it holds that (φ Y ψ) ∈ C(Γ Y ψ).

Proof. By Corollary 2.1(i)⇔(iv) and the structurality of C, with using (2.3) and the
induction on the length of C-derivations.

Lemma 3.4. Let R = (Γ|φ) be a Σ-rule, C a Σ-logic, ψ ∈ Fmω
Σ, σ ∈ hom(Fmω

Σ,Fmω
Σ)

and v ∈ (Vω \ Var(R)). Suppose (2.7) holds and R Y v is satisfied in C. Then, so is
σ(R Y v) Y ψ.

Proof. Let ς ∈ hom(Fmω
Σ,Fmω

Σ) extend (σ�(Vω \ {v})) ∪ [v/(σ(v) Y ψ)], in which
case σ(R) = ς(R), for v 6∈ Var(R). Then, using (2.7) and the structurality of C,
we eventually get (σ(φ Y v) Y ψ) = ((σ(φ) Y σ(v)) Y ψ) ∈ C(σ(φ) Y (σ(v) Y ψ)) =
C(ς(φ) Y ς(v)) = C(ς(φ Y v)) ⊆ C(ς[Γ Y v]) = C(ς[Γ] Y ς(v)) = C(σ[Γ] Y (σ(v) Y ψ)) =
C((σ[Γ] Y σ(v)) Y ψ) = C(σ[Γ Y v] Y ψ), as required.

Let σ+1 be the Σ-substitution extending [xi/xi+1]i∈ω.

Corollary 3.5. Let C be a finitary Y-disjunctive logic, C a Σ-calculus and A an
axiomatic Σ-calculus. Then, the extension C ′ of C relatively axiomatized by C′ ,
(A ∪ (σ+1[C] Y x0)) is Y-disjunctive. In particular, any axiomatic extension of C is
Y-disjunctive.

Proof. Then, C being finitary, is axiomatized by a Σ-calculus C′′, in which case C ′

is axiomatized by the Σ-calculus C′′ ∪ C′, and so is finitary too. Moreover, C ′, being
an extension of C, inherits (2.3), (2.5), (2.6) and (2.7) held for C. Then, we prove the
Y-disjunctivity of C ′ with applying Theorem 3.3 to both C and C ′. For consider any
Σ-substitution σ and any ψ ∈ Fmω

Σ. First, for any φ ∈ A ⊆ C′, by the structurality
of C ′ and (2.3), we have (σ(φ) Y ψ) ∈ C ′(∅). Now, consider any R ∈ C, in which case
(σ+1(R) Y x0) ∈ C′ is satisfied in C ′ and x0 ∈ (Vω \Var(σ+1(R))). In this way, Lemma
3.4 with C ′ and σ+1(R) instead of C and R, respectively, completes the argument.

Proposition 3.6. Let M be a [finite] class of [finite Y-disjunctive] Σ-matrices. Then,
S∗(M) has no truth-empty member if[f ] the logic of M has a theorem.

Proof. The “if” part is by Remark 3.1. [Conversely, assume S∗(M) has no truth-
empty member. Let A be any enumeration of M. Consider any i ∈ |M| ∈ ω. Let ā be
any enumeration of Ai \DAi . Consider any j ∈ (dom ā) ∈ ω. Let B be the subalgebra
of Ai generated by {aj}. Then, (Ai�B) ∈ S∗(M) is truth-non-empty, in which case
there is some φj ∈ Fm1

Σ such that φAi

j (aj) ∈ DAi , and so ψi , (Y〈φ̄, x0〉) is true in Ai.
In this way, Y〈ψ̄, x0〉 is true in M, as required.]

3.1.2. Implicative sentential logics

Throughout the rest of the paper, unless otherwise specified, B is supposed to be any
(possibly, secondary) binary connective of Σ.
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A Σ-logic C is said to be B-implicative, whenever it has Deduction Theorem (DT,
for short) with respect to B in the sense that:

(ψ ∈ C(Γ ∪ {φ})) ⇒ ((φB ψ) ∈ C(Γ), (3.2)

for all (Γ ∪ {φ, ψ}) ⊆ Fmω
Σ, as well as satisfies both the Modus Ponens rule:

x0 x0 B x1

x1
, (3.3)

and Peirce Law axiom (cf. Peirce (1885)):

(((x0 B x1) B x0) B x0). (3.4)

As it is well-known, C satisfies the following axioms:

x0 B (x1 B x0) (3.5)
(x0 B (x1 B x2)) B ((x0 B x1) B (x0 B x2)) (3.6)

whenever it has DT with respect to B and satisfies (3.3).

Lemma 3.7. Any B-implicative Σ-logic is YB-disjunctive.

Proof. With using Lemma 2.1(ii)⇒(i). First, (2.3) is by (3.3) and (3.2). Next, (2.5)
is by (3.3) and (3.4)[x1/x0]. Further, by (3.2), (3.3) and (3.4), we have x0 ∈ C({x0 YB

x1, x1 B x0}), in which case, by (3.2), we get (x1 YB x0) ∈ C(x0 YB x1), and so (2.6)
holds. Finally, consider any (Γ ∪ {φ, ψ}) ⊆ Fmω

Σ and any ϕ ∈ C(Γ ∪ {φ}), in which
case, by (3.2), we have (φ B ϕ) ∈ C(Γ), and so, by (3.2) and (3.3), we get ψ ∈
C(Γ∪{φYBψ,ϕBψ}). Hence, by (3.2), we eventually get (ϕYBψ) ∈ C(Γ∪{φYBψ}).
Thus, C is singularly-YB-multiplicative, as required.

By I
[PL]
B we denote the Σ-calculus constituted by (3.3), (3.5) and (3.6) [as well as

(3.4)]. Recall the following well-known observation proved by induction on the length
of (IB ∪A)-derivations (cf., e.g., Mendelson (1979)):

Lemma 3.8. Let A be an axiomatic Σ-calculus. Then, CnIB∪A has DT with respect
to B.

Combining Lemmas 3.7 and 3.8, we eventually get:

Theorem 3.9. Let A be an axiomatic Σ-calculus. Then, CnIPL
B ∪A is B-implicative,

and so YB-disjunctive.

Corollary 3.10. Let A ∪ {ϕ} be an axiomatic Σ-calculus, n ∈ (ω \ 1), ψ̄ ∈ (Fmω
Σ)n,

φ̄ ∈ (Fmω
Σ)∗, v ∈ (Vω \ (

⋃
Var[{ϕ} ∪ ((img ψ̄) ∪ (img φ̄))])) and ζ̄ , 〈φ̄B (ψi B v)〉i∈n.

Then, the following hold:

(i) the Σ-axiom φ̄B((YBψ̄)Bϕ) is derivable in IPL
B ∪A iff the Σ-axioms φ̄B(ψiBϕ),

where i ∈ n, are so;
(ii) the Σ-axiom φ̄B (ϕB (YBψ̄)) is derivable in IPL

B ∪A iff the Σ-axiom (ζ̄ B (φ̄B
(ϕB v)) is so.
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Proof. In that case, by Theorem 3.9, CnIPL
B ∪A is B-implicative and YB-disjunctive.

Then, (2.2) with X = (img φ̄), (3.2), (3.3) and the induction on n immediately yield
(i). Next, the “if” part of (i) with v and ζ̄ ∗ φ̄ instead of ϕ and φ̄, respectively, (3.2)
and (3.3) yield the “only if” part of (ii). Finally, applying the substitution [v/(YBψ̄)],
the “only if” part of (i) with YBψ̄ instead of ϕ, (3.3) and (3.5) imply the “if” part of
(ii), as required.

3.2. Gentzen-style calculi

Given any (α[∪β]) ⊆ ω, elements of Seq[β`]α
Σ , {〈Γ,∆〉 ∈ ((Fmω

Σ)∗)2 | (dom ∆) ∈
α [& (dom Γ) ∈ β]} are called α-conclusion [ β-premise] Σ-sequents, “[purely] sin-
gle/multi” standing for “(2/ω)[\1]”, respectively. Any sequent 〈Γ,∆〉 is normally writ-
ten in the conventional form Γ ` ∆. This is said to be injective, whenever both Γ
and ∆ are so. Likewise, it is said to be disjoint, whenever ((img Γ) ∩ (img ∆)) = ∅.
For any Φ = (Γ ` ∆) ∈ Seq[β`]α

Σ , set Var(Φ) , (
⋃

Var[img(Γ ∗ ∆)]) ∈ ℘ω(Vω) and
σ(Φ) , ((σ◦Γ) ` (σ◦∆)) ∈ Seq[β`]α

Σ , where σ is a Σ-substitution. In this way, Seq[β`]α
Σ

forms a Σ-language S
[β`]α
Σ , called the α-conclusion [ β-premise] Gentzen-style/sequent

Σ-language, S
[β`]α
Σ -rules/-axioms/-calculi/logics being referred to as α-conclusion [ β-

premise] (Gentzen-style/sequent) Σ-rules/-axioms/-calculi/-logics, respectively.
The following multi-conclusion sequent ∅-rules are said to be structural :

Reflexivity x0 ` x0

Cut Λ,Γ ` ∆, x0 Γ, x0 ` ∆,Θ
Λ,Γ ` ∆,Θ

Enlargement Γ ` ∆
x0,Γ ` ∆

Γ ` ∆
Γ ` ∆, x0

Contraction x0, x0,Γ ` ∆
x0,Γ ` ∆

Γ ` ∆, x0, x0
Γ ` ∆, x0

Permutation Λ, x0, x1,Γ ` ∆
Λ, x1, x0,Γ ` ∆

Γ ` ∆, x0, x1,Θ
Γ ` ∆, x1, x0,Θ

where Λ,Γ,∆,Θ ∈ V ∗
ω , Enlargement, Contraction and Permutation being referred to

as basic structural.
Given two (purely) multi-conclusion [{purely} multi-premise] Σ-sequents Φ = (Γ `

∆) and Ψ = (Λ ` Θ), we have their sequent disjunction/implication/[diagonal] sub-
sumption, v[1] being a quasi-ordering on SeqωΣ:

(Φ ]Ψ) , (Γ,Λ ` ∆,Θ) ∈ Seq[(ω{\1})`](ω(\1))
Σ /

(Φ A Ψ) , ({φ,Γ ` ∆ | φ ∈ (img Θ)}
∪ {Γ ` ∆, ψ | ψ ∈ (img Λ)}) ∈ ℘ω(Seq[(ω{\1})`](ω(\1))

Σ )/

(Φ v[1] Ψ) def⇐⇒ ∃σ[= ∆Fmω
Σ
] ∈ hom(Fmω

Σ,Fmω
Σ) :

(σ[img Γ] ⊆ (img Λ))&(σ[img ∆] ⊆ (img Θ)),

respectively. Then, given any X ∈ ℘〈ω〉(Seq[(ω{\1})`](ω(\1))
Σ ), set (Φ A X) , (

⋃
{Φ A

Ψ | Ψ ∈ X} ∈ ℘〈ω〉(Seq[(ω{\1})`](ω(\1))
Σ ).

A (purely) multi-conclusion [{purely} multi-premise] sequent Σ-calculus G is said to
be 〈deductively〉 multiplicative, provided, for every (purely) multi-conclusion [{purely}
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multi-premise] sequent Σ-rule X|Φ 〈derivable〉 in G and each multi-conclusion Σ-
sequent Ψ, the rule (X ]Ψ)|(Φ ]Ψ) is derivable in G. Using induction on the length
of G-derivations, it is routine checking that G is multiplicative iff it is deductively so.

Theorem 3.11 (cf. the proof of Theorem 4.2 of Pynko (1999)). Let G be a 〈multi-
plicative〉 (purely) multi-conclusion [ {purely} multi-premise] sequent Σ-calculus with
basic structural rules and Cut〈/Reflexivity〉 and (X ∪ {Φ,Ψ}) ⊆ Seq[(ω{\1})`](ω(\1))

Σ .
Then, Ψ ∈ CnG(X ∪ {Φ}) ⇐ 〈/⇒〉(Φ A Ψ) ⊆ CnG(X).

From the model-theoretic point of view, any Σ-sequent Γ ` ∆ is treated as the first-
order basic clause (viz., disjunct)

∨
(¬[img Γ] ∪ (img ∆)) of the signature Σ ∪ {D}

under the notorious identification of any Σ-formula ϕ with the first-order atomic
formula D(ϕ), any sequent Σ-rule being interpreted as the universal closure of the
implication of its premises (under the natural identification of any finite set X of
first-order formulas with

∧
X we follow tacitly as well) and its conclusion, in which

case sequent Σ-calculi become universal first-order theories. (In this way, sequent dis-
junction/implication corresponds to the usual disjunction/implication.) This fits the
standard matrix interpretation of sequents equally adopted in Pynko (1999) and Pynko
(2004).

4. Basic disjunctive calculi

4.1. The Hilbert-style calculus

By DY we denote the Σ-calculus constituted by the following Σ-rules:

D1 D2 D3 D4

x0 Y x0
x0

x0
x0 Y x1

(x0 Y x1) Y x2

(x1 Y x0) Y x2

(x0 Y (x1 Y x2)) Y x3

((x0 Y x1) Y x2) Y x3

Lemma 4.1. Let C be a Σ-logic, R = (Γ|φ) a Σ-rule and v ∈ (Vω \Var(R)). Suppose
(2.3) and (2.5) hold and R Y v is satisfied in C. Then, so is R itself.

Proof. First, by (2.3), we have (Γ Y φ) ⊆ C(Γ). Then, applying (R Y v)[v/φ], by the
structurality of C, we get (φ Y φ) ∈ C(Γ). Finally, (2.5) completes the argument.

Taking D1 and D2 into account and applying Lemma 4.1 with C = CnDY
to both

D3 and D4, we immediately get:

Corollary 4.2. The following rules are derivable in DY:

x0 Y x1

x1 Y x0
, (4.1)

x0 Y (x1 Y x2)
(x0 Y x1) Y x2

. (4.2)

Lemma 4.3. The following rules are derivable in DY:

(x0 Y x1) Y x2

x0 Y (x1 Y x2)
, (4.3)
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(x0 Y x0) Y x1

x0 Y x1
, (4.4)

x0 Y x2

(x0 Y x1) Y x2
. (4.5)

Proof. First, in view of Corollary 4.2, (4.3) is by the following CnDY
-derivation:

(1) (x0 Y x1) Y x2 — hypothesis;
(2) (x1 Y x0) Y x2 — D3: 1;
(3) x2 Y (x1 Y x0) — (4.1)[x0/(x1 Y x0), x1/x2]: 2;
(4) (x2 Y x1) Y x0 — (4.2)[x0/x2, x2/x0]: 3;
(5) (x1 Y x2) Y x0 — D3[x0/x2, x2/x0]: 4;
(6) x0 Y (x1 Y x2) — (4.1)[x0/(x1 Y x0), x1/x0]: 5.

Then, in view of Corollary 4.2, (4.4) is by the following CnDY
-derivation:

(1) (x0 Y x0) Y x1 — hypothesis;
(2) x0 Y (x0 Y x1) — (4.3)[x1/x0, x2/x1]: 1;
(3) (x0 Y x1) Y x0 — (4.1)[x1/(x0 Y x1)]: 2;
(4) ((x0 Y x1) Y x0) Y x1 — D2[x0/((x0 Y x1) Y x0)]: 3;
(5) (x0 Y x1) Y (x0 Y x1) — (4.3)[x0/(x0 Y x1), x1/x0, x1/x2]: 4;
(6) (x0 Y x1) — D1[x0/(x0 Y x1)]: 5.

Finally, in view of Corollary 4.2, (4.5) is by the following CnDY
-derivation:

(1) x0 Y x2 — hypothesis;
(2) (x0 Y x2) Y x1 — D2[x0/(x0 Y x2)]: 1;
(3) x0 Y (x2 Y x1) — (4.3)[x1/x2, x2/x1]: 2;
(4) (x2 Y x1) Y x0 — (4.1)[x1/(x2 Y x1)]: 3;
(5) x2 Y (x1 Y x0) — (4.3)[x0/x2, x2/x0]: 4;
(6) (x1 Y x0) Y x2 — (4.1)[x0/x2, x1/(x1 Y x0)]: 5;
(7) (x0 Y x1) Y x2 — D3[x0/x1, x1/x0]: 6.

Theorem 4.4. CnDY
is Y-disjunctive.

Proof. With using Theorem 3.3. First, by D1, D2, Corollary 4.2 and Lemma 4.3(4.3),
(2.3), (2.5), (2.6) and (2.7) hold for C , CnDY

.
Next, consider any σ ∈ hom(Fmω

Σ,Fmω
Σ), any ψ ∈ Fmω

Σ and any i ∈ (5\1). The case,
when i 6∈ 3, is due to Lemma 3.4 with v = xi−1 and such R thatDi = (RYv). Otherwise,
we have Var(Di) = Vi 63 xi. Then, by Lemma 4.3(4.4)/(4.5), DiYxi is derivable in DY.
Let ς ∈ hom(Fmω

Σ,Fmω
Σ) extend (σ�Vω\{i})∪ [xi/ψ], in which case ς(Di) = σ(Di), and

so, by the structurality of C, we eventually conclude that (σ(Di)Yψ) = (ς(Di)Yς(xi)) =
ς(Di Y xi) is derivable in DY, as required.

The following auxiliary observation has proved quite useful for reducing the number
of rules of calculi to be constructed in Section 6 according to the universal method to
be elaborated in Section 5:

Corollary 4.5. Let φ, ψ, ϕ ∈ Fmω
Σ, v ∈ (Vω \ (

⋃
Var[{φ, ψ, ϕ}])) and C ⊇ DY a Σ-

calculus. Then, the rules (φ Y v)|(ϕ∨ v) and (ψ Y v)|(ϕ∨ v) are both derivable in C iff
the rule ((φ Y ψ) ∨ v)|(ϕ ∨ v) is so.

Proof. First of all, by Theorem 4.4, C , CnDY
⊆ C ′ , CnC is Y-disjunctive, and

so, by Lemma 2.1, is δ-multiplicative. Then, the “if” part is by (2.3), (2.4) and (2.1)
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with X = ∅, a = v and Y = {φ/ψ}, for C ⊆ C ′. Conversely, assume both (ϕ Y v) ∈
C ′(φ Y v) and (ϕ Y v) ∈ C ′(ψ Y v), applying [v/(ψ Y v)] and [v/(v Y ϕ)], respectively,
to which, by the structurality of C ′, we get both (ϕ Y (ψ Y v)) ∈ C ′(φ Y (ψ Y v)) and
(ϕ Y (v Y ϕ)) ∈ C ′(ψ Y (v Y ϕ)). In this way, as C ⊆ C ′, by (2.1) with X = ∅, a = v
and Y = {ϕ Y ϕ}, (2.5), (2.6) and (2.7), we eventually get (ϕ Y v) ∈ C ′((ϕ Y ϕ) Y v) =
C ′(vY (ϕYϕ)) = C ′((vYϕ)Yϕ) = C ′(ϕY (vYϕ)) ⊆ C ′(ψY (vYϕ)) = C ′((ψYv)Yϕ) =
C ′(ϕ Y (ψ Y v)) ⊆ C ′(φ Y (ψ Y v)) = C ′((φ Y ψ) Y v), as required.

4.2. Single- versus multi-conclusion sequent calculi

Let GαY, where α ⊆ ω, be the α-conclusion sequent Σ-calculus constituted by structural
α-conclusion sequent ∅-rules and the following α-conclusion sequent Σ-rules:

Gl Gr

Γ, x0 ` ∆ Γ, x1 ` ∆
Γ, (x0 Y x1) ` ∆

Γ ` Ω, xk
Γ ` Ω, (x0 Y x1)

where k ∈ 2 and Γ,∆,Ω ∈ V ∗
ω such that (dom ∆), ((dom Ω) + 1) ∈ α.

Lemma 4.6. Let ψ ∈ Fmω
Y and v ∈ Var(ψ). Suppose 1 ∈ α. Then, v ` ψ is derivable

in GαY.

Proof. By induction on construction of ψ. For consider the following complementary
cases:

(1) ψ ∈ Vω.
Then, Var(ψ) = {ψ} 3 v, in which case ψ = v, and so the Reflexivity axiom
completes the argument.

(2) ψ 6∈ Vω.
Then, ψ = (ϕ0 Y ϕ1), for some ϕ0, ϕ1 ∈ Fmω

Y, in which case v ∈ Var(ψ) =
(
⋃
k∈2 Var(ϕk)), and so v ∈ Var(ϕk), for some k ∈ 2. Hence, by induction hy-

pothesis, v ` ϕk is derivable in GαY. In this way, Gr completes the argument.

Corollary 4.7. Let φ, ψ ∈ Fmω
Y. Suppose Var(φ) ⊆ Var(ψ) and 1 ∈ α. Then, φ ` ψ

is derivable in GαY.

Proof. By induction on construction of φ. For consider the following complementary
cases:

(1) φ ∈ Vω.
Then, Var(ψ) ⊇ Var(φ) = {φ}, in which case φ ∈ Var(ψ), and so Lemma 4.6
completes the argument.

(2) φ 6∈ Vω.
Then, φ = (ϕ0 Y ϕ1), for some ϕ0, ϕ1 ∈ Fmω

Y, in which case Var(ψ) ⊇ Var(φ) =
(
⋃
k∈2 Var(ϕk)), and so Var(ψ) ⊇ Var(ϕk), for each k ∈ 2. Hence, by induction

hypothesis, ϕk ` ψ is derivable in GαY, for every k ∈ 2. Thus, Gl completes the
argument.
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Let τY : SeqωΣ → Seq2
Σ be defined as follows:

τY(Γ ` ∆) ,

{
Γ ` ∆ if ∆ = ∅,
Γ ` (Y∆) otherwise,

for all (Γ ` ∆) ∈ SeqωΣ, in which case:

σ(τY(Γ ` ∆)) = τY(σ(Γ ` ∆)). (4.6)

Lemma 4.8. For every R ∈ G
ω[\1]
Y , τY(R) is derivable in G

2[\1]
Y .

Proof. Consider the following exhaustive cases:

(1) R is either Gl or the Reflexivity axiom or a left-side basic structural rule or a
Cut with ∆ = ∅.
Then, τY(R) is a substitutional Σ-instance of a rule in G

2[\1]
Y , and so is derivable

in it.
(2) R is either Gr or a right-side basic structural rule.

Then, τY(R) is of the form

Λ ` φ
Λ ` ψ

,

where Λ ∈ V ∗
ω and φ, ψ ∈ Fmω

Y, while Var(φ) ⊆ Var(ψ), in which case Corollary
4.7 and Cut complete the argument.

(3) R is a Cut with ∆ 6= ∅.
Then, τY(R) is as follows:

Λ,Γ ` (φ Y x0) Γ, x0 ` ψ
Λ,Γ ` ψ

,

where φ , (Y∆) ∈ Fmω
Y and ψ , (Y(∆,Θ)) ∈ Fmω

Y, in which case Var(φ) ⊆
Var(ψ), and so, by Corollary 4.7, φ ` ψ is derivable in G

2[\1]
Y , and so is Γ, φ ` ψ,

by basic structural rules. Hence, by Gl, the rule (Γ, x0 ` ψ)|(Γ, (φ Y x0) ` ψ) is
derivable in G

2[\1]
Y . Thus, Cut completes the argument.

With using induction on the length of (Gω[\1]
Y ∪A)-derivations, by (4.6), Lemma 4.8

and the structurality of the consequence of any calculus, we immediately get:

Theorem 4.9. Let (A∪{Φ}) ⊆ Seqω[\1]
Σ . Suppose Φ is derivable in G

ω[\1]
Y ∪A. Then,

τY(Φ) is derivable in G
2[\1]
Y ∪ τY[A].

Though the converse holds as well, because any [purely] milti-conclusion sequent Ψ
and τY[Ψ] are derivable from one another in G

ω[\1]
Y ⊇ G

2[\1]
Y , this point is no matter for

our further argumentation.
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5. Main general results

Fix any finite Y-disjunctive Σ-matrix A with a finite equality determinant Υ ⊆
Var−1[{V1}] containing x0 to be supposed to be totally-ordered by some ., x0 being its
greatest element. Let Σ0 be the set of nullary elements of Σ. Given any X ⊆ (Vω∪Σ0),
put Υ[X] , {υ(x) | υ ∈ Υ, x ∈ X}.

To simplify further notations, we adopt the following “sign” one: given any Γ ∈
(Fmω

Σ)∗ and any k ∈ 2, put (k : Γ) , {〈k,Γ〉, 〈1− k,∅〉} ∈ SeqωΣ.
Following Pynko (2004), elements of Υ×Σ are referred to as 〈Υ,Σ〉-types, a 〈Υ,Σ〉-

type 〈υ, F 〉, where F is of arity n ∈ ω, being said to be Υ-complex, whenever both
n 6= 0 and (n = 1) ⇒ (υ(F (x0)) 6∈ Υ). Then, extending Pynko (2004), a Σ-sequential
Υ-table for A is any couple T of functions with domain Υ × Σ, in which case we set
(λ/ρ)T , π0/1(T ) to adapt conventions adopted in Pynko (2004), such that, for all
k ∈ 2 and each 〈υ, F 〉 ∈ (Υ×Σ), where F is of arity n ∈ ω, πk(T )(υ, F ) ∈ ℘ω(Υ[Vn]∗)2

has solely injective elements and is equivalent to k : υ(F (xi)i∈n) with respect to A:

A |= 〈∀xi〉i∈n((k : υ(F (xi)i∈n)) ↔ πk(T )(υ, F )), (5.1)

in which case every element of (λ/ρ)T (υ, F ) , ((ρ/λ)T (υ, F )]{(0/1) : υ(F (xi)i∈n)})
is true in A, that exists, by the constructive proof of Theorem 1 of Pynko (2004),
though not being unique, generally speaking.

Example 5.1. When υ = x0 and F = Y, in which case Y is a primary binary connec-
tive of Σ, and so 〈υ, F 〉 is Υ-complex, one can always take λT (υ, F ) = {x0 `;x1 `} and
ρT (υ, F ) = {` x0, x1} to satisfy (5.1), in which case λT (υ, F ) = {(x0 Y x1) ` x0, x1}
and ρT (υ, F ) = {x0 ` (x0 Yx1);x1 ` (x0 Yx1)}, and so their elements are all derivable
in GωY.

Then, let A′ be the set of all elements of λT (υ, F ) ∪ ρT (υ, F ), for all Υ-complex
〈Υ,Σ〉-types 〈υ, F 〉 but 〈x0,Y〉, in case Y ∈ Σ is primary.

Next, let A′′ be the set containing, for each c ∈ Σ0 and every υ ∈ Υ, exactly that
of the either axioms (0/1) : υ(c), which is true in A.

Given any Ω ∈ SeqωΣ(V1)∗, set

(qΩ) ,

{
` if Ω = ∅,
]〈Ωi[x0/xi]〉i∈n otherwise.

Further, the finite set Ax(Υ) of all disjoint injective elements of ((Υ)∗)2 with monotonic
sides is easily seen to be partially-ordered by v[1]. Given any set S of Σ-matrices, let
Ax(S) be the set of all elements of Ax(Υ) true in S, Ax∗[1](S) , minv[1](Ax(S)) and
ρS : SeqωΣ → ℘(S),Φ 7→ (S ∩Mod(Φ)).

Proposition 5.2. Let n ∈ ω and Ω ∈ SeqωΣ(V1)n. Then, Mod(Ω) = (
⋃
i∈n Mod(Ωi)).

In particular, qΩ is true in a set S of Σ-matrices iff img(ρS ◦Ω) is a covering of S.

Proof. The case, when n = 0, is by the fact that Mod(`) = ∅. Otherwise, the
inclusion from right to left is immediate. Conversely, consider any Σ-matrix D 6∈
(
⋃
i∈n Mod(Ωi)), in which case, for every i ∈ n, there is some di ∈ D such that

D 6|= Ωi[x0/di], and so D 6|= (qΩ)[xi/di]i∈n, as required.
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Furthermore, members of S(A) are uniquely determined by and so naturally iden-
tified with the carriers of their underlying algebras. Let A ⊆ S(A), in which case
m , |A| ∈ ω, B : m → A any enumeration of A and M any MCES for A.
Then, every element of the finite set A′′′

[1](M) , {qΩ | X ∈ M, n = (domX),Ω ∈∏
i∈n minv[1](Ax(Υ) ∩ ρ−1

A [{Xi}])} is true in A, by Proposition 5.2.
Finally, every element of A[1](M) , (A′ ∪ A′′ ∪ A′′′

[1](M)) is true in A. Moreover,
A[1](M) is finite, whenever Σ is so.

Lemma 5.3. Any multi-conclusion Σ-sequent Φ is true in A iff it is derivable in
GωY ∪A[1](M).

Proof. The “if” part is by the fact that every element of A[1](M) is true in A, while any
Y-disjunctive Σ-matrix (in particular, a submatrix of A) is a model of GωY. The converse
is proved by induction on ∂(Φ) ∈ ω, following the proof of Theorem 2 of Pynko (2004).
For suppose Φ is true in A[1]. First, assume ∂(Φ) = 0, that is, Φ ∈ (Υ[Vω∪Σ0]∗)2. Then,
the case, when either Φ is not disjoint or Ψ v1 Φ, for some Ψ ∈ A′′, is by Reflexivity,
basic structural rules and the structurality of the consequence of any calculus. The
opposite case is by basic structural rules and the structurality of the consequence of
any calculus as well the following two claims:

Claim 5.4. Let Φ ∈ (Υ[Vω ∪ Σ0]∗)2. Suppose it is disjoint and true in A, while
Ψ v1 Φ, for no Ψ ∈ A′′. Then, there are some Ω ∈

∏
j∈m Ax(Bj) and some v̄ ∈ V m

ω

such that, for every j ∈ m, (Ωj [x0/vj ]) v1 Φ, in which case ((qΩ)[xj/vj ]j∈m) v1 Φ,
and so (qΩ) v Φ.

Proof. By the item 4 of the proof of Theorem 2 of Pynko (2004), because, in that
case, for each j ∈ m, Φ is true in Bj ∈ A inheriting the equality determinant Υ.

Claim 5.5. Let Ω ∈ Ax(Υ)∗. Suppose Ω , (qΩ) is true in A (that is, C , img(ρA◦Ω)
is a covering of A; cf. Proposition 5.2), Then, there is some Ξ ∈ A′′′

[1](M) such that
Ξ v Ω.

Proof. In that case, as A is finite, C includes a minimal covering M of A. Let X
be the unique enumeration of M belonging to M. Consider any i ∈ n , |M |, in
which case Xi ∈ M ⊆ C, and so there is some ji ∈ (dom Ω) such that Xi = ρA(Ωji).
Then, Ωji ∈ Ax(Xi), in which case there is some Ξi ∈ Ax∗[1](Xi) such that Ξi v[1] Ωji ,
and so there is some ϕi[= x0] ∈ Fm1

Σ such that (Ξi[x0/ϕi]) v1 Ωji . And what is
more, ρA(Ξi) ⊆ ρA(Ωji) = Xi ⊆ ρA(Ξi), in which case ρA(Ξi) = Xi, and so Ξi ∈
(Ax(Υ) ∩ ρ−1

A [{Xi}]) ⊆ Ax(Xi), in which case Ξi ∈ minv[1](Ax(Υ) ∩ ρ−1
A [{Xi}]), for

Ξi ∈ Ax∗[1](Xi), and so Ξ , (qΞ) ∈ A′′′
[1](M). After all, for every i ∈ n, we have

((Ξi[x0/ϕi])[x0/xji ]) v1 (Ωji [x0/xji ]) v1 Ω, in which case we get (Ξ[xi/ϕi(xji)]i∈n) v1

Ω, and so Ξ v Ω, as required.

Next, consider any complex 〈Υ,Σ〉-type 〈υ, F 〉. We start from proving the fact that
the rule:

λT (υ, F ) ∪ ρT (υ, F )
`

(5.2)

is derivable in GωY ∪ A[1](M). Let n , |λT (υ, F ) ∪ ρT (υ, F )| ∈ ω. Take any bijection
Ψ : n → (λT (υ, F ) ∪ ρT (υ, F )). Then, by (5.1), the rule (5.2) is true in A, and so
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are all axioms in (Ψ A {`}) ⊆ (Υ[Vω]∗)2 ⊆ ∂−1[{0}]. Therefore, taking the above
argumentation of the case, when ∂(Φ) = 0, into account, all axioms in (Ψ A {`}) are
derivable in GωY∪A[1](M). Hence, applying n times Theorem 3.11, we conclude that the
rule (5.2) is derivable in GωY∪A[1](M). Moreover, GωY∪A[1](M) is clearly multiplicative,
and so deductively so. In this way, since every element of (λ/ρ)T (υ, F ), being in
A[1](M), unless υ = x0 and F = Y, is derivable in GωY ∪ A[1](M), in view of Example
5.1, taking basic structural rules into account, we see that the rule

(λ/ρ)T (υ, F )
(0/1) : υ(F (xi)i∈n)

is derivable in GωY ∪ A[1](M). Thus, in view of the deductive multiplicativity of GωY ∪
A[1](M) as well as the structurality of the consequence of any calculus, taking basic
structural rules into account, we see that all those rules, which belong to Definition 1(v)
of Pynko (2004), are derivable in GωY∪A[1](M). In this way, the case, when ∂(Φ) 6= 0, is
due to the last paragraph of the proof of Theorem 2 of Pynko (2004), as required.

Corollary 5.6. Let S ⊆ SeqωΣ. Then, any multi-conclusion Σ-sequent Φ is true in
S(A) ∩Mod(S) iff it is derivable in GωY ∪A[1](M) ∪ S.

Proof. The “if” part is by that of Lemma 5.3. Conversely, assume Φ is true in S(A)∩
Mod(S). Consider any B ∈ A and any h ∈ hom(Fmω

Σ,B) such that B |= Ψ[h], for all
Ψ ∈ SIΣ(S). Then, D , (img h) forms a subalgebra of B, while D , (B�D) ∈ S(A),
whereas h ∈ hom(Fmω

Σ,D) is surjective. Consider any g ∈ hom(Fmω
Σ,D) and any

Ω ∈ S. Then, there is some Σ-substitution σ such that g = (h ◦ σ), in which case
σ(Ω) ∈ SIΣ(S), and so D |= Ω[g], for B |= σ(Ω)[h]. Thus, D ∈ Mod(S), in which case
Φ is true in D, and so, in particular, B |= Φ[h]. In this way, first-order formulas of
SIΣ(S)∪{¬Φ} are collectively true in no member of A under any common assignment.
On the other hand, as both A and all members of it are finite, any ultra-product of
any tuple constituted by its members is isomorphic to one of them. Therefore, by the
Compactness Theorem Mal’cev (1965), there is some Ψ ∈ SIΣ(S)∗ such that Ψ A {Φ} is
true in A. Hence, by Lemma 5.3, all elements of Ψ A {Φ} are derivable in GωY∪A[1](M),
in which case, applying (dom Ψ) times Theorem 3.11, we eventually conclude that
(img Ψ)|Φ is derivable in GωY ∪A[1](M), and so Φ is derivable in GωY ∪A[1](M) ∪ S.

Given any S ⊆ SeqωΣ, set S\1 , ((B∩Seqω\1Σ )∪{(σ+1 ◦Γ) ` x0 | Γ ∈ (Fmω
Σ)∗, (Γ`) ∈

B}) ⊆ Seqω\1Σ .

Lemma 5.7. Let S ⊆ SeqωΣ and C a [consistent] Σ-matrix. Then, C ∈ Mod(S\1) if[f ]
C ∈ Mod(S).

Proof. The ”if” part is immediate. [Conversely, consider any Γ ∈ (Fmω
Σ)∗ such that

(σ+1 ◦ Γ) ` x0 is true in C and any h ∈ hom(Fmω
Σ,C). Take any a ∈ (C \ DC) 6= ∅.

Let g ∈ hom(Fmω
Σ,C) extend [xi+1/h(xi);x0/a]i∈ω, in which case h = (g ◦σ+1), and so

C |= ((σ+1 ◦ Γ) ` x0)[g] means C |= (Γ `)[h], for a 6∈ DC . Thus, Γ ` is true in C.]

In particular, elements of A[1](M)\1 are true in A, for those of A[1](M) are so.

Lemma 5.8. Let S ⊆ SeqωΣ. Then, any purely multi-conclusion Σ-sequent is derivable
in GωY ∪ S iff it is derivable in G

ω\1
Y ∪ S\1.
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Proof. The “if” part is by the inclusion G
ω\1
Y ∪S\1 ⊆ CnGω

Y∪S held by the structurality
of the latter and Right Enlargement.

Conversely, consider any Φ = (Γ ` ∆) ∈ Seqω\1Σ and any GωY ∪S-derivation Ψ of it of
length n ∈ ω. Take any ϕ ∈ (img ∆) 6= ∅. Then, in view of right-side basic structural
rules, 〈〈Ψi ] (` ϕ)〉i∈n,Φ〉 is a CnG

ω\1
Y ∪S\1

-derivation of Φ, as required.

Corollary 5.9. Let S ⊆ SeqωΣ. Then, any [purely] single-conclusion Σ-sequent is true
in A ∩Mod(S) iff it is derivable in G

2[\1]
Y ∪ τY[(A(1)(M) ∪ S)[\1]].

Proof. The “if” part is by the fact that every member of A ∩Mod(S), being clearly
a Y-disjunctive model of (A(1)(M) ∪ S)[\1] [cf. Lemma 5.7], is then a model of G

2[\1]
Y ∪

τY[(A(1)(M)∪S)[\1]]. The converse is by Theorem 4.9 and Corollary 5.6 as well as [both

Lemma 5.8 and] the diagonality of τY� Seq2[\1]
Σ .

Given an axiomatic [finite] purely single-conclusion sequent Σ-calculus G, we have
the [finite] Hilbert-style Σ-calculus (G↓) , {(img Γ)|ϕ | (Γ ` ϕ) ∈ G}. Conversely, given
a Hilbert-style Σ-calculus C, we have the axiomatic purely single-conclusion sequent Σ-
calculus (C↑) , {(Γ ` ϕ) ∈ Seq2\1

Σ | ((img Γ)|ϕ) ∈ C}, in which case (C↑↓) = C, as well
as the Hilbert-style Σ-calculus (C⇑) , ((C∩Fmω

Σ)∪(σ+1[C\Fmω
Σ]Yx0)). Likewise, given

an axiomatic [finite] multi-conclusion sequent Σ-calculus G, we have the [finite] Hilbert-
style Σ-calculi (G�) , (((τY[G]∩Seq1`(2\1)

Σ )↓)∪(σ+1[(τY[G]∩Seq(ω\1)`(2\1)
Σ \

⋃
i∈ω(V 1

{i}×
(Fmω\{i}

Σ )1))↓] Y x0) ∪ {(σ+1[img Γ] Y x0)|x0 | Γ ∈ (Fmω
Σ)∗, (Γ `) ∈ τY[G]} ∪ {xi|ϕ | i ∈

ω, ϕ ∈ Fmω\{i}
Σ , (xi ` ϕ) ∈ τY[G]}) and (G⇓) , ((τY[G\1]↓)⇑).

Lemma 5.10. Let C be a Y-disjunctive Σ-logic and S an axiomatic multi-conclusion
sequent Σ-calculus. Then, the extension of C relatively axiomatized by S� is equally
relatively axiomatized by S⇓, and so is Y-disjunctive.

Proof. In that case, any extension of C satisfies (2.3), (2.5), (2.6) and (2.7), and so,
given any Γ ∈ ℘ω(Fmω

Σ), applying the Σ-substitutions extending [xi+1/xi+2;x0/(x0 Y
x1)]i∈ω and [xi+2/xi+1;xj/x0]j∈2

i∈ω to the Σ-rules (σ+1[Γ] Y x0)|x0 and (σ+1[σ+1[Γ]] Y
x0)|(x1 Yx0), respectively, we see that any extension of C satisfies the former iff it does
the latter. Likewise, given any i ∈ ω and any ϕ ∈ Fmω\{i}

Σ , applying the Σ-substitutions
extending [xj/xj+1;xi/(xi+1 Y x0)]j∈(ω\{i}) and [xj+1/xj ;x0/ϕ]j∈ω to the Σ-rules xi|ϕ
and (xi+1 Yx0)|(σ+1(ϕ)Yx0), respectively, we see that any extension of C satisfies the
former iff it does the latter. Finally, Corollary 3.5 completes the argument.

Finally, given any (finite) S ⊆ SeqωΣ, we have the (finite) Σ-calculi H[1](M, S) ,

(DY ∪ ((S ∪ A[1](M))�)) and H′
[1](M, S) , (DY ∪ ((S ∪ A[1](M))⇓)) (whenever Σ is

finite, for A(M) is so, in that case).

Lemma 5.11. Let C be a finitary Y-disjunctive Σ-logic and S an axiomatic purely
single-conclusion sequent Σ-calculus. Suppose (S↓) ⊆ C. Then, C↑ is (G2\1

Y ∪S)-closed.
In particular, (CnG

2\1
Y ∪S(∅)↓) ⊆ C.

Proof. Immediate, by the structurality and Y-disjunctivity of C.

Lemma 5.12. Let C be a Y-disjunctive Σ-logic. Then, any Σ-rule (Y |ψ) is satisfied
in C iff σ+1(Y |ψ) Y x0 is so.
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Proof. The ”only if” part is by the structurality of C and Lemma 2.1(i)⇒(iii)(2.1)
with X = ∅ and a = x0. Conversely, assume σ+1(Y |ψ) Y x0 is satisfied in C, in which
case σ+1(Y |ψ) is so, by Lemma 4.1, and so, applying the Σ-substitution extending
[xi+1/xi]i∈ω, by the structurality of C, we eventually get ψ ∈ C(Y ), as required.

Theorem 5.13. Let S ⊆ SeqωΣ. Then, the logic of S∗(A) ∩Mod(S) is axiomatized by
H[1](M, S) or, equivalently, by H′

[1](M, S).

Proof. First of all, recall that CnDY
is Y-disjunctive (cf. Theorem 4.4), and so is

C , CnH[1](M,S) = CnH′
[1](M,S), in view of Lemma 5.10.

Next, every member of S∗(A)∩Mod(S), being a Y-disjunctive model of (S∪A[1](M))\1
(cf. Lemma 5.7), is so of τY[(S ∪ A[1](M))\1], and so of H′

[1](M, S), in view of Lemma
3.2.

Conversely, consider any Σ-rule R = (X|φ) true in S∗(A) ∩Mod(S). Take any enu-
meration Γ of X. Then, the purely single-conclusion Σ-sequent Φ , (Γ ` φ) is true in
S(A) ∩Mod(S), and so is derivable in G

2\1
Y ∪ τY[(S ∪A[1](M))\1], in view of Corollary

5.9. Moreover, by Lemma 5.12, we have (τY[(S∪A[1](M))\1]↓) ⊆ C. Hence, by Lemma
5.11, we eventually conclude that {R} = ({Φ}↓) ⊆ C, as required.

5.1. Disjunctive extensions

Lemma 5.14. (S(A) ∩Mod(A′′′
[1](M))) = S(A).

Proof. The inclusion from right to left is by the inclusion A ⊆ Mod(A′′′
[1](M)) and the

fact that the model classes of universal first-order theories are hereditary, while S is
transitive. Conversely, consider any D ∈ (S(A)\S(A)). Then, for each j ∈ m, D * Bj ,
in which case there is some dj ∈ (D \ Bj) 6= ∅. Let (X/Y )j , {υ ∈ Υ | υA(dj) ∈
/ 6∈ DA}, in which case (Xj ∩ Yj) = ∅, and (k/l)j , |(X/Y )j | ∈ ω, respectively.
Take any isomorphism (Γ/∆)j from 〈(k/l)j ,⊆ ∩ (k/l)2j 〉 onto 〈(X/Y )j ,. ∩ (X/Y )2j 〉,
respectively. Then, Ωj , (Γj ` ∆j) ∈ Ax(Υ) is not true in D under [x0/dj ] but is true
in Bj , because dj 6= b, for all b ∈ Bj , while Υ is an equality determinant for A, in
which case Ωj ∈ Ax(Bj), while q〈Ωj〉j∈m is not true in D under [xj/dj ]j∈m, and so
Claim 5.5 completes the argument.

Lemma 5.15. Let C be a Σ-logic and M a finite class of finite Σ-matrices. Suppose
C` is defined by M. Then, C is so too, that is, it is finitary.

Proof. In that case, ≡C = ≡C` , while C ⊇ C` = CnωM. To prove the converse is to
prove that M ⊆ Mod(C). For consider any A ∈ M, any Γ ⊆ Fmω

Σ, any ϕ ∈ C(Γ) and
any h ∈ hom(Fmω

Σ,A) such that h[Γ] ⊆ DA. Then, α , |A| ∈ (ω \ 1) ⊆ ℘∞\1(ω). Take
any bijection e : Vα → A to be extended to a g ∈ hom(Fmα

Σ,A). Then, e−1 ◦ (h�Vω)
is extended to a Σ-substitution σ, in which case σ(ϕ) ∈ C(σ[Γ]), for C is structural,
while σ[Γ ∪ {ϕ}] ⊆ Fmα

Σ. For every B ∈ M, we have the equivalence relation θB ,
{〈a, b〉 ∈ B2 | (a ∈ DB) ⇔ (b ∈ DB)} on B. Moreover, as both α, M and all members
of it are finite, we have the finite set I , {〈h′,B〉 | B ∈ M, h′ ∈ hom(Fmα

Σ,B)}, in
which case, for each i ∈ I, we set hi , π0(i), Bi , π1(i) and θi , θBi . Then, by
(3.1), we have θ , (≡C` ∩ (Fmα

Σ)2) = ((Fmα
Σ)2∩

⋂
i∈I h

−1
i [θi]), in which case, for every

i ∈ I, θ ⊆ h−1
i [θi] = ker(νθi

◦ hi), and so gi , (νθi
◦ hi ◦ ν−1

θ ) : (Fmα
Σ /θ) → Bi.

In this way, f : (Fmα
Σ /θ) → (

∏
i∈I Bi), a 7→ 〈gi(a)〉i∈I is injective, for (ker f) =
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((Fmα
Σ /θ)

2 ∩
⋂
i∈I(ker gi)) is diagonal. Hence, Fmα

Σ /θ is finite, for
∏
i∈I Bi is so, and

so is (σ[Γ]/θ) ⊆ (Fmα
Σ /θ). For each c ∈ (σ[Γ]/θ), choose any φc ∈ (σ[Γ]∩ν−1

θ [{c}]) 6= ∅.
Put ∆ , {φc | c ∈ (σ[Γ]/θ)} ∈ ℘ω(σ[Γ]). Consider any ψ ∈ σ[Γ]. Then, ∆ 3 φνθ(ψ) ≡C
ψ, in which case ψ ∈ C(∆), and so σ[Γ] ⊆ C(∆). In this way, σ(ϕ) ∈ C(∆) = C`(∆),
for ∆ ∈ ℘ω(Fmω

Σ), so, by (3.1), σ(ϕ) ∈ CnαM(∆). Moreover, g[∆] ⊆ g[σ[Γ]] = h[Γ] ⊆
DA, and so h(ϕ) = g(σ(ϕ)) ∈ DA, as required.

Theorem 5.16. Let C be the logic of A. Then, the following hold:

(i) The mappings:

C ′ 7→ (S∗(A) ∩Mod(S)),
C 7→ CnC

are inverse to one another dual isomorphisms between the posets of all Y-
disjunctive extensions of C and of all consistently hereditary subsets of S∗(A);

(ii) the latter poset forms a finite distributive lattice, and so does the former one;
(iii) given a Σ-calculus C, the extension of C relatively axiomatized by C, being Y-

disjunctive, corresponds to the consistently hereditary subset of S∗(A) relatively
axiomatized by C;

(iv) given an axiomatic multi-conclusion sequent Σ-calculus S, the consistently hered-
itary subset of S∗(A) relatively axiomatized by S corresponds to the Y-disjunctive
extension of C relatively axiomatized by S(�/⇓);

(v) given any K ⊆ S∗(A) and any MCES N for it, the logic of K is the Y-disjunctive
extension of C relatively axiomatized by A′′′

[1](N)(�/⇓) and corresponding to
S∗(K).

In particular, any Y-disjunctive extension of C is finitary and finitely-relatively-axio-
matizable.

Proof. First, consider any Y-disjunctive extension C ′ of C, in which case, by Lemma
2.1(i)⇔(iii), C ′

` is a finitary Y-disjunctive extension of C, and so is axiomatized by a
Σ-calculus C (in particular, relatively to C) — e.g., by C ′

` itself. Then, C , (S∗(A) ∩
Mod(C ′

`)) = (S∗(A)∩Mod(C)) is the consistently hereditary subset of S∗(A) relatively
axiomatized by C. Clearly, C ′

` ⊆ CnC. Conversely, by Theorem 5.13 with S = (C↑),
CnC is the extension of C relatively axiomatized by C⇑. On the other hand, as C ⊆ C ′

`,
by Lemma 5.12, we have (C⇑) ⊆ C ′

`. Thus, C ′
` = CnC, in which case, by Lemma 5.15,

C ′ = CnC, and so C ′ = C ′
`.

Next, consider any K ⊆ S∗(A). Then, by Lemma 3.2, CnK is a Y-disjunctive exten-
sion of C. Take any MCES N for K. Then, applying Theorem 5.13 with S = ∅ twice (the
second time — with N instead of M), we see that CnK is axiomatized by A′′′

[1](N)(�/⇓)
relatively to C. In particular, by Lemmas 3.2, 5.7, 5.12, 5.14 and the Y-disjunctivity of
submatrices of A, we conclude that (S∗(A)∩Mod(CnK)) = (S∗(A)∩Mod(A′′′

[1](N)⇓)) =
(S∗(A) ∩ Mod(τY[A′′′

[1](N)\1])) = (S∗(A) ∩ Mod(A′′′
[1](N)) = S∗(K), being equal to K,

whenever this is consistently hereditary.
In this way, we have proved (i,iii,v), and so the final assertion. At last, (iv) is by

Theorem 5.13, while (ii) is by the fact that the set of all consistently hereditary subsets
of S∗(A) is a closure system over it closed under unions.

As it is demonstrated in Subsubsection 6.2.4, S(�/⇓)/the reservation “being Y-
disjunctive” cannot be, generally speaking, replaced with τY[S\1]↓/omitted in the item
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(iv/iii) of Theorem 5.16, respectively.

5.2. Implicative case

Here, A is supposed to be a finite B-implicative Σ-matrix with equality determinant
Υ 3 x0, in which case it is Y-disjunctive, where Y , YB is not primary, and so is
properly covered by the above discussion. Let θB : Seq2\1

Σ → Fmω
Σ, (Γ ` φ) 7→ (Γ B φ).

Example 5.17. When Υ 3 υ = x0 and Σ 3 F = B, in which case B is a primary
binary connective of Σ, and so 〈υ, F 〉 is Υ-complex, one can always take λT (υ, F ) =
{` x0;x1 `} and ρT (υ, F ) = {x0 ` x1} to satisfy (5.1), in which case λT (υ, F ) =
{x0, (x0 B x1) ` x1} and ρT (υ, F ) = {` x0, (x0 B x1);x1 ` (x0 B x1)}, and so elements
of both θB[τY[λT (υ, F )]] = {x0 B ((x0 Bx1)Bx1)} and θB[τY[ρT (υ, F )]] = {(x0 B (x0 B
x1)) B (x0 B x1), (3.5)[x0/x1, x1/x0]} are derivable in IB, in view of Lemma 3.8, (3.2),
(3.3) and (3.5).

In this way, let A′
( 6B) be the set of all elements of λT (υ, F ) ∪ ρT (υ, F ), for all

Υ-complex 〈Υ,Σ〉-types 〈υ, F 〉 (but 〈x0,B〉, in case B ∈ Σ is primary). Then,
set A[1]( 6B)(M) , (A′

( 6B) ∪ A′′ ∪ A′′′
[1](M)) and I[1](6B)(M, S) , (IPL

B ∪ θB[τY[S\1 ∪
A[1](6B)(M)\1]]), where S ⊆ SeqωΣ.

Theorem 5.18. Let S ⊆ SeqωΣ. Then, the logic of S∗(A) ∩Mod(S) is axiomatized by
I[1] 6B(M, S).

Proof. First of all, note that C , CnI[1] 6B(M,S) is equally axiomatized by I[1](M, S),
in view of Example 5.17, and is Y-disjunctive, by Theorem 3.9.

Next, every member of S∗(A) ∩ Mod(S), being an B-implicative (in particular, Y-
disjunctive) model of S\1 ∪A(M)\1 (cf. Lemma 5.7), is so of τY[S\1 ∪A[1](M)\1], and
so of I[1](M, S).

Conversely, consider any Σ-rule R = (X|ϕ) true in S∗(A) ∩ Mod(S). Take any
enumeration Γ of X. Then, the purely single-conclusion Σ-sequent Φ , (Γ ` ϕ) is
true in S(A) ∩ Mod(S), and so is derivable in G

2\1
Y ∪ τY[S\1 ∪ A[1](M)\1], in view of

Corollary 5.9. Finally, as θB[τY[S\1 ∪ A[1](M)\1]] ⊆ I(M, S) ⊆ C, by (3.3), we have
(τY[S\1 ∪A[1](M)\1]↓) ⊆ C, and so, by Lemma 5.11, we get {R} = ({Φ}↓) ⊆ C.

Combining Theorems 5.16, 5.18 with Corollary 3.5, we have:

Corollary 5.19. Let C be the logic of A and � any (possibly, secondary) binary
connective of Σ. Suppose each member of A is �-disjunctive. Then, any extension of
C is Y-disjunctive iff it is �-disjunctive iff it is axiomatic. Moreover, the following
hold:

(i) given an axiomatic multi-conclusion sequent Σ-calculus S, the consistently hered-
itary subset of S∗(A) relatively axiomatized by S defines the axiomatic extension
of C relatively axiomatized by θB[τ�[S\1]];

(ii) given any K ∈ S∗(A) and any MCES N for it, the logic of K is the axiomatic
extension of C relatively axiomatized by θB[τ�[A′′′

[1](N)\1]].
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6. Applications and examples

Here, we use Theorems 5.13 and 5.18 tacitly, following notations adopted in the
previous section and, unless otherwise specified, supposing that A = {A}, and so
M = {〈0,A〉}, in which case A(1)[′′′] stands for A(1)[′′′](M)[= Ax∗(1)(A)], respectively.

6.1. Disjunctive and implicative positive fragments of the classical logic

Here, we deal with the signature Σ(⊃)
+[,01] , ({∧,∨}[∪{⊥,>}](∪{⊃})). By D

(⊃)
n[,01], where

n(= 2) ∈ (ω\1), we denote the Σ(⊃)
+[,01]-algebra such that D

(⊃)
n[,01]�Σ+[,01] is the [bounded]

distributive lattice given by the chain n ordered by ordinal inclusion (and (i ⊃D⊃
2[,01]

j) , (max(1 − i, j), for all i, j ∈ 2). Then, the logic of the ∨-disjunctive (and ⊃-
implicative) D(⊃)

2[,01] , 〈D(⊃)
2[,01], {1}〉 with equality determinant Υ = {x0} (cf. Example

1 of Pynko (2004)) is the Σ(⊃)
+[,01]-fragment of the classical logic. Throughout the rest

of this subsection, it is supposed that Σ ⊆ Σ(⊃)
+,01 and A = (D(⊃)

2,01�Σ), in which case
A′′′ = ∅.

First, in case Σ = {⊃}, both A′
6⊃ and A′′ are empty, and so is A6⊃. In this way, we

have the following well-known result:

Corollary 6.1. The {⊃}-fragment of the classical logic is axiomatized by IPL
⊃ .

Likewise, in case Σ = {∨}, both A′ and A′′ are empty, and so is A. In this way, we
get:

Corollary 6.2. The {∨}-fragment of the classical logic is axiomatized by D∨.

Next, let Σ = Σ+. Then, A′′ = ∅, while one can take λT (x0,∧) = {x0, x1 `} and
ρT (x0,∧) = {` x0;` x1} to satisfy (5.1), in which case λT (x0,∧) = {(x0 ∧ x1) `
x0; (x0∧x1) ` x1} and ρT (x0,∧) = {x0, x1 ` (x0∧x1)}, and so A = A′ = {(x0∧x1) `
x0; (x0 ∧ x1) ` x1;x0, x1 ` (x0 ∧ x1)}. Thus, we get:

Corollary 6.3. The Σ+-fragment of the classical logic is axiomatized by the calculus
PC+ resulted from D∨ by adding the following rules:

C1 C2 C3

(x1 ∧ x2) ∨ x0
x1 ∨ x0

(x1 ∧ x2) ∨ x0
x2 ∨ x0

x1 ∨ x0;x2 ∨ x0

(x1 ∧ x2) ∨ x0

It is remarkable that the calculus PC+ consists of seven rules, while that which was
found in Dyrda and Prucnal (1980) has nine rules. This demonstrates the practical
applicability of our generic approach (more precisely, its factual ability to result in
really “good” calculi to be enhanced a bit more by replacing appropriate pairs of
rules/premises with single ones upon the basis of Corollary 4.5 and rules Ci, where
i ∈ (4 \ 1), whenever it is possible, to be done below tacitly — “on the fly”).

Likewise, let Σ = Σ⊃
+. Then, A′′ = ∅, and so, taking Corollary 3.10(ii) and Example

5.1 into account, we have the following well-known result:

Corollary 6.4. The Σ⊃
+-fragment of the classical logic is axiomatized by the calculus
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PC⊃+ resulted from IPL
⊃ by adding the following axioms:

(x0 ∧ x1) ⊃ xi x0 ⊃ (x1 ⊃ (x0 ∧ x1))
xi ⊃ (x0 ∨ x1) (x0 ⊃ x2) ⊃ ((x1 ⊃ x2) ⊃ ((x0 ∨ x1) ⊃ x2))

where i ∈ 2.

Finally, let Σ = Σ[⊃]
+,01, in which case A′ is as above, while A′′ = {` >;⊥ `}, and so

[taking Corollary 3.10(ii) into account] we get:

Corollary 6.5. The Σ[⊃]
+,01-fragment of the classical logic is axiomatized by the calculus

PC[⊃]
+,01 resulted from PC

[⊃]
+ by adding the following rules:

> ⊥ ∨ x0

x0
[⊥ ⊃ x0]

6.2. Miscellaneous four-valued expansions of Belnap’s four-valued logic

Let Σ(⊃)
∼,+[,01] , (Σ(⊃)

+[,01] ∪ {∼}), where ∼ (weak negation) is unary.
Here, it is supposed that Σ ⊇ Σ∼,+[,01], (A�Σ∼,+[,01]) = DM4[,01], where (DM4[,01]�

Σ+[,01]) , D2
2[,01], while ∼DM4[,01]〈i, j〉 , 〈1− j, 1− i〉, for all i, j ∈ 2, in which case we

use the following standard notations for elements of 22 going back to Belnap (1977):

t , 〈1, 1〉, f , 〈0, 0〉, b , 〈1, 0〉, n , 〈0, 1〉,

and A , 〈A, {b, t}〉, in which case it is ∨-disjunctive, while Υ = {x0,∼x0} is an
equality determinant for it (cf. Example 2 of Pynko (2004)), whereas A′′′ = ∅. (Since
the logic B4[,01] of DM4[,01] , (A�Σ∼,+[,01]) is the [bounded version of] Belnap’s logic,
the logic of A is a four-valued expansion of B4[,01].)

First, let Σ = Σ∼,+, in which case A′′ = ∅, while the case of the Υ-complex
〈Υ,Σ〉-type 〈x0,∧〉 is as in the previous subsection, whereas others but 〈x0,∨〉 are as
follows. First of all, one can take λT (∼x0,∨) = {∼x0,∼x1 `} and ρT (∼x0,∨) = {`
∼x0;` ∼x1} to satisfy (5.1), in which case λT (∼x0,∨) = {∼(x0 ∨ x1) ` ∼x0;∼(x0 ∨
x1) ` ∼x1} and ρT (∼x0,∨) = {∼x0,∼x1 ` ∼(x0 ∨ x1)}. Likewise, one can take
λT (∼x0,∧) = {∼x0 `;∼x1 `} and ρT (∼x0,∧) = {` ∼x0,∼x1} to satisfy (5.1), in
which case λT (∼x0,∧) = {∼(x0 ∧ x1) ` ∼x0,∼x1} and ρT (∼x0,∧) = {∼x0 ` ∼(x0 ∧
x1);∼x1 ` ∼(x0 ∧x1)}. Finally, one can take λT (∼x0,∼) = {x0 `} and ρT (∼x0,∼) =
{` x0} to satisfy (5.1), in which case λT (∼x0,∼) = {∼∼x0 ` x0} and ρT (∼x0,∼) =
{x0 ` ∼∼x0}. In this way, we get:

Corollary 6.6. B4 is axiomatized by the calculus B resulted from PC+ by adding the
following rules as well as the inverse to these:

NN ND NC

x1 ∨ x0∼∼x1 ∨ x0

(∼x1 ∧ ∼x2) ∨ x0

∼(x1 ∨ x2) ∨ x0

(∼x1 ∨ ∼x2) ∨ x0

∼(x1 ∧ x2) ∨ x0

The calculus B has 13 rules, while the very first axiomatization of B4 discovered in
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Pynko (1995a) (cf. Definition 5.1 and Theorem 5.2 therein)2 has 15 rules, “two rules
win” being just due to the advance of the present study with regard to Dyrda and
Prucnal (1980) (cf. the previous subsection).

Now, let Σ = Σ∼,+,01, in which case both A′ and A′′′ are as above, while A′′ =
{>;∼⊥;⊥ `;∼> `}, and so we get:

Corollary 6.7. B4,01 is axiomatized by the calculus B01 resulted from B ∪ PC+,01 by
adding the following axiom and rule:

∼⊥ ∼> ∨ x0

x0

6.2.1. The classical expansion

Let Σ(⊃)
',+[,01] , (Σ(⊃)

∼,+[,01] ∪ {¬}), where ¬ (classical negation) is unary.

Here, it is supposed that Σ = Σ',+[,01], while ¬A〈i, j〉 , 〈1− i, 1− j〉, for all i, j ∈ 2.
Then, one can take λT (x0,¬) = {` x0} and ρT (x0,¬) = {x0 `} to satisfy (5.1), in
which case λT (x0,¬) = {x0,¬x0 `} and ρT (x0,¬) = {` x0,¬x0}. Likewise, one can
take λT (∼x0,¬) = {` ∼x0} and ρT (∼x0,¬) = {∼x0 `} to satisfy (5.1), in which case
λT (∼x0,¬) = {∼x0,∼¬x0 `} and ρT (∼x0,¬) = {` ∼x0,∼¬x0}. Thus, we get:

Corollary 6.8. The logic of A is axiomatized by the calculus CB[01] resulted from
B[01] by adding the following rules:

N1 N2 N3 N4

(x1 ∧ ¬x1) ∨ x0
x0

x0 ∨ ¬x0
(∼x1 ∧ ∼¬x1) ∨ x0

x0
∼x0 ∨ ∼¬x0

6.2.2. The bilattice expansions

Let Σ(⊃)
∼/',2:+[,01] , (Σ(⊃)

∼/',+[,01]∪{u,t}[∪{0,1}]), where u and t (knowledge conjunc-
tion and disjunction, respectively) are binary [while 0 and 1 are nullary].

Here, it is supposed that Σ = Σ∼/',2:+[,01], while

(〈i, j〉(u/t)A〈k, l〉) , 〈(min /max)(i, k), (max /min)(j, l)〉,

for all i, j, k, l ∈ 2 [whereas 0A , n and 1A , b].
First, let Σ = Σ∼,2:+, in which case A′′ = ∅. Then, one can take λT (x0,u) =

{x0, x1 `} and ρT (x0,u) = {` x0;` x1} to satisfy (5.1), in which case λT (x0,u) =
{(x0ux1) ` x0; (x0ux1) ` x1} and ρT (x0,u) = {x0, x1 ` (x0ux1)}. Likewise, one can
take λT (x0,t) = {x0 `;x1 `} and ρT (x0,t) = {` x0, x1} to satisfy (5.1), in which
case λT (x0,t) = {(x0tx1) ` x0, x1} and ρT (x0,t) = {x0 ` (x0tx1);x1 ` (x0tx1)}.
Next, one can take λT (∼x0,u) = {∼x0,∼x1 `} and ρT (∼x0,u) = {` ∼x0;` ∼x1} to
satisfy (5.1), in which case λT (∼x0,u) = {∼(x0 u x1) ` ∼x0;∼(x0 u x1) ` ∼x1} and
ρT (∼x0,u) = {∼x0,∼x1 ` ∼(x0 u x1)}. Finally, one can take λT (∼x0,t) = {∼x0 `
;∼x1 `} and ρT (∼x0,t) = {` ∼x0,∼x1} to satisfy (5.1), in which case λT (∼x0,t) =

2In this connection, we should like to take the opportunity to specify the ambiguous footnote 3 on p. 443

therein. The problem has been that, as we have noticed, because of missing a reservation like “in reply to our
first informing him about this result about two weeks before” just after “1994”, the mentioned footnote has

been misleading readers leaving them with wrong impression about the genuine priority/authorship as to this
result.

24



{∼(x0 t x1) ` ∼x0,∼x1} and ρT (∼x0,t) = {∼x0 ` ∼(x0 t ∼x1);∼x1 ` ∼(x0 t x1)}.
Thus, we get:

Corollary 6.9. The logic of A is axiomatized by the calculus BL resulted from adding
to B the following rules as well as the inverse to these:

KC KD NKC NKD

(x1 ∧ x2) ∨ x0

(x1 u x2) ∨ x0

(x1 ∨ x2) ∨ x0

(x1 t x2) ∨ x0

(∼x1 ∧ ∼x2) ∨ x0

∼(x1 u x2) ∨ x0

(∼x1 ∨ ∼x2) ∨ x0

∼(x1 t x2) ∨ x0

Likewise, let Σ = Σ∼,2:+,01, in which case both A′ and A′′′ are as above, while
A′′ = ({⊥ `;>} ∪ {∼i0 `;∼i1 | i ∈ 2}), and so we have:

Corollary 6.10. The logic of A is axiomatized by the calculus BL01 resulted from
adding to BL ∪B01 the following axioms and rules:

∼i1 ∼i0 ∨ x0

x0

where i ∈ 2.

Finally, when Σ = Σ',2:+[,01], we have:

Corollary 6.11. The logic of A is axiomatized by the calculus CB ∪BL[01].

6.2.3. Implicative expansions

Here, it is supposed that ⊃ ∈ Σ, while (〈i, j〉 ⊃A 〈k, l〉) , 〈max(1− i, k),max(1− i, l)〉,
for all i, j, k, l ∈ 2, in which case A is ⊃-implicative.

First, let Σ = Σ⊃
∼,+. Clearly, one can take λT (∼x0,⊃) = {x0,∼x1 `} and ρT (∼x0,⊃

) = {` x0;` ∼x1} to satisfy (5.1), in which case λT (∼x0,⊃) = {∼(x0 ⊃ x1) `
x0;∼(x0 ⊃ x1) ` ∼x1} and ρT (∼x0,⊃) = {x0,∼x1 ` ∼(x0 ⊃ x1)}. Therefore, taking
Corollary 3.10(ii) and Example 5.1 into account, we get:

Corollary 6.12. The logic of A is axiomatized by the calculus B⊃ resulted from PC⊃+
by adding the following axioms:

∼∼x0 ⊃ x0 x0 ⊃ ∼∼x0 (6.1)
∼(x0 ∨ x1) ⊃ ∼xi ∼x0 ⊃ (∼x1 ⊃ ∼(x0 ∨ x1)) (6.2)
∼xi ⊃ ∼(x0 ∧ x1) (∼x0 ⊃ x2) ⊃ ((∼x1 ⊃ x2) ⊃ (∼(x0 ∧ x1) ⊃ x2)) (6.3)

∼(x0 ⊃ x1) ⊃ ∼ixi x0 ⊃ (∼x1 ⊃ ∼(x0 ⊃ x1))

where i ∈ 2.

It is remarkable that B⊃ is actually the calculus Par introduced in Popov (1989)
but regardless to any semantics. In this way, the present study provides a new (and
quite immediate) insight into the issue of semantics of Par first being due to Pynko
(1999) but with using the intermediate purely multi-conclusion sequent calculus GPar
actually introduced in Popov (1989) regardless to any semantics too and then studied
semantically in Pynko (1999).

Likewise, in case Σ = Σ⊃
∼,+,01, we have:
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Corollary 6.13. The logic of A is axiomatized by the calculus B⊃
01 resulted from

B⊃ ∪ PC⊃+,01 by adding the following axioms:

∼⊥ ∼> ⊃ x0

Now, let Σ = Σ⊃
∼,2:+. Then, we have:

Corollary 6.14. The logic of A is axiomatized by the calculus BL⊃ resulted from B⊃

by adding the following axioms:

(x0 u x1) ⊃ xi x0 ⊃ (x1 ⊃ (x0 u x1))
xi ⊃ (x0 t x1) (x0 ⊃ x2) ⊃ ((x1 ⊃ x2) ⊃ ((x0 t x1) ⊃ x2))
∼(x0 u x1) ⊃ ∼xi ∼x0 ⊃ (∼x1 ⊃ ∼(x0 u x1))
∼xi ⊃ ∼(x0 t x1) (∼x0 ⊃ x2) ⊃ ((∼x1 ⊃ x2) ⊃ (∼(x0 t x1) ⊃ x2))

where i ∈ 2.

Likewise, when Σ = Σ⊃
∼,2:+,01, we have:

Corollary 6.15. The logic of A is axiomatized by the calculus BL⊃
01 resulted from

BL⊃ ∪B⊃
01 by adding the following axioms:

∼i1 ∼i0 ⊃ x0

where i ∈ 2.

Further, let Σ = Σ⊃
',+[,01]. Then, taking (3.3) and Corollary (3.10)(i) into account,

we have:

Corollary 6.16. The logic of A is axiomatized by the calculus CB⊃
[01] resulted from

B⊃
[01] by adding the axioms N2, N4 and the following ones:

∼ix1 ⊃ (∼i¬xi ⊃ x0),

where i ∈ 2.

Finally, when Σ = Σ⊃
',2:+[,01], we have:

Corollary 6.17. The logic of A is axiomatized by the calculus CB⊃ ∪BL⊃
[01].

6.2.4. Disjunctive extensions

Clearly, (S∗(A)[\{{n}}]) ⊆ S , S∗(DM4[,01]) = ({A,A 6n, A 6b, A 6n6b, {n}}[\{{n}}]),
where A( 6n)[ 6b] , (A(\{n})[\{b}]).

Remark 6.18. The mappings C 7→ (S ∩
⋃
{℘(S) | S ∈ C}) and C′ 7→ (C′ ∩ S∗(A))

form a dual Galois retraction between the posets of all consistently hereditary subsets
of S∗(A) and those of S, the former/latter one preserving generating subsets/relative
axiomatizations, respectively.
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First of all, we analyze ρS� Ax(Υ):

ρS(`) = ∅,
ρS(∼x0, x0 `) = {{n}, A 6b, A 6n6b},
ρS(` ∼x0, x0) = {A 6n, A 6n6b},

ρS(∼ix0 ` [∼1−ix0]) = {{n}},

where i ∈ 2. Moreover, since consistently hereditary proper subsets of the finite set S
are generated by subsets of S \ {A} being anti-chains, it suffices to to count A ⊆ S an
anti-chain not containing A. On the other hand, these are either ∅ or singletons but
{A} or {A 6n[ 6b], {n}}. Then, for every X ⊆ A, Ax(Υ) ∩ ρ−1

A [{X}] is either empty or a
singleton, and so is minv(Ax(Υ)∩ ρ−1

A [{X}]) = (Ax(Υ)∩ ρ−1
A [{X}]), unless X = {{n}},

in which case minv(Ax(Υ) ∩ ρ−1
A [{X}]) = {x0 `}.

By CEM we denote the axiomatic extension of C relatively axiomatized by the
Excluded Middle Law axiom:

x0 ∨ ∼x0. (6.4)

Then, C [EM+]R denotes the extension of C [EM] relatively axiomatized by the Resolution
rule:

{x1 ∨ x0,∼x1 ∨ x0}|x0. (6.5)

In this way, choosing those enumerations of two-element anti-chains comprehensively
described above, the first components of which contain {n}, and combining Remarks
3.1, 6.18 and Proposition 3.6 with the “�”-version of Theorem 5.16, we eventually
get:

Theorem 6.19. Suppose C has no/a theorem. Then, ∨-disjunctive extensions of C
form a Galois retract of the (9/6)-element non-chain distributive lattice of all those
of B4/,01, depicted at Figure 1/ with solely solid circles, and are defined by all those
consistent submatrices of A, the carriers of whose underlying algebras are subsets of
any element of those sets, which mark corresponding nodes, in which case different
nodes may correspond to a same extension with different relative axiomatizations.
Moreover, those of them, whose relative axiomatizations are not given by upper indices,
are axiomatized relatively to C by the following calculi:

CEM ∩ CR : {x1 ∨ x0,∼x1 ∨ x0} ` ((x2 ∨ ∼x2) ∨ x0),
IC : x0,

IC+0 : x1|x0,

CEM
+0 : x0|(x1 ∨ ∼x1), (6.6)

CEM+R
+0 : {(6.5), (6.6)}.

In case A6n/ 6b forms a subalgebra of A, CEM/R thus covers arbitrary three-valued
expansions of the logic of paradox LP Priest (1979) (cf. Pynko (1995b)) {including LP
itself, when Σ = Σ∼,+, and so subsuming Corollary 5.3 of Pynko (1995a), its bounded
expansion, when Σ = Σ∼,+,01, the logic of antinomies LA Asenjo and Tamburino
(1975), when Σ = Σ⊃

∼,+}/Kleene’s three-valued logic Kleene (1952). In particular, it

27



uIC |∅
@

@
@

@uCEM+R|{A 6n6b}
@

@
@

@

eIC+0 |{{n}}

eCEM+R
+0 |{A 6n6b, {n}}

@
@

@
@

�
�

�
�

�
�

�
�

uCR|{A6b}
�

�
�

�u
(CEM ∩ CR)|{A 6n, A 6b}

@
@

@
@

u
C|{A}

e
CEM

+0 |{A 6n, {n}}
@

@
@

@
uCEM|{A6n}

Figure 1. The lattice of ∨-disjunctive extensions of C| and their defining matrices.

appears that the Σ⊃
∼,+-calculus Pcont Popov (1989), resulted from Par by adding

(6.4) and involved therein regardless to any semantics as well, axiomatizes LA. And
what is more, it is Theorem 6.19 collectively with Pynko (2000) that have shown that
S(�/⇓)/the reservation “being Y-disjunctive” cannot be, generally speaking, replaced
with τY[S\1]↓/omitted in the item (iv/iii) of Theorem 5.16, when taking C = LP and
(S/C) = {(∼x0, x0 `)/({∼x1, x1}|x0)}, respectively. After all, recall that, in view of
Theorem 4.1 of Pynko (1995a), ∨-disjunctive extensions of B4 are exactly De Morgan
logics in the sense of the reference [Pyn 95a] of Pynko (1995b). In this way, the present
subsubsection incorporates the material announced therein advancing it much towards
arbitrary four-valued expansions, as we briefly outline below.

For instance, when Σ ⊇ Σ',+ (cf. Subsubsection 6.2.1), in which case A is (¬x0∨x1)-
implicative, while S∗(A) = {A[, A 6n6b]}, and so, by Theorem 6.19 and Corollary 5.19,
we have:

Corollary 6.20. Suppose A 6n6b does not [resp., does] form a subalgebra of A [in partic-
ular, Σ = Σ',+{,01}]. Then, axiomatic extensions of C are exactly ∨-disjunctive ones
and form the (2[+1])-element chain C ( C(EM+)R = CEM = [CnωA�A6n6b

(] IC.

Likewise, when Σ ⊇ Σ∼,2:+ (cf. Subsubsection 6.2.2), in which case S∗(A) =
{A[, {n}]}, and so, by Theorem 6.19, we get:

Corollary 6.21. Suppose C does [not] have a theorem. Then, ∨-disjunctive extensions
of C form the (2[+1])-element chain C[( IC+0] ( IC = CEM(+R) with CR = IC[+0].

Finally, when Σ = Σ⊃
∼,+[,01] (cf. Subsubsection 6.2.3), we set (DM/B)⊃4[,01] , (A/C),

in which case we have S∗(DM⊃
4[,01]) = S∗(DM4,01), and so, by Theorem 6.19 and

Corollary 5.19, we get:

Corollary 6.22. Suppose Σ ⊇ Σ⊃
∼,+. Then, axiomatic extensions of C are exactly
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∨-disjunctive ones and form a Galois retract of the six-element non-chain distribu-
tive lattice of those of B⊃

4[,01], depicted at Figure 1 with solely solid circles, and are
defined by all those consistent submatrices of A, the carriers of whose underlying al-
gebras are subsets of any element of those sets, which mark corresponding nodes, in
which case different nodes may correspond to a same extension with different relative
axiomatizations, proper consistent ones but CEM being axiomatized relatively to C by
the following axiomatic Σ-calculi:

(CEM ∩ CR) : ∼x0 ⊃ (x0 ⊃ (x1 ∨ ∼x1)),
CR : ∼x1 ⊃ (x1 ⊃ x0), (6.7)

CEM+R : {(6.4), (6.7)}.

6.3.  Lukasiewicz finitely-valued logics

Given any (N ∪ {n}) ⊆ ω, set (N ÷ n) , { in | i ∈ N}.
Let Σ , {⊃,¬}, n ∈ (ω\2) and Ln the Σ-matrix with Ln , (n÷(n−1)), DLn , {1},

¬Lna , (1−a) and (a ⊃Ln b) , min(1, 1−a+b), for all a, b ∈ Ln. The logic  Ln of Ln is
known as  Lukasiewicz n-valued logic (cf.  Lukasiewicz (1920) for the three-valued case
alone though). By induction on any m ∈ (ω\1), define the secondary unary connective
m⊗ of Σ as follows:

(m⊗ x0) ,

{
x0 if m = 1,
¬x0 ⊃ ((m− 1)⊗ x0) otherwise,

in which case (m⊗Ln a) = min(1,m · a), for all a ∈ Ln, and so, in particular, (m⊗)Ln

is monotonic. Then, set (�x0) , (¬min(1,n−2)(n− 1)⊗¬min(1,n−2)x0) and (x0 B x1) ,
(�x0 ⊃ �x1), being secondary, unless n = 2, when (�x0) = x0, and so B = ⊃ is
primary. In that case, �Ln = ((((n − 1) ÷ (n − 1)) × {0}) ∪ {〈1, 1〉}), and so Ln is
B-implicative, for (Ln�2) = L2 is ⊃-implicative.

And what is more, according to the constructive proof of Proposition 6.10 of Pynko
(2009), for each i ∈ ((n− 1) \ 2), there is some υi ∈ Fm1

{¬,2⊗} such that (υLn

i ( i
n−1) =

1) ⇔ (υLn

i ( i−1
n−1) 6= 1). In addition, put υn−1 , x0 ∈ Fm1

{¬,2⊗} and, in case n 6= 2,

υ1 , ¬x0 ∈ Fm1
{¬,2⊗}. In this way, for each i ∈ (n \ 1), it holds that (υLn

i ( i
n−1) = 1) ⇔

(υLn

i ( i−1
n−1) 6= 1). On the other hand, for every υ ∈ Fm1

{¬,2⊗}, υ
Ln is either monotonic

or anti-monotonic, for both xLn

0 = ∆n and (2⊗)Ln are monotonic, while ¬Ln is anti-
monotonic. Therefore, for each i ∈ N0/1 , {j ∈ (n \ 1) | υLn

j ( j
n−1) = / 6= 1}, υLn

i is

monotonic/anti-monotonic, in which case (υLn

j )
−1

[{1}] = (((n \ i)÷ (n− 1))/(i÷ (n−
1))), respectively, and so Υ , {υi | i ∈ (n \ 1)} ⊇ ({x0} ∪ {¬x0 | n 6= 2}) is a finite
equality determinant for Ln, ῡ : (n \ 1) → Υ being a bijection supposed to induce
a total ordering . on Υ, in which case 〈x0,¬〉 = 〈νn−1,¬〉 is not Υ-complex, unless
n = 2, when all 〈Υ,Σ〉-types are Υ-complex, for, in that case, Υ = {x0}. And what
is more, as it follows from the constructive proof of Proposition 6.10 of Pynko (2009),
non-Υ-complex 〈Υ,Σ〉-types other than 〈x0,¬〉 are exactly those of the form 〈υi,¬〉,
where n−1

2 > i ∈ (n \ 2), and so a 〈Υ,Σ〉-type of the form 〈υi,¬〉, where i ∈ (n \ 1), is
Υ-complex iff i ∈ Nc , {j ∈ ((n−min(1, n− 2)) \ 1) | (j 6= 1) ⇒ ((n− 1) ∈ (2 · j))}.
In particular, in case n ∈ (5 \ 3), 〈x0,¬〉 is the only non-Υ-complex 〈Υ,Σ〉-type. As
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(N0∩N1) = ∅ and (N0∪N1) = (n\1), we have the mapping µ , {〈i, k〉 ∈ ((n\1)×2) |
i ∈ Nk} : (n \ 1) → 2.

Let A , Ln. Then, A′′ = ∅. Moreover, under the conventions adopted in both
Pynko (2014) and Pynko (2015), we see that both

{Ii−1 : ϕ} ↔ (µ(i) : υi(ϕ)),
{Fi : ϕ} ↔ ((1− µ(i)) : υi(ϕ)),

where i ∈ (n\1) and ϕ ∈ Fmω
Σ, are true in A. Hence, in view of Corollary 2.4 of Pynko

(2014), A′′′
1 = {((1−µ(i)) : υi)] (µ(j) : υj) | i, j ∈ (n \1), i ∈ j}. And what is more, in

view of Lemma 2.1 of Pynko (2015), we have a Σ-sequential Υ-table T for A given as
follows. First, for all i ∈ (n \ 1) and all m ∈ 2, let πm(T )(υi,¬) , {(1−)µ(i)(1−)m(1−
µ(n − i)) : υn−i}. Next, for all i ∈ (n \ 1), let π1−µ(i)(T )(υi,⊃) , {(µ(n − 1 − k) :
νn−1−k) ] ((1− µ(i− k)) : νi−k(x1)) | k ∈ i} and πµ(i)(T )(υi,⊃) , ({((1− µ(n− k)) :
υn−k) ] (µ(i − k) : υi−k(x1)) | k ∈ (i \ 1)} ∪ {(1 − µ(n − i)) : υn−i;µ(i) : υi(x1)}). In
this way, taking Corollary 3.10(ii) into account, we eventually get:

Corollary 6.23.  Ln is axiomatized by the finite calculus Ln resulted from IPL
B by

adding the following axioms:

υi B υj (〈i, j〉 ∈ ((kerµ) ∩ (∈ ∩ n2)(2·µ(i))−1)

υi YB υj (〈i, j〉 ∈ (µ−1[∈ ∩ 22] ∩ (∈ ∩ n2))

υi B (υj B x1) (〈i, j〉 ∈ (µ−1[3 ∩ 22] ∩ (∈ ∩ n2))
υn−i YB υi(¬x0) (i ∈ Nc, µ(i) = µ(n− i))
υn−i B (υi(¬x0) B x1) (i ∈ Nc, µ(i) = µ(n− i))
υn−i B υi(¬x0) (i ∈ Nc, µ(i) 6= µ(n− i))
υi(¬x0) B υn−i (i ∈ Nc, µ(i) 6= µ(n− i))
υn−1−k B (υi−k(x1) B (υi(x0 ⊃ x1) B x2)) (k ∈ i ∈ (n \ 1), µ(i) =

µ(n− 1− k) = 0 6= µ(i− k))
υn−1−k B (υi(x0 ⊃ x1) B υi−k(x1)) (n 6= 2, k ∈ i ∈ (n \ 1), µ(i) =

µ(n− 1− k) = 0 = µ(i− k))
υn−1−k B (υi−k(x1) B υi(x0 ⊃ x1)) (k ∈ i ∈ (n \ 1), µ(i) 6=

µ(n− 1− k) = 0 6= µ(i− k))
υi−k(x1) B (υi(x0 ⊃ x1) B υn−1−k) (k ∈ i ∈ (n \ 1), µ(i) =

0 6= µ(n− 1− k) = µ(i− k))
(υn−1−k YB υi−k(x1)) YB υi(x0 ⊃ x1) (k ∈ i ∈ (n \ 1), µ(i) =

µ(n− 1− k) = 1 6= µ(i− k))
(υn−1−k B x2) B ((υi−k(x1) B x2)B
(υi(x0 ⊃ x1) B x2)) (k ∈ i ∈ (n \ 1), µ(i) =

0 = µ(i− k) 6= µ(n− 1− k))
(υn−1−k B x2) B ((υi(x0 ⊃ x1) B x2)B
(υi−k(x1) B x2)) (k ∈ i ∈ (n \ 1), µ(i) =

1 = µ(n− 1− k) = µ(i− k))
(υi−k(x1) B x2) B ((υi(x0 ⊃ x1) B x2)B
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(υn−1−k B x2)) (k ∈ i ∈ (n \ 1), µ(i) 6=
0 = µ(n− 1− k) = µ(i− k))

υn−k B (υi−k(x1) B (υi(x0 ⊃ x1) B x2)) (i ∈ (n \ 1), k ∈ (i \ 1),
µ(i) = µ(n− k) = 1 6= µ(i− k))

υn−k B (υi−k(x1) B υi(x0 ⊃ x1)) (i ∈ (n \ 1), k ∈ (i \ 1),
µ(i) 6= µ(n− k) = 1 6= µ(i− k))

υn−k B (υi(x0 ⊃ x1) B υi−k(x1)) (i ∈ (n \ 1), k ∈ (i \ 1),
µ(i) = µ(n− k) = 1 = µ(i− k))

υi−k(x1) B (υi(x0 ⊃ x1) B υn−k) (i ∈ (n \ 1), k ∈ (i \ 1),
µ(i) 6= µ(n− k) = 0 = µ(i− k))

(υn−k YB υi−k(x1)) YB υi(x0 ⊃ x1) (i ∈ (n \ 1), k ∈ (i \ 1),
µ(i) = µ(n− k) = 0 6= µ(i− k))

(υn−k B x2) B ((υi−k(x1) B x2)B
(υi(x0 ⊃ x1) B x2)) (i ∈ (n \ 1), k ∈ (i \ 1),

µ(i) 6= µ(n− k) = 0 6= µ(i− k))
(υn−k B x2) B ((υi(x0 ⊃ x1) B x2)B
(υi−k(x1) B x2)) (i ∈ (n \ 1), k ∈ (i \ 1),

µ(i) = µ(n− k) = 0 = µ(i− k))
(υi−k(x1) B x2) B ((υi(x0 ⊃ x1) B x2)B
(υn−k B x2)) (i ∈ (n \ 1), k ∈ (i \ 1),

µ(i) 6= µ(n− k) = 1 = µ(i− k))
υn−i B υi(x0 ⊃ x1) (i ∈ N0 63 (n− i))
υi(x0 ⊃ x1) B υn−i (i ∈ N1 63 (n− i))
υn−i B (υi(x0 ⊃ x1) B x2) (i ∈ N1 3 (n− i))
υn−i YB υi(x0 ⊃ x1) (n 6= 2, i ∈ N0 3 (n− i))
υi(x1) B υi(x0 ⊃ x1) (n 6= 2, i ∈ N0)
υi(x0 ⊃ x1) B υi(x1) (i ∈ N1)

It is remarkable that, in the classical case, when n = 2, the additional axioms of
Ln are exactly the Excluded Middle Law axiom (x0 YB ¬x0) = ((x0 ⊃ ¬x0) ⊃ ¬x0)
and the Ex Contradictione Quodlibet axiom x0 ⊃ (¬x0 ⊃ x1), L2 being a well-known
natural Hilbert-style axiomatization of the classical logic. And what is more, Ln grows
just polynomially (more precisely, quadratically) on n, so it eventually looks relatively
good, the additional axioms of L3 being as follows, where i ∈ 2:

¬x1 B (x1 B x0) ¬ixi B ((x0 ⊃ x1) B ¬ix1−i) ¬x0 B (x0 ⊃ x1)
x0 B ¬¬x0 x0 B (¬x1 B ¬(x0 ⊃ x1)) x1 B (x0 ⊃ x1)
¬¬x0 B x0 (x0 YB ¬x1) YB (x0 ⊃ x1) ¬(¬x0 ⊃ x1) B ¬x1

Concluding this discussion, we should like to highlight that, though, in general, an
analytical expression (if any, at all) for ῡ has not been known yet, the constructive
proof of Proposition 6.10 of Pynko (2009) has been implemented upon the basis of
SCWI-Prolog resulting in a quite effective logical program (taking less than second up
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to n = 1000) calculating ῡ, and so immediately yielding definitive explicit formulations
of both T (in particular, of the Gentzen-style axiomatization S(0,0)

A,T of  Ln; cf. Pynko
(2004)) and the Hilbert-style axiomatization Ln of  Ln found above.

6.4. Ha lkowska-Zajac logic

Here, it is supposed that Σ , Σ∼,+, (A�Σ+) , D3, ∼Ai , (min(1, i) · (3 − i)), for all
i ∈ 3, and DA , {0, 2}, in which case A, defining the logic HZ Ha lkowska and Zajac
(1988), is ⊃-implicative, where (x0 ⊃ x1) , ((∼x0 ∧ ∼x1) ∨ x1) is secondary, while
{x0,∼x0} is an equality determinant for A (cf. Example 2 of Pynko (2004)), and so
A′′ = ∅ and A′′′ = {` ∼x0, x0}. First, we have ∼A∼Aa = a, for all a ∈ A. Therefore,
one can take λT (∼x0,∼) = {x0 `} and ρT (∼x0,∼) = {` x0} to satisfy (5.1), in
which case λT (∼x0,∼) = {∼∼x0 ` x0} and ρT (∼x0,∼) = {x0 ` ∼∼x0}. Next,
consider any a, b ∈ A. Then, ∼A(a(∧/∨)Ab) ∈ DA iff either/both ∼Aa ∈ DA or/and
∼Ab ∈ DA. Therefore, one can take λT (∼x0,∨) = {∼x0,∼x1 `} and ρT (∼x0,∨) = {`
∼x0;` ∼x1} to satisfy (5.1), in which case λT (∼x0,∨) = {∼(x0 ∨ x1) ` ∼x0;∼(x0 ∨
x1) ` ∼x1} and ρT (∼x0,∨) = {∼x0,∼x1 ` ∼(x0 ∨ x1)}. Likewise, one can take
λT (∼x0,∧) = {∼x0 `;∼x1 `} and ρT (∼x0,∧) = {` ∼x0,∼x1} to satisfy (5.1), in
which case λT (∼x0,∧) = {∼(x0 ∧ x1) ` ∼x0,∼x1} and ρT (∼x0,∧) = {∼x0 ` ∼(x0 ∧
x1);∼x1 ` ∼(x0 ∧ x1)}. Moreover, (a(∧/∨)Ab) ∈ DA iff both (a = 1) ⇒ (b = (0/2))
and (b = 1) ⇒ (a = (0/2)). Therefore, one can take ρT (x0,∧) = {` x0, x1;` ∼x0, x1;`
∼x1, x0} and λT (x0,∧) = {x0, x1 `;x0,∼x0 `;x1,∼x1 `} to satisfy (5.1), in which
case λT (x0,∧) = {(x0 ∧ x1) ` x0, x1; (x0 ∧ x1) ` ∼x0, x1; (x0 ∧ x1) ` ∼x1, x0} and
ρT (x0,∧) = {x0, x1 ` (x0 ∧ x1);x0,∼x0 ` (x0 ∧ x1);x1,∼x1 ` (x0 ∧ x1)}. Likewise,
one can take ρT (x0,∨) = {` x0, x1;∼x1 ` x0;∼x0 ` x1} and λT (x0,∨) = {x0, x1 `;`
∼x0;` ∼x1} to satisfy (5.1), in which case λT (x0,∨) = {(x0 ∨ x1) ` x0, x1;∼x1, (x0 ∨
x1) ` x0;∼x0, (x0 ∨ x1) ` x1} and ρT (x0,∨) = {x0, x1 ` (x0 ∨ x1);` ∼x0, (x0 ∨ x1);`
∼x1, (x0 ∨ x1)}. In this way, taking Corollary 3.10(ii) into account, we eventually get:

Corollary 6.24. HZ is axiomatized by the calculus HZ resulted from IPL
⊃ by adding

the axioms (6.1), (6.2), (6.3) and the following ones, where i ∈ 2:

(x0 ⊃ x2) ⊃ ((x1 ⊃ x2) ⊃ ((x0 ∧ x1) ⊃ x2)) x0 ⊃ (x1 ⊃ (x0 ∧ x1))
(∼xi ⊃ x2) ⊃ ((x1−i ⊃ x2) ⊃ ((x0 ∧ x1) ⊃ x2)) xi ⊃ (∼xi ⊃ (x0 ∧ x1))
(x0 ⊃ x2) ⊃ ((x1 ⊃ x2) ⊃ ((x0 ∨ x1) ⊃ x2)) x0 ⊃ (x1 ⊃ (x0 ∨ x1))
(∼xi ⊃ (x0 ∨ x1)) ⊃ (x0 ∨ x1) ∼x1−i ⊃ ((x0 ∨ x1) ⊃ xi)

(∼x0 ⊃ x0) ⊃ x0

In this connection, recall that an infinite Hilbert-style axiomatization of HZ has
been due to Zbrzezny (1990).

7. Conclusions

As a matter of fact, Subsection 6.2 has provided finite Hilbert-style axiomatizations
of all miscellaneous expansions of B4 studied in Pynko (1999) and their disjunctive
extensions (in this connection, it is remarkable that we have avoided any guessing
their relative axiomatizations right — though such would not be difficult, as it has
originally been done in the reference [Pyn 95 a] of Pynko (1995b) — but rather have
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just manually followed analytical expressions we have found to demonstrate their prac-
tical applicability to effective/computational finding “good” relative axiomatizations
in other more complicated cases like  Lukasiewicz logics). Even though Section 6 does
not exhaust all interesting applications of Section 5, it has definitely incorporated
most acute ones. In general, the effective nature of the present elaboration definitely
makes the paper a part of Applied Non-Classical Logic, especially due to quite effective
program implementations invented in this connection.
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