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Abstract. We describe Goéland, an automated theorem prover for first-
order logic that relies on a concurrent search procedure to find tableau
proofs, with concurrent processes corresponding to individual branches of
the tableau. Since branch closure may require instantiating free variables
shared across branches, processes communicate via channels to exchange
information about substitutions used for closure. We present the proof
search procedure and its implementation, as well as experimental results
obtained on problems from the TPTP library.
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1 Introduction

Although clausal proof techniques have enjoyed success in automated theo-
rem proving, some applications benefit from reasoning on unaltered formulas
(rather than Skolemized clauses), while others require the production of proofs
in a sequent calculus. These roles are fulfilled by provers based on the tableau
method [17], as initially designed by Beth and Hintikka [2, 13]. For first-order
logic, efficient handling of universal formulas is typically achieved with free vari-
ables that are instantiated only when needed to close a branch. This step is
said to be destructive because it may affect open branches sharing variables.
This causes fairness (and consequently, completeness) issues, as illustrated in
Figure 1. In this example, exploring the left branch produces a substitution that
prevents direct closure of the right branch. Reintroducing the original quantified
formula with a different free variable is not sufficient to close the right branch,
because an applicable δ-rule creates a new Skolem symbol that will result in
a different but equally problematic substitution every time a left branch is ex-
plored. Thus, systematically exploring the left branch before the right leads to
non-termination of the search. Conversely, exploring the right branch first pro-
duces a substitution (which instantiates the free variable X with a rather than
b) that closes both branches.

Concurrent computing offers a way to implement a proof search procedure
that explores branches simultaneously. Such a procedure can compare closing



P (a) ∧ ¬P (b) ∧ ∀x. (P (x)⇔ ∀y. P (y))
α∧

P (a),¬P (b), ∀x. (P (x)⇔ ∀y. P (y))
γ∀

P (X/b)⇔ ∀y. P (y)
β⇔

P (X/b),∀y. P (y)
⊙σ

σ = {X 7→ b}
¬P (X/b),¬∀y. P (y)

δ¬∀¬P (sk1)
γ∀

P (X ′/b)⇔ ∀y. P (y)
β⇔

p(X ′/b),∀y. P (y)
⊙σ

σ = {X ′ 7→ b}
σ′ = {X ′ 7→ sk1}

¬P (X ′/b),¬∀y. P (y)
δ¬∀¬P (sk2)

γ∀. . .

Fig. 1. Incompleteness caused by unfair selection of branches

substitutions to detect (dis)agreements between branches, and consequently ei-
ther close branches early, or restart proof attempts with limited backtracking.
The simultaneous exploration of branches is handled by the concurrency system,
either by interleaving computations through scheduling, or by executing tasks
in parallel if the hardware resources allow it. A concurrent procedure naturally
lends itself to parallel execution, allowing us to take advantage of multi-core ar-
chitectures for efficient first-order theorem proving. Thus, concurrency provides
an elegant and efficient solution to proof search with free variable tableaux.

In this paper, we describe a concurrent destructive proof search procedure for
first-order analytic tableaux (Section 2) and its implementation in a tool called
Goéland, as well as its evaluation on problems from the TPTP library [19] and
comparison to other state-of-the-art provers (Section 3).

Related Work A lot of research has been carried out on the parallelization of
proof search procedures [4], often focusing primarily on parallel execution and
performance. In contrast, we use concurrency not only as a way to take advan-
tage of multi-core architectures, but also as an algorithmic device that is useful
even for sequential execution (with interleaved threads). Some concurrent and
parallel approaches focus more distinctly on the exploration of the search space,
either by dividing the search space between processes (distributed search) or by
using processes with different search plans on the same space (multi search) [3].
These approaches can be performed either by heterogeneous systems that rely
on cooperation between systems with different inference systems [1,8,12], or ho-
mogeneous systems where all deductive processes use the same inference system.
According to this classification, the technique presented here is a homogeneous
system that performs a distributed search. Concurrent tableaux provers include
the model-elimination provers CPTheo [12] and Partheo [18], and the higher-
order prover Hot [15], which notably uses concurrency to deal with fairness is-
sues arising from the non-terminating nature of higher-order unification. Lastly,
concurrency has been used as the basis of a generic framework to present various
proof strategies [10] or allow distributed calculations over a network [21].



2 Concurrent Proof Search

Free Variable Tableaux Goéland attempts to build a refutation proof for a first-
order formula, i.e., a closed tableau for its negation, using a standard free-variable
tableau calculus [11]. The calculus is composed of α-, γ- and δ-rules that extend
a branch with one formula, β-rules that divide a branch by extending it with
two formulas, and a ⊙-rule that closes a branch. γ-rules deal with universally-
quantified formulas by introducing a formula with a free variable. A free variable
is not universally quantified, but is instead a placeholder for some term instanti-
ation, typically determined upon branch closure. δ-rules deal with existentially-
quantified formulas by introducing a formula with a Skolem function symbol
that takes as arguments the free variables in the branch. This ensures freshness
of the Skolem symbol independently of variable instantiation.

The branch closure rule applies to a branch carrying atomic formulas P and
Q such that, for some substitution σ, σ(P ) = σ(¬Q). In that case, σ is applied
to all branches. That rule is consequently destructive: applying a substitution
to close one branch may modify another, removing the possibility to close it
immediately. A tableau is closed when all its branches are closed. Closing a
tableau can thus be seen as providing a global unifier that closes all branches.

Semantics for Concurrency Goéland relies on a concurrent search procedure. In
order to present this procedure, we use a simple While language augmented
with instructions for concurrency, in the style of CSP [14]. Each process has its
own variable store, as well as a collection of process identifiers used for com-
munication: πparent denotes the identifier of a process’s parent, while Πchildren
denotes the collection of identifiers of active children of that process. Given a
process identifier π and an expression e, the command π ! e is used to send an
asynchronous message with the value e to the process identified by π. Conversely,
the command π ?x blocks the execution until the process identified by π sends a
message, which is stored in the variable x. Lastly, the instruction start creates
a new process that executes a function with some given arguments, while the
instruction kill interrupts the execution of a process according to its identifier.

Proof Search Procedure The proof search is carried out concurrently by processes
corresponding to branches of the tableau. Processes are started upon application
of a β-rule, one for each new branch. Communications between processes take
two forms: a process may send a set of closing substitutions for its branch to
its parent, or a parent may send a substitution (that closes one of its children’s
branch) to the other children. The proof search is performed by the proofSearch,
waitForParent , and waitForChildren procedures (described in Procedures 1, 2,
and 3, respectively).

The proofSearch procedure initiates the proof search for a branch. It first
attempts to apply the closure rule. A closing substitution is called local to a
process if its domain includes only free variables introduced by this process or
one of its descendants (i.e., if the variables do not occur higher in the proof
tree). If one of the closing substitutions is local to the process, it is reported and



Procedure 1: proofSearch
Data: a tableau T

1 begin
2 var Θ← applyClosingRule(T ) ;
3 for θ ∈ Θ do
4 if isLocal(θ) then
5 πparent ! {θ}
6 return

7 if Θ ̸= ∅ then
8 πparent ! Θ
9 waitForParent(T,Θ)

10 else if applicableAlphaRule(T ) then
11 proofSearch(applyAlphaRule(T ))
12 else if applicableDeltaRule(T ) then
13 proofSearch(applyDeltaRule(T ))
14 else if applicableBetaRule(T ) then
15 for T ′ ∈ applyBetaRule(T ) do
16 start proofSearch(T ′)

17 waitForChildren(T, ∅, ∅)
18 else if applicableGammaRule(T ) then
19 proofSearch(applyGammaRule(T ))
20 else
21 πparent ! ∅

the process terminates. If only non-local closing substitutions are found, they
are reported and the process executes waitForParent . Otherwise, the procedure
applies tableau expansion rules according to the priority: α ≺ δ ≺ β ≺ γ. If a β-
rule is applied, new processes are started, and each of them executes proofSearch
on the newly created branch, while the current process executes waitForChildren.

The waitForParent procedure is executed by a process after it has found
closing non-local substitutions. Such substitutions may prevent closure in other
branches. In these cases, the parent will eventually send another candidate sub-
stitution. waitForParent waits until such a substitution is received, and triggers
a new step of proof search. The process may also be terminated by its parent
(via the kill instruction) during the execution of this procedure, if one of the
substitutions previously sent by the process leads to closing the parent’s branch.

The waitForChildren procedure is executed by a process after the application
of a β-rule and the creation of child processes. The set of substitutions sent
by each child is stored in a map subst (Line 2), initially undefined everywhere
(f⊥). This procedure closes the branch (Line 13) if there exists a substitution
θ that agrees with one closing substitution of each child process, i.e., for each
child process, the process has reported a substitution σ such that σ(X) = θ(X)
for any variable X in the domain of σ. If no such substitution can be found
after all the children have closed their branches, then one closing substitution



Procedure 2: waitForParent
Data: a tableau T , a set Θsent of substitutions sent by this process to its

parent
1 begin
2 πparent ? σ
3 if σ ∈ Θsent then
4 πparent ! σ
5 waitForParent(T,Θsent)

6 else
7 proofSearch(σ(T ))

σ ∈ subst is picked arbitrarily (Line 18) and sent to all the children (which are
at that point executing waitForParent) to restart their proof attempts. With
the additional constraint of the substitution σ, the new proof attempts may fail,
hence the necessity for backtracking among candidate substitutions Θbacktrack
(Line 5 and 6). At the end, if all the substitutions were tried and failed, the
process sends a failure message (symbolized by ∅) to its parent.

Thus, concurrency and backtracking are used to prevent incompleteness re-
sulting from unfair instantiation of free variables. Another potential source of
unfairness is the γ-rule, when applied more than once to a universal formula
(reintroduction). This may be needed to find a refutation, but unbounded rein-
troductions would lead to unfairness. Iterative deepening [16] is used to guard
against this: a bound limits the number of reintroductions on any single branch,
and if no proof is found, the bound is increased and the proof search restarted.

Figure 2 illustrates the interactions between processes for the problem in
Figure 1, and shows how concurrency helps ensure fairness. It describes the par-
ent process, in the top box, and below, the two children processes created upon
application of the β-rule. Dotted lines separate successive states of a process
(i.e., Procedures 1, 2 and 3 seen above), while arrows and boxes represent sub-
stitution exchanges. The number above each arrow indicates the chronology of
the interaction. After both children have returned a substitution (1), the par-
ent arbitrarily chooses one of them, starting with X 7→ b, and sends it to the
children (2). Since this substitution prevents closure in the right branch (3), the
parents later backtracks and sends the other substitution X 7→ a (4), allowing
both children (5) and then the parent to close successfully.

3 Implementation and Experimental Results

Implementation The procedures presented in Section 2 are implemented in the
Goéland prover1 using the Go language. Go supports concurrency and paral-
lelism, based on lightweight execution threads called goroutines [20]. Goroutines
are executed according to a so-called hybrid threading (or M : N) model: M
1 Available at: https://github.com/GoelandProver/Goeland/releases/tag/v1.0.0-beta.



Procedure 3: waitForChildren
Data: a tableau T , a set Θsent of substitutions sent by this process to its

parent, a set Θbacktrack of substitutions used for backtracking
1 begin
2 var subst← f⊥
3 while ∃π ∈ Πchildren. subst[π] = ⊥ do
4 π ? subst[π]
5 if subst[π] = ∅ then
6 if ∃θ ∈ Θbacktrack then
7 for π ∈ Πchildren do π ! θ;
8 waitForChildren(T,Θsent,Θbacktrack \ {θ})
9 else

10 for π ∈ Πchildren do kill π;
11 πparent ! ∅
12 return

13 if ∃θ, agreement(θ, subst) then
14 πparent ! {θ}
15 for π ∈ Πchildren do kill π;
16 waitForParent(T,Θsent ∪{θ})
17 else
18 σ ← choice(subst)
19 for π ∈ Πchildren do π ! σ;
20 waitForChildren(T,Θsent,Θbacktrack ∪

⋃
π subst[π] \ {σ}))

goroutines are executed over N effective threads and scheduling is managed by
both the Go runtime and the operating system. This threading model allows
the execution of a large number of goroutines with a reasonable consumption
of system resources. Goroutines use channels to exchange messages, so that the
implementation is close to the presentation of Section 2.

Goéland has, for the time being, no dedicated mechanism for equality rea-
soning. However, we have implemented an extension that implements deduction
modulo theory [9], i.e., transforms axioms into rewrite rules over propositions
and terms. Deduction modulo theory (DMT) has proved very useful to improve
proof search when integrated into usual automated proof techniques [5], and also
produces excellent results with manually-defined rewrite rules [6,7]. In Goéland,
deduction modulo theory selects some axioms on the basis of a simple syntactic
criterion and replaces them by rewrite rules.

Experimental Results We evaluated Goéland on two problems categories with
FOF theorems in the TPTP library (v7.4.0): syntactic problems without equality
(SYN) and problems of set theory (SET). The former was chosen for its elemen-
tary nature, whereas the latter was picked primarily to evaluate the performance
of the deduction modulo theory, as the axioms of set theory are good targets
for rewriting. We compared the results with those of five other provers: tableau-



(1) (1)(2) (2)(3) (3)(4) (4)(5) (5)

P (a) ∧ ¬P (b) ∧ ∀x. (P (x)⇔ ∀y. P (y))
α∧

P (a),¬P (b), ∀x. (P (x)⇔ ∀y. P (y))
γ∀

P (X)⇔ ∀y. P (y)
β⇔

P (X), ∀y. P (y)
⊙σ

σ = {X 7→ b}
X 7→ b X 7→ a

¬P (X),¬∀y. P (y)
⊙σ

σ = {X 7→ a}

P (b),∀y. P (y)
⊙σ⊙

X 7→ b
X 7→ b

∅

¬P (b),¬∀y. P (y)
δ¬∀¬P (sk1)

γ∀. . .

P (a), ∀y. P (y)
γ∀

P (Y )
⊙σ

σ = {X 7→ a, Y 7→ b}

X 7→ a

X 7→ a
Y 7→ b

X 7→ a
¬P (a),¬∀y. P (y)

⊙⊙

P (a) ∧ ¬P (b) ∧ ∀x. (P (x)⇔ (∀y. P (y)))
α∧

P (a),¬P (b), ∀x. (P (x)⇔ (∀y. P (y)))
γ∀

P (a)⇔ (∀y. P (y))
β ⇔

P (a),∀y. P (y)
γ∀

P (b)
⊙⊙

¬P (a),¬(∀y. P (y))
⊙⊙

Fig. 2. Proof search and resulting proof for P (a) ∧ ¬P (b) ∧ ∀x.(P (x)⇔ ∀y.P (y))

based provers Zenon (v0.8.5), Princess (v2021-05-10), as well as saturation-based
provers LeoIII (v1.6), E (v2.6) and Vampire (v4.6.1). Experiments were executed
on a computer equipped with an Intel Xeon E5-2680 v4 2.4GHz 2×14-core pro-
cessor and 128 GB of memory. Each proof attempt was limited to 300 seconds.
Table 1 and Figure 3 report the results. Table 1 shows the number of problems
solved by each prover, the cumulative time, and the number of problems solved
by a given prover but not by Goéland (+) and conversely (−). Figure 3 presents
the cumulative time required to solve the number of problems.

As can be observed, the results of Goéland are comparable to, or slightly
better than those of other tableau-based provers on problems from SYN, while
saturation theorem provers achieve the best results. On this category, the axioms
do not trigger deduction modulo theory rewriting rules, hence the similar results
of Goéland and Goéland+DMT. On SET, Goéland+DMT obtains significantly
better results than other tableau-based provers. This confirms the previous re-
sults on the performance of deduction modulo theory for set theory [6, 7].

4 Conclusion

We have presented a concurrent proof search procedure for tableaux in first-
order logic with the aim of ensuring a fair exploration of the search space. This



SYN (263 problems) SET (464 problems)
Goéland 199 (190 s) 150 (4659 s)

Goéland+DMT 199 (196 s) (+0, −0) 278 (1292 s) (+142, −14)
Zenon 256 (67 s) (+60, −3) 150 (562 s) (+75, −75)

Princess 195 (189 s) (+1, −5) 258 (1168 s) (+141, −33)
LeoIII 195 (268 s) (+1, −5) 177 (2925 s) (+77, −50)

E 261 (168 s) (+62, −0) 363 (2377 s) (+223, −10)
Vampire 262 (13 s) (+63, −0) 321 (4122 s) (+188, −17)

Table 1. Experimental results over the TPTP library
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Fig. 3. Cumulative time per problem solved between Goéland, Goéland+DMT(GDMT),
Zenon, Princess, LeoIII, E, and Vampire

procedure has been implemented in the prover Goéland. This tool is still in an
early stage, and (with the exception of deduction modulo theory) implements
only the most basic functionalities, yet empirical results are encouraging. We
plan on adding functionalities such as equality reasoning, arithmetic reasoning,
and support for polymorphism to Goéland, which should increase its usability
and performance. The integration of these functionalities in the context of a
concurrent prover seems to be a promising line of research. Further investigation
is also needed to prove the fairness, and therefore completeness, of our procedure.
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