
EasyChair Preprint
№ 13562

Impact of AI Tools on Software Development
Code Quality

Boris Martinović and Robert Rozić

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 6, 2024

Impact of AI tools on software development
code quality

Boris Martinović1[0009−0009−1491−7956] and Robert Rozić2[0000−0001−8443−1200]

1 Postgraduate doctoral programme, University of Mostar, Mostar, Bosnia and
Herzegovina

boris.martinovic@phd.sum.ba
2 Faculty of Science and Education, University of Mostar, Mostar, Bosnia and

Herzegovina
robert.rozic@fpmoz.sum.ba

Abstract. Artificial intelligence (AI) is a powerful tool that has been
widely used in various industries, including software development. In
this study, we explore the perceived impact of AI tools on the quality of
software development code. The study aims to provide a comprehensive
understanding of the current state and potential future trends of arti-
ficial intelligence in software engineering. Through a survey conducted
in various tech companies, the findings of this study aimed to provide
insight into the effectiveness of AI assistance in software development,
particularly focusing on code quality. The overall results show that there
is high satisfaction among developers using AI tools, with more than
three-quarters of them stating that the adoption of these tools positively
impacted their overall satisfaction and productivity in the software de-
velopment sector.

Keywords: · Artificial Intelligence · AI Tools · AI impact · Software
development · Code quality

1 Introduction

The rise in popularity of artificial intelligence transformed the approach to the
coding process of software development. The integration of AI in that domain has
helped to emerge various AI-powered tools that have the potential to positively
impact code quality. This technology is still in its early stages of adoption and
exploration. The number of software developers using AI tools is increasing, as
tools can offer various capabilities such as code generation, automated testing,
bug detection, etc. The most common use case is for the automation of time-
consuming coding tasks. AI models are trained using large data sets from the
code repository, which allowed them to understand common coding patterns.

Our research focuses on a crucial aspect of this technological integration:
whether AI tools contribute to an improvement in code quality from the de-
veloper’s perspective. To investigate this, a survey was designed and distributed

2 B. Martinovic and R. Rozic

to software developers in various tech companies. Software developers are using
artificial intelligence (AI) to minimize repetitive coding tasks that consume a
lot of time. This enables them to focus more on the fundamental logic and ar-
chitecture of the applications they are developing. This shift in focus could lead
to improvements in the overall quality of the code. Previous research related to
this topic has been conducted in terms of empirical studies [18] of AI-assisted
tools. In the study, it was found that the latest versions of ChatGPT, GitHub
Copilot, and Amazon CodeWhisperer at the time generate the correct code 65.
2%, 46. 3% and 31. 1% of the time, respectively.

The main argument of this research suggests that code quality increases when
AI-based tools are used. This is based on the assumption that AI tools help
refine the structure, logic, and readability of the code while also improving other
aspects such as security and overall robustness. In the following sections of this
paper, we will discuss metrics and elements of code quality, such as readability,
maintainability, efficiency, and accuracy.

The target audience for this research includes not only software developers, but
also code testers and other professionals involved in the software development
process. The findings of this study aim to provide these groups with valuable
information on the current usage of AI tools in software development, the per-
ceptions of these tools among practitioners, and potential future trends in this
domain.

2 Elements of Code Quality

In this study, we examine the impact of AI tools on software development, par-
ticularly focusing on code quality. Code quality is a multidimensional concept
that is crucial to the success of software projects. We identified four key compo-
nents of code quality for our investigation: readability, maintainability, efficiency,
and accuracy. These elements were selected based on their importance in soft-
ware development and their potential to be influenced by AI tools. Our survey
respondents, who included both users and nonusers of AI tools, provided insight
on how these tools impact these aspects of code quality.

2.1 Readability

Code readability is a fundamental element of the quality of the code. It is defined
as how easily and logically the code can be read and understood by others. The
readability of a program is related to its maintainability and is a key factor in
overall software quality, [15] Highly readable code is less prone to errors, is more
accessible for debugging and maintenance, and promotes collaboration among
team members.

Impact of AI tools on software development code quality 3

Survey Question:

To what extent do you believe AI tools contribute to improving code
readability in your projects?

AI tools can improve the readability of the code by providing suggestions for
clearer variable names, improving the code structure, and providing helpful com-
ments. These tools also aid in enforcing coding standards, ensuring consistent
formatting, and identifying redundant or confusing code segments. As a result,
the use of AI tools can contribute to an overall improvement in code readability,
positively impacting the quality of software development.

One of the studies underscores the capability of GitHub Copilot, an AI-
powered tool, to produce code with readability comparable to that of human
programmers. It points towards AI’s role in enhancing code readability, while
stressing the need for programmers to review AI-generated code to maintain
quality and maintainability[13].

2.2 Maintainability

Maintainability is another crucial aspect of code quality. It can be defined as
the ease with which a software system or component can be modified to be cor-
rected, improved, or adapted to its environment[14]. Maintainability is essential
for the long-term success and sustainability of software projects. It ensures that
future modifications or updates can be made efficiently and without negatively
impacting the overall functionality of the system.

Survey Question :

Have you noticed changes in code maintainability since incorporating AI
tools?

Clean, well-structured code generated by AI tools can enhance maintainability.
AI tools have the potential to predict maintenance issues early and suggest code
refactoring or improvements.

2.3 Efficiency

Code efficiency refers to the ability of software code to perform tasks quickly
and effectively, utilizing minimal system resources. The efficiency of the code
is directly related to the performance and speed of the software, by which the
quality can be evaluated on its basis. In order to improve the code efficiency, it
is necessary to remove unnecessary or redundant code.[16]

Survey Question:

Do you think AI tools have positively influenced the overall efficiency of
your coding process?

4 B. Martinovic and R. Rozic

Efficiency refers to the speed and utilization of resources in coding. AI tools can
significantly contribute to code efficiency by optimizing algorithms, identifying
performance bottlenecks, and suggesting improvements in code structure.

2.4 Accuracy

Code accuracy is arguably the most important aspect of code quality. It refers
to the correctness and precision of the code in performing its intended tasks.
Achieving high code accuracy is a complex task for AI, as it involves under-
standing the intricate logic and requirements of the software and ensuring that
the code runs flawlessly under a variety of conditions.

Survey Question

How confident are you in the accuracy and relevance of AI-generated
code suggestions?

Accuracy ensures that the code performs as intended. AI tools can play a crucial
role in improving code accuracy by automating testing processes, detecting and
fixing bugs, and identifying potential errors or vulnerabilities. However, some
argue that the use of AI tools in software development may lead to an increased
dependency on automated solutions and reduce the need for critical thinking
and problem solving skills among developers.

2.5 Traditional Methods vs. AI Influence

Traditionally, code quality has been ensured through manual methods such as
peer code reviews, adherence to style guides, and writing tests. AI tools are
now augmenting these practices, making error detection, test writing, and code
review more efficient. This integration signifies a shift in traditional methods,
where AI tools not only contribute to the quality of the code but also improve
the effectiveness of conventional quality assurance processes.

3 Overview of tools discussed in the survey

In this research, we wanted to find a general overview of some of the popular
and diverse AI-centric tools that are present on the market at the time of writing
and the overall usage of those tools. This was important because of the potential
outlook on AI depending on the use of those tools. All of them were chosen for
their features and differences compared to each other. Although the majority of
the mentioned AI tools could be all used for performing similar tasks, we decided
to divide them into two categories: general purpose and developer-specific. As
its name says, general-purpose tools can be used for performing a multitude
of tasks and are used by a wider population. However, developer-specific tools
are related to improving software development workflows and improving them.
This classification makes it easier to compare both the usage of these tools by
developers and to have better insight into developer habits.

Impact of AI tools on software development code quality 5

3.1 General-purpose AI tools

General purpose AI tools have uses in different spheres of life and are practically
things that all people with basic computer-using skills can get their hands on. For
this research, we chose four particular tools that we classified as general-purpose
AI tools. They are ChatGPT, Bing Copilot, Perplexity, and DALL-E. Because of
their general-purpose nature, the aforementioned tools could be used to complete
developer-specific tasks, such as code generation, bug fixing, explanation of code,
generating diagrams, and other different uses.

ChatGPT is arguably the most popular AI-based tool in the current market. It
is a chat-like interface where users input their prompts in a text box, and users
get the response as a streamed text inside the chat. This approach is making it
very easy to understand and familiar to a larger population, because the context
of the ”chat” is preserved. By doing this, it enables users to quickly iterate on
their prompts and create a ”conversational” flow of informational exchange and,
ultimately, more precise answers. It offers multiple models, including GPT 3.5
and GPT4. GPT 3.5 version can be used free of charge, while the GPT 4 version
requires a paid subscription.[7]

Bing Copilot is a tool that is extremely similar in form to ChatGPT, but with
a very distinct difference: it is built directly into the Microsoft Edge browser.
Microsoft Edge browser is the default browser for Windows operating systems,
which takes about 70% [4] of the whole operating system market, eclipsing the
total numbers by MacOS, various GNU/Linux distributions and other desktop
operating systems. This provides a good benchmark for usage compared to Chat-
GPT itself, since we estimate that Bing usage will be much lower compared to
ChatGPT, despite being more available directly to consumers.[12]

Perplexity.ai is a new AI tool that aims to replace search engines by giving users
direct answers to their questions without the need to go to their questions, among
others. What differs Perplexity from ChatGPT is that it offers its sources to the
data as well, making it easily verifiable as needed. Users can utilize Perplexity for
multitudes of tasks, such as before mentioned answering basic questions or going
deeper into topics with its Copilot search. Copilot allows follow-up questions with
context, deeper answers, and more references.[5]

DALL-E is the tool that is very specialized when compared to the previous ones.
Where others aim to mainly give users a way to get the data in written form,
DALL-E is using GPT models to generate images from text. DALL-E, allows
users to create images and art from text prompts, allowing users to combine
concepts, attributes, and styles within generated images. Additionally, it can
edit existing images, create variations, and understand how objects evolve over
time. We included DALL-E in the survey to see how much developers are using
image generation tools, since visual tools can also be an important part of the
software development process.[3]

6 B. Martinovic and R. Rozic

3.2 Developer-specific AI tools

Tools used for developer-specific tasks are a lot more diverse in nature com-
pared to general-purpose tools mentioned in the section above. They offer differ-
ent amounts of integration into developer workflows and can be used at various
stages of development. Some of them are integrated development environments
themselves, while others integrate into development environments or code edi-
tors, and some are used to generate the project initially. Tools that are covered
are GitHub Copilot, Google IDX, Codeium, Wasp Mage, and Cursor.

GitHub Copilot is the the most popular AI-based tool that is specific to devel-
opment workflows. It is not a standalone product, but has to be used within in-
tegrated development environment or a code editor. Currently supported editors
are Visual Studio Code, Visual Studio, NeoVIM and in various Jetbrains IDEs.[6]
GitHub Copilot is available with a subscription for both private users and compa-
nies. It works with different programming languages, claiming that it supports all
languages that appear in public repositories. For some, like JavaScript, GitHub
Copilot offers better support, since it is prominently used in public repositories.
It offers support for various operations, such as explanation of code features,
completion of code snippets, creation of tests with the code.[17]

Google IDX unlike GitHub Copilot is a web-based integrated development en-
vironment that runs in a user’s web browser environment and executes in the
cloud. It supports projects in React, Next.js, Angular, Flutter, Vue, Svelte, Go,
Python, and more. [11] It allows for both web development and multi-platform
development and allows users to utilize built-in AI tools that aim to enhance
both speed of writing and quality of code. At the time of writing, it is in the
public beta phase. [8]

Codeium is an AI-powered toolkit that supports AI code completion, search ca-
pabilities, and an AI chat function for developers. It shares some of its features
with GitHub Copilot, namely auto-complete and chat features. The main differ-
ence and the reason why it is included is the fact that it has a free tier, which
can make it appealing to developers who want to try out AI tools for the first
time, without spending money. [1]

Wasp Mage is vastly different tool compared to the other mentioned in this
study. Wasp (Web Application Specification) is a tool that aims to simplify de-
velopment of full-stack applications by combining the main.wasp configuration
file with the React and Node.js files code in order to output a full-stack ap-
plication consisting of React/Node.js/PostgresDB. The main.wasp file contains
declaration for important parts of the application, such as full-stack authenti-
cation, database schema, asynchronous jobs, full-stack type safety. Wasp Mage
is primarily used to kick start the development process by creating a full-stack
app based on the initial prompt explaining the purpose of the application. The
resulting output of the whole process is a Wasp application. [9] [10]

Impact of AI tools on software development code quality 7

Cursor is code editor that aims to integrate AI into various software development
processes. It is a standalone development environment that allows users to ask for
information about the codebase, automatically completing code snippets, chat,
automatic code debugging, and more. Since it is a development environment for
desktop use, it is useful to compare it directly with a similar cloud product, such
as IDX. [2]

4 Experiment

The main way to access the data for this experiment is through a survey. Survey
itself is divided into three parts: demographic information, section for partici-
pants not using AI tools, and a different one for using AI tools.

For non-users of AI tools, we looked at reasons for not adopting these tech-
nologies and what could encourage their future use. Understanding these per-
spectives helps contextualize the adoption barriers and potential areas for im-
provement in the development of AI tools.

The demographic information section will provide information about age group,
country of residence, current employment status and primary business sector of
the participant’s business. This information is gathered to form potential rela-
tionships between responses and to determine whether there are any correlations
between the participant’s demographic information and the use and satisfaction
with AI tools. At the end of the section, there are two questions that provide
more information about the participant’s outlook on AI. One asks about the fear
of AI replacing the participant in terms of work or employment, and the other
inquires about the frequency of usage of AI in participant’s software development
workflows.

The section for participants not using AI tools will be filled by participants
who answered ”Never” on the question that asks ”How frequently, on average,
do you use AI-powered tools in your software development workflows?”. This
section is equally important for this study, as it will create the environment
where participants will share their reasons for not using AI and also things that
need to be improved in AI tools in order for participants to become users of
AI-powered tools.

The section for participants who use AI is the main section of this survey. It is
designed to find out the ways that AI-tools affect participant’s software devel-
opment workflow. The questions are related to the usage of particular AI tools
mentioned in Section 3 of this paper and how tools that participants use af-
fect their software development workflow. Before going to tools that affect code
quality, the goal is to find out where participants use AI tools and how they pay
for it. Participants can specify whether they use AI tools for business-related
projects, private projects, or both. They can also state how they finance those
tools: through the company they work out, paying for licenses out of their own

8 B. Martinovic and R. Rozic

pocket, or whether they only use free tools. Besides effects on the code quality,
which was explained in Section 2 of this paper, there are questions regarding
AI tools influencing overall process and participant’s satisfaction with them. It
is also important to gauge the impressions of participants about the overall im-
pact of AI for them as developers. For that, there are questions that pertain to
recommending the AI tools that participants use themselves to others and how
did AI tools impact participant’s software development workflows.

The means of distributing this survey was conducted through multiple channels.
The snowball sampling method was used as the optimal method for this survey. It
was chosen because of specific participants that were needed (software engineers
and developers) and to also maximize the reach since the survey was designed
to last for 7 days. The survey was posted and shared on LinkedIn, X (formerly
Twitter) and personally shared with people and companies. The main target
audience were people who write software, whether it is professionally or as a
hobby, who have reached the adult age of 18 years. The survey itself did cover
the potential for users who both use and don’t use AI tools in their software
development, so any distinction based on that was not needed. Also, the potential
distribution of users and non-users of AI tools can be a potential interesting point
for the results.

5 Results

In our survey, which lasted from February 20th to 28th 2024, we collected re-
sponses from 84 participants. Their responses revealed several key insights into
the use of AI tools in software development and their impact on perceived code
quality. In the following subsections, we present the data and results of the sur-
vey.

5.1 Demographics

The participants in this survey were various professionals from various countries
and different age groups (Figure 1), mainly from Bosnia and Herzegovina and
Croatia. (Figure 2).

5.2 Work position

Participants reported a wide range of job positions within the software develop-
ment industry. Most of the respondents identified themselves as senior engineers
or junior to mid-level engineers, highlighting a broad spectrum of expertise and
experience levels among the users of AI tools in software development. (Figure 3)
Most of the survey respondents indicated that their business primary sectors are
IT and education.

Impact of AI tools on software development code quality 9

Fig. 1. Age group of respondents

Fig. 2. Respondents country of residence

10 B. Martinovic and R. Rozic

Fig. 3. Respondents work positions

5.3 Frequency of usage of AI tools

When asked about how often participants use AI tools, only 7.2% (6) study
participants responded that they do not use them at all, and more than 59%
(49) of them use AI tools on a daily basis. (Figure 4)

The frequency of use of AI tools indicates strong integration into daily work-
flows, and many participants use the AI tools multiple times per day.

Most of the survey participants expressed no fear that AI would replace
their jobs in the near future, despite their daily use of these technologies. They
see them as tools to enhance and speed up development process, reduce time
wasted on time-consuming tasks with more focus on application architecture
and fundamental logic.

5.4 Popularity of AI tools

Among the survey respondents, ChatGPT was shown to be the most used
general-purpose AI tool, illustrating its widespread adoption in the software de-
velopment sector. Similarly, GitHub Copilot stands out as the leading developer-
specific AI tool, showing a significant trend in the industry.

Regarding payment for AI tools, the survey revealed a nearly balanced dis-
tribution, with 45% of users using paid versions, while a slight majority of 55%
prefer the available free tools.

There is no clear dominant pattern in the use of AI tools for personal or
business projects. 9% (7) use them only for personal purposes, 17% (13) for

Impact of AI tools on software development code quality 11

Fig. 4. AI tools frequency usage

company projects, and the other uses them for a combination of both types of
projects.

5.5 Self-perceived impact on code quality

Following graphs show self-perceived impact of AI tools on the code quality
elements that we used as a metric in this study: readability (Figure 5), main-
tainability (Figure 6), efficiency (Figure 7) and accuracy (Figure 8).

5.6 Impact on overall satisfaction

Out of 78 participants using AI tools, more than 78% (61) have reported a pos-
itive influence on overall satisfaction and productivity in software development
(Figure 9). The general sentiment of the respondents is that they are willing to
recommend AI tools to their peers to improve code quality.

5.7 Perspective of non-users of AI Tools

Our survey yielded a small group of 7 respondents who do not use AI tools in
their software development processes. The main reasons include concerns about
trust, cost, and lack of information on the benefits of AI tools. To encourage
adoption among this group of respondents, improvements in code quality, user
experience, and affordability of AI tools were identified as key factors.

12 B. Martinovic and R. Rozic

Fig. 5. Self-perceived impact on code readability

Fig. 6. Self-perceived impact on code maintainability

Impact of AI tools on software development code quality 13

Fig. 7. Self-perceived impact on code efficiency

Fig. 8. Self-perceived impact on code accuracy

14 B. Martinovic and R. Rozic

Fig. 9. Overall satisfaction

6 Conclusion and future work

The rapid rise of AI tools also brought some new and interesting ways of working
for developers. At the moment, many software developers use some form of AI in
their workflow, especially OpenAI’s ChatGPT. The general findings among the
users of AI tools in software development are very interesting. Developer-specific
tools, such as GitHub Copliot, are less widely used compared to ChatGPT,
meaning that there is much room for growth in terms of adoption and use. The
overall results show that there is high satisfaction among developers using AI
tools, with more than three-quarters of them stating that the adoption of AI
tools positively impacted their overall satisfaction and productivity in software
development.

On the other hand, there is a different pattern in terms of satisfaction with
individual elements of code quality. Most of the answers show that the AI tools
are still not providing a significant number of users with a sufficiently high level
of satisfaction. The average scores on the scale of 1 to 5 in terms of satisfaction
are 3.17 for readability, 3.32 for maintainability, 3.85 for efficiency and 2.92 for
precision. These results show how the perceived value of all elements is not
directly related to the satisfaction and willingness to recommend AI tools to
others. With current data, it is visible that developers feel like AI tools are, in
fact, useful to them and that they enhance the developer workflow.

When it comes to software developers who do not use AI tools in their workflow,
they cite reasons such as not being able to afford paid tools and not trusting the

Impact of AI tools on software development code quality 15

tools as the main reasons. From both previous research and our own, it is visible
that those claims are not without merit. In the end, users decide for themselves
which degree of code quality they can accept from the AI tools to be useful.

This paper is a stepping stone into further research. There are different ways
of deepening the understanding of the findings made in this paper. First of
all, this survey’s population was mostly consisting of developers from Croatia
and Bosnia and Herzegovina among developers from European Union countries
and the USA. The population of research would have to be broadened to also
affect other parts of the world, such as Asia, Africa, and Latin America. On the
other hand, there is also a need to find deeper connections between high overall
satisfaction with AI tools, among with relatively mediocre ratings of the aspects
of code quality.

References

1. Codeium; Free AI Code Completion & Chat — codeium.com.
https://codeium.com/, [Accessed 28-02-2024]

2. Cursor - The AI-first Code Editor — cursor.sh. https://cursor.sh/, [Accessed 28-
02-2024]

3. DALL·E: Creating images from text — openai.com.
https://openai.com/research/dall-e, [Accessed 28-02-2024]

4. Desktop Operating System Market Share Worldwide — Statcounter
Global Stats — gs.statcounter.com. https://gs.statcounter.com/os-market-
share/desktop/worldwide, [Accessed 28-02-2024]

5. Getting Started with Perplexity — blog.perplexity.ai.
https://blog.perplexity.ai/getting-started, [Accessed 28-02-2024]

6. GitHub Copilot · Your AI pair programmer — github.com.
https://github.com/features/copilot, [Accessed 28-02-2024]

7. Introducing ChatGPT — openai.com. https://openai.com/blog/chatgpt, [Ac-
cessed 28-02-2024]

8. Introducing Project IDX, An Experiment to Improve Full-stack,
Multiplatform App Development — developers.googleblog.com.
https://developers.googleblog.com/2023/08/introducing-project-idx-experiment-
to-improve-full-stack-multiplatform-app-development.html?m=1, [Accessed
28-02-2024]

9. Introduction — Wasp — wasp-lang.dev. https://wasp-lang.dev/docs, [Accessed
28-02-2024]

10. MAGE GPT Web App GeneratorMageGPT — usemage.ai. https://usemage.ai/,
[Accessed 28-02-2024]

11. Project IDX — idx.dev. https://idx.dev/, [Accessed 28-02-2024]
12. Your Everyday AI Companion — Microsoft Bing — microsoft.com.

https://www.microsoft.com/en-us/bing, [Accessed 28-02-2024]
13. Al Madi, N.: How readable is model-generated code? examining readability and

visual inspection of github copilot. In: Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering. pp. 1–5 (2022)

14. Ardito, L., Coppola, R., Barbato, L., Verga, D.: A tool-based perspective on soft-
ware code maintainability metrics: a systematic literature review. Scientific Pro-
gramming 2020, 1–26 (2020)

16 B. Martinovic and R. Rozic

15. Buse, R.P., Weimer, W.R.: Learning a metric for code readability.
IEEE Transactions on Software Engineering 36(4), 546–558 (2010).
https://doi.org/10.1109/TSE.2009.70

16. Dhaduk, H.: Code Quality: Its Importance in Custom Software Development
— simform.com. https://www.simform.com/blog/code-quality/, [Accessed 28-02-
2024]

17. Scarlett, R.: 8 things you didn’t know you could do with GitHub Copi-
lot — github.blog. https://github.blog/2022-09-14-8-things-you-didnt-know-you-
could-do-with-github-copilot/, [Accessed 24-02-2024]

18. Yetiştiren, B., Özsoy, I., Ayerdem, M., Tüzün, E.: Evaluating the code quality of
ai-assisted code generation tools: An empirical study on github copilot, amazon
codewhisperer, and chatgpt (2023)

