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ABSTRACT 

Quantum Generators is a means of achieving mass food production with 
short production cycles and when and where required by means of 
machines rather than land based farming which has serious limitations. 
The process for agricultural practices for plant growth in different stages 
is simulated in a machine with a capacity to produce multiple seeds from 
one seed input using computational models of multiplication (generating 
multiple copies of kernel in repetition). In this respect, we present a 
modular platform for automating cell synthesis which embodies 
synthesis abstraction with complex pathways of protein synthesis 
therefore, altogether different microcontroller unit with ‘multi-features 
controlling’ is required to address cell synthesis. Firstly, the automated 
synthesis could make use of combination of starting materials for 
planning the synthesis routes to achieve the target molecules and 
accordingly, neural networks are required to be trained on all possible 
reactions in cell synthesis for a particular crop. Secondly, an AI agent is 
designed to learn to optimize the final control generation from the cell 
synthesis requirement/environment. We designed an RL agent to add or 
to remove the controls to maintain a correct flow, ambient conditions and 
high-performance cell generation and to build through a series of steps( 
adding or removing controls) for improving the synthesis performance &  
efficiency of cell structural patterns. For this we used fully convolutional 
neural network the Q-learning algorithm (an RL algorithm ) for cell 
synthesis and the algorithm trained the microcontroller design agent 
using a matrix representation for synthesis requirement. Since we have 
learning models of composition  along with a learning agent for 
microcontroller design, we show an implementation of combining 
operating parameters and process controls with a small model in 
obscene of real-world model of CellSynputer for autonomous protein 
folding/synthesis.  In this way, it is possible to script and run desired 
synthesis with reconfigurable system for diverse protein folding 



outcomes. Although the platform model given us a method of 
automating/ optimizing cellular assemblies however, this need to be 
tested using natural crop cells for quantum generation. 
 

INTRODUCTION 

A Quantum (plural quanta) is the minimum amount of any physical entity 
(physical property) involved in an interaction. On the other hand, 
Generators don't actually create anything instead, they generate 
quantity prescribed by physical property through multiplication to 
produce high quality products on a mass scale. The aim of Quantum 
Generators is to produce multiple seeds from one seed at high seed rate 
to produce a particular class of food grains from specific class of seed 
on mass scale by means of machine rather than land farming. 

The process for agricultural practices include preparation of soil, seed 
sowing, watering, adding manure and fertilizers, irrigation and 
harvesting. However, if we create same conditions as soil germination, 
special watering, fertilizers addition and plant growth in different stages 
in a machine with a capacity to produce multiple seeds from one seed 
input  using computational models of multiplication( generating multiple 
copies of kernel in repetition ) then we will be closure to achieving mass 
food production by means of quantum generators( machine generated ) 
rather than traditional land based farming which has very serious 
limitations such as large space requirements, uncontrolled 
contaminants, etc. The development of Quantum Generators requires 
specialized knowledge in many fields including Cell Biology, 
Nanotechnology, 3D Cellprinting, Computing, Soil germination and 
initially they may be big occupying significantly large space and 
subsequently small enough to be placed on roof-tops. 

The Quantum Generators help world meet the food needs of a growing 
population while simultaneously providing opportunities and revenue 
streams for farmers. This is crucial in order to grow enough food for 
growing populations without needing to expand farmland into wetlands, 
forests, or other important natural ecosystems. The Quantum 
Generators use significantly less space compared to farmland and also 
results in increased yield per square foot with short production cycles, 
reduced cost of cultivation besides easing storage and transportation 
requirements. 



In addition, Quantum Generators Could Eliminate Agricultural Losses 
arising out of  Cyclones, Floods, Insects, Pests, Droughts, Poor Harvest, 
Soil Contamination, Land Degradation, Wild Animals, Hailstorms, etc. 

Quantum generators could be used to produce most important food crop 
like rice, wheat and maize on a mass scale and on-demand when and 
where required. 

Computers and Smartphones have become part of our lives and 
Quantum Generators could also become very much part of our routine 
due to its potential benefits in enhancing food production and generating 
food on-demand wherever required. 

METHODOLOGY 
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copy of the DNA is made (called mRNA) and this copy is transported to 

a ribosome.  

Protein synthesis is the process used by the QG( Quantum Generator ) 
to make proteins. The first step of protein synthesis is called 
Transcription. It occurs in the nucleus. During transcription, mRNA 
transcribes (copies) DNA. 
 
Body tissues grow by increasing the number of cells that make them up.  
Every cell in the crop body contains protein. The basic structure of 
protein is a chain of amino acids. We need protein in our diet to help 
human body repair cells and make new ones.  
 
The major steps in protein synthesis are: 

 DNA unzips in the nucleus. 
 mRNA nucleotides transcribe the complementary DNA message. 
 mRNA leaves nucleus and goes to ribosome. 
 mRNA attaches to ribosome and first codon is read. 
 tRNA brings in proper amino acid from cytoplasm. 
 a second tRNA brings in new amino acid. 

The journey from gene to protein is complex and tightly controlled within 
each cell. It consists of two major steps: transcription and translation. 
Together, transcription and translation are known as gene expression.  
Transcription is the transfer of genetic instructions in DNA to mRNA in 
the nucleus. Translation occurs at the ribosome, which consists of rRNA 
and proteins. 
 

Ribosomes are the sites in a cell in which protein synthesis takes place. 
Cells have many ribosomes, and the exact number depends on how 
active a particular cell is in synthesizing proteins. Ribosomes are the 
protein builders or the protein synthesizers of the cell. They are like 
construction guys who connect one amino acid at a time and build long 
chains.  
 

Ribosomes, large complexes of protein and ribonucleic acid (RNA), are 
the cellular organelles responsible for protein synthesis. They receive 
their “orders” for protein synthesis from the nucleus where the DNA is 
transcribed into messenger RNA (mRNA). 
 
During the process of transcription, the information stored in a gene's 
DNA is passed to a similar molecule called RNA (ribonucleic acid) in the 



cell nucleus. A type of RNA called transfer RNA (tRNA) assembles the 
protein, one amino acid at a time. 
 
Amino acids can be produced by breaking down proteins, known as the 
extraction method. However, the amount of amino acids in the source 
protein limits the amount of amino acids made. Extraction is not good for 
making mass quantities of specific amino acids. So Synthetic Methods of 
making amino acids is necessary in protein synthesis. 

The Quantum Generator contains pre-programmed Protein Synthesizer 
relevant to specific Crop/Tissue which essentially reassembles 
ribosomes  ( Sites in a Cell ) into proteins that your crop cells need. The 
sequence and information to produce a protein is encoded in the 
synthesizer of Quantum Generator. 

Robotics for Automation and Optimization in Cell Synthesis 

We believe that the potential of rapidly developing technologies (e.g., 

machine learning and robotics) are more fully realized by operating 

seamlessly with the way that synthetic biologists currently work. To 

reproduce this fundamental mode of operation, a new approach to the 

automated exploration of biological space is needed that combines an 

abstraction of biological synthesis with robotic hardware and closed-loop 

programming. 

As there is a growing drive to exploit rapidly growing robotic 
technologies along with artificial intelligence-based approaches and 
applying this to biology requires a holistic approach to cell synthesis 
design and execution. Here, we outline an approach to this problem 
beginning with an abstract representation of the practice of cell synthesis 
that then informs the programming and automation required for its 
practical realization. Using this foundation to construct closed-loop 
robotic synthesis engine, we can generate new synthesises that may be 
optimized, and repeated entirely automatically. These robots can 
perform synthesis reactions and analyses much faster than that can be 
done by other means. As such, this leads to a road map whereby 
molecules can be synthesized, optimized, and made on demand from a 
digital code. 
 
The ability to make small molecules autonomously and automatically will 
be fundamental to many applications, including quantum generators. 
Additionally, automated synthesis requires (in many cases) optimization 
of reaction yields; following optimization, the best conditions can be fed 



to the synthesis robot to increase the overall yield. There are different 
approaches to automated yield optimization, and as optimization of 
reaction conditions requires live feedback from the robotic system, many 
different detectors are required to monitor progress of the reactions, 
including benchtop nuclear magnetic resonance spectroscopy, Raman 
spectroscopy, UV-Vis spectroscopy, etc. Harvested data are then fed to 
optimization algorithms to explore  often the multidimensional parameter 
space.  The platform could be easily reconfigured to the desired task in a 
plug-and-play fashion, by attaching different modules to the platform 
core and Robotic approaches also promise to speed up biological space 
exploration and realization. 

Robotics & Machine Learning towards Biological Space Exploration 

Machine learning approaches are fundamental to scientific investigation 
in many disciplines. In biological studies, many of these methods are 
widely applicable and robotics/automation is helping to progress cell 
synthesis through biological space exploration. Scientists have begun to 
embrace the power of machine learning coupled with statistically driven 
design in their research to predict the performance of synthetic 
reactions. For our study, the yield of a synthetic reaction can be 
predicted machine learning in the multidimensional space obtained 
from robotic automation to map the yield landscape of intricate synthesis 
following synthesis code. Meanwhile, our emphasis is on automation of 
synthesis, which is controlled by robots/computers rather than by 
humans. Synthesis through automation offers far better efficiency and 
accuracy. In addition, the machine learning algorithms explore a wider 
range of biological space that would need to be performed  purely 
automated random search and it is observed that self-driven 
laboratories/robots lead the way forward to fast-track synthesis. This 
brings the development of automation, optimization, and molecular 
synthesis very close.  
  
Figure 2 shows a graphical representation of workflow for joining 
automated retrosynthesis with a synthesis robot and reaction 
optimization. The retrosynthetic module will generate a valid synthesis of 
the target that can then be transferred into synthesis code that can be 
executed in a robotic platform. The optimization module can optimize the 
whole sequence, getting the feedback from the robot. 
 
 

 



                  

              

 

 

  

 

 

 

Fig. 2 Architecture of Robotic Synthesis of Crop Cells in a Quantum Generator 

The methodology is essentially fundamental for getting the quantum 
generators as autonomous as possible and also as fast & optimized and 
the aim is to design processors both CPU and GPU to represent 
computations  and their structural patterns and also controls required for 
the microcontroller in synthesizer unit from generator in realizing the 
desired quantity. Therefore, we use circuit extraction process from the 
CPU and desired IC’s required in GPU and also final control generation 
required for microcontroller for the structural formation. The CPU and 
GPU are required to be trained separately and also microcontroller is to 
trained independently using reinforcement learning algorithm to arrive at  
the designs that can easily be adopted and customized from the 
environment in quantum generators and these are used to localize the 
requirement. 

The methodology primarily consists of following parts:- 

1. Designing neural networks on the composition of raw materials 
(Extracted & Synthetic, enzymes, etc.). 

2. Designing machine learning systems for Extracting structural 
patterns from CellSynputer at each generation step. 

3. Introducing learning agent  in the processor( CPU & GPU ) and 
microcontroller that uses deep neural network with learning 
algorithm  

4. The neural network used by the learning agent(processor and 
microcontroller) will be trained with learning algorithm by using 
different methods 

5. Measuring the outcome with generator loss or optimization steps 
6. Based on generation requirements, get the device control 

requirements of  the microcontroller on the basis of process control 
and cell synthesis data.  
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7. Similarly get the material flow control parameters on the 
microcontroller on the basis of structural pattern in the generation 
unit 

8. Carryout  data association with the sensors and flow parameter 
data of the CellSynputer by matching with the desired data of the 
crop cell database. 

 

ARCHITECTURE 

Platform Design in Cell Synthesis 

Methodologies for the automation of cell synthesis, optimization, and 
crop yields have not generally been designed for the realities of  crop-
based yields,  instead focussed on engineering solutions to practical 
problems. We argue that the potential of rapidly developing technologies 
(e.g., machine learning and robotics) are more fully realized by operating 
seamlessly with the way that synthetic biologists currently work.  This is 
because the researchers often work by thinking backwards as much as 
they do forwards when planning a synthetic procedure. To reproduce 
this fundamental mode of operation, a new universal approach to the 
automated exploration of cell synthesis space is needed that combines 
an abstraction of cell synthesis with robotic hardware and closed-loop 
programming.  
 
Automation Approach  
 

There are different automation approaches for cell synthesis these 
include block based, iterative, multistep however, we considered 
CellSynputer which is integration of abstraction, programming and 
hardware interface, which is given below depicted as in Fig 3. 
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Fig. 3 Approach – Cell Synthesis Automation 

 
Synthetic biologists already benefit from algorithms in the field of cell 
synthesis and, therefore, automation is one step forward that might help 
biologists and chemists to plan and develop biological space more 
quickly, efficiently, and importantly, CellSynputer is a platform that 
employs a broad range of algorithms interfacing hardware and 
abstraction to solve synthesis-related problems and surely can very well 
be established for quantum generation. 

Synthesis via Programmable Modular System: ‘The CellSynputer’ 

We presented a modular platform for automating cell synthesis, which 
embodies our synthesis abstraction in ‘the CellSynputer’. Our 
abstraction of cell synthesis contains the key four stages of synthetic 
protocols: recognition, gene expression, transcription, and protein 
builder  that can be linked to the physical operations of an automated 
robotic platform. Software control over hardware allowed combination of 
individual unit operations into multistep cell synthesis. A CellSynputer 
was created to program the platform; the system creates low-level 
instructions for the hardware taking graph representation of the platform 
and abstraction representing cell synthesis. In this way, it is possible to 
script and run published syntheses without reconfiguration of the 
platform, providing that necessary modules are present in the system.  

           Multistep Cell Synthesis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. CellSynputer  Operational  Architecture 
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Finally, by combining CellSynputer platform and robotic systems with AI, 
it is possible to build autonomous systems working in closed loop, 
making decisions based on prior experiments. We already presented a 
flow system for navigating a network of synthesis reactions utilizing an 
infrared spectrometer for on-line analysis and as the sensor for data 
feedback. The system will be able to select the suitable starting 
materials autonomously on the basis of change in the infrared spectra. 

Parallel Synthesizers 

Parallel Synthesizer is a high yielding multiple synthesis systems 
consisting of parallel processing units & multiple synthesizers and these 
automated multistep units are used as parallel synthesizers for high yield 
applications. Parallel synthesis with cell synthesis processes is a way to 
use the advantages of combinatorial synthesis and this results in a 
smaller, more concentrated set of molecules, making the process of unit 
level synthesis easier. 

The following are the attributes of parallel synthesizer: 

 Based on multi-unit concept 

 Configurable at unit level 

 High throughput 

 Small scale at unit level 

 Limited to individual synthesis scope 

 Embodies multistep procedure 

We give below automated cell synthesis using parallel synthesizer 
in pictorial format: 

A)                    N-Step Cell Synthesis 
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B)                    Multi-unit Synthesis 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

C)                    CellSynputer Architecture  
 
 
 
 
 

 

 

Neural Networks in Exploring Synthesis Space 

The automated synthesis could make also use of analysis and 
combination of starting materials for planning the synthesis routes to 
achieve the target molecules. There are many approaches to automated 
cell synthesis, and the one seems to be particularly promising as it 
employs neural networks and AI and  it uses Monte Carlo tree search 
and symbolic AI to discover target molecule via  different synthesis 
routes. The neural networks are required to be  trained on all possible 
reactions in cell synthesis for a particular crop. The trained AI system 
allows cracking for many target molecules, faster than the traditional 
computer-aided search method, which is based on extracted rules and 
heuristics. In general, this approach allows for faster and more efficient 
synthesis combination and analysis than any other well-known method. 
Figure 5 shows a workflow for joining automated synthesis of a target 
molecule of a desired crop with a synthesis robot and reaction 
optimization. The synthetic process module will generate a valid 
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synthesis of the target that can then be transferred into synthesis code 
that can be executed in a CellSynputer/robotic platform. The 
optimization module can optimize the whole sequence, getting the 
feedback from the robot. 
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Figure 4. Exploring the Synthesis Space of Experiments with Neural Networks. 
 

The platform operates in a closed loop with a machine learning 
algorithm; the machine learning algorithm suggest the most promising 
combinations and reactions that were then conducted and analysed 
automatically within the platform. The results of each experiment are 
automatically interpreted and the data are then used to update the 
machine learning model. The use of machine learning allows for 
autonomous exploration of synthesis space allowing for discovery of 
new synthesis transformations.  
A standard crop grain composition parameters (like fibre, protein, 
carbohydrates, etc. ) dataset is the first step and the data need to be 
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collected from different subjects of variety. And also the dataset need to 
split into training(70%) and test ( 30%)  sets based on data for subjects. 
 
First we must define the CNN model using the deep learning library. We 
will define the model as having CNN layers, and it is common to define 
CNN layers in groups of two in order to give the model a good chance of 
learning features from the input data. CNNs learn very quickly, the 
pooling layer reduces the learned features to 1/4 their size, consolidating 
them to only the most essential elements. 

After the CNN and pooling, the learned features are flattened to one long 
vector and pass through a fully connected layer before the output layer 
used to make a prediction. The fully connected layer ideally provides a 
buffer between the learned features and the output with the intent of 
interpreting the learned features before making a prediction. 

Protein Structures Prediction 

We have used slightly different & simplified version of GAN(Generative 
Adversarial Network) and the Convolutional Neural Network (CNN) 
functional model was used for the image processing where the network 
weights are not updated but only the Generator is tuned to make it to 
learn the real requirement thereby allowing simplified GAN to tackle 
otherwise difficult generative related prediction. 

Robotic Microcontroller 

A microcontroller is a compact integrated circuit designed to govern a 
specific operation in an embedded system. A typical microcontroller 
includes a processor, memory and input/output (I/O) peripherals on a 
single chip. Microcontrollers can be used in various industrial products 
and the approximate components of the hardware are core, storage, 
peripheral interfaces, bus, interrupt module, clock module, etc. 

 
 

A robot microcontroller is basically the brain of the robot. It is used to 
collect the information from various input devices such as sensors, 
switches and others. Then it executes a program and in accordance with 
it controls the output devices such as motors, lights and others 
 
Microcontrollers are used in automatically controlled products and 
devices, such as automobile engine control systems, implantable 
medical devices, and other embedded systems and one of the main 



application of Microcontroller is sensing and controlling (process control) 
devices and this feature will be used in automatically controlled flow in 
CellSynputer. 

Machine Learning on Microcontrollers 

Using today's advanced AI systems to run machine learning on smaller 
devices with processors like microcontrollers offers benefits – as 
enablers of AI. 

Microcontrollers preceded the development of CPUs and GPUs and are 
embedded in virtually every kind of modern device with sensors and 
actuators. They are a vital consideration for enterprises interested in 
weaving AI into physical devices, whether to improve the user 
experience or enable autonomous capabilities in a device like 
CellSynputer. 

One exciting avenue in the world of AI research and development is 
finding ways to shrink AI algorithms to run on smaller devices closer to 
sensors, motors and people. Developing embedded AI applications that 
run machine learning on microcontrollers comes with different 
constraints around power, performance, connectivity and tools. 
Embedded AI already has various uses: such as monitoring industrial 
equipment or processes. 

The rise of new tools like TinyML deployed on microcontrollers enables 
intelligence to be distributed into more connected products, whether they 
be smart home gadgets, toys, industrial sensors or otherwise. 

The biggest difference between CPUs and microcontrollers is that 
microcontrollers are often directly connected to sensors and actuators. 
This reduces latency, which is essential in safety-critical applications like 
controlling brakes and industrial equipment. The big trend in the AI 
industry is moving machine learning inference to the edge, where the 
sensor data is generated i.e. making machine learning small enough to 
fit on edge devices. 

The microcontrollers act as low-end CPUs with limited processing 
capability and they have two crucial advantages: low cost and low power 
consumption. 

One way of deploying AI on a low-power microcontroller – is a new way 
of creating microcontrollers with integrated neural processing units 
(NPUs), which are specialized units designed to run machine learning 



models on microcontrollers efficiently. These generally come with 
specialized SDKs that can transform neural networks prepared on a 
computer to fit onto an NPU. These tools generally support models 
created with frameworks like PyTorch, TensorFlow and others. 

In order to fit an NPU, engineers often need to prune a model or adjust 
its architecture for the NPU, which requires a lot of expertise and 
extends the development time. Further, developers also need to weigh 
the tradeoffs between the lower cost of microcontrollers compared with 
CPUs or GPUs and their flexibility and also It's harder to reconfigure or 
retrain embedded systems quickly. 

Therefore, a centralized solution using microprocessors will sometimes 
make more sense, with a use case of microcontrollers at the edge 
enabled with processor to combine information from a variety of 
sensors(e.g. temperature, pressure, humidity ) to determine when a 
complex piece of equipment such as CellSynputer needs operating level 
and also to determine if some combination of flow conditions(e.g. amino 
acids, reagents, catalysts) is a likely fit to cell synthesis on CellSynputer 
and also to monitor process control operations in CellSynputer while in 
use as well as activate  devices based on trigger for successful Cell 
Synthesis. 

Microcontroller Design 

Here we look at the design aspects of microcontroller. This is nothing but 
designing a learning agent for improving the cell synthesis performance 
along with the desired cell structural patterns for autonomous protein 
folding/synthesis in the form of Control Design or operational 
functionality. 

The revolution of modern computing has been largely enabled by 
remarkable advances in computer systems and hardware. However, 
majority of today’s chips designed are not suitable for high-end 
computing, resulting in the need to optimize the next generation of chips 
for the machine learning (ML) models for cell synthesis applications and 
the ML itself could provide the means to the microcontroller design 
requirement, creating a more integrated relationship for hardware 
controls. 

In order for the AI to design with a run at RL agent and the technique 
proved that AI can not only learn to design controls from scratch but that 



those controls are faster than controls designed using the latest 
validation tools. Here an AI agent could design neural graphs and such  
graph is converted into a controls with operating parameters using a 
control generator. These generated controls are then further optimized 
by a physical synthesis tool using  synthesis optimizations such as 
sensor sizing, actuator calibration, etc. 

The process control design is represented as a reinforcement learning 
(RL) task, where we train an agent to optimize the operations and delay 
properties of process controls and  for this process controls are 
represented using grid representation with each element in the grid 
mapping to a graph node, and design an environment where the RL 
agent can add or remove a node from the control graph. 

We propose process control placement as a reinforcement learning (RL) 
problem, where we train an agent (i.e, an RL policy) to optimize the 
quality of operating parameters. Unlike other methods, this approach 
has the ability to learn from past experience and improve over time. In 
particular, as we train over a greater number of control blocks, the 
method becomes better at rapidly generating optimized controls for 
previously unseen blocks. 

 

The control logic system for the microcontroller is divided into two 
blocks, each of which is an individual module and these blocks can be 
described by a graph of control components consisting of node types 
and graph adjacency information. The graph of process control  
components requisite for the composition and structural patterns, are 
passed through an edge based graph neural networks to encode input 
state. This generates the embeddings of the placed graph and the 
candidate nodes.   
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A graph neural network generates embeddings that are concatenated 
with the basic crop meta data to form the input to the policy and  
requirement of control design for quantum generation. The policy 
network generates a probability distribution overall possible grid cells 
onto which the current node/cells could be placed. 

RESULTS 

In obscene of graph data using graph representation for machine 
learning systems for managing process controlling data, we build and 
store the graphs in a simple read format i.e. matrix representations ( 
stored as a node or record with edge list ) to perform link prediction. 

We have represented this model as matrix with encoded values with 
possible values for each of the nodes along with the link attributes. We 
populated the matrix data with randomly generated data and simulated 
to represent the real world process control elements. 
The system with different configurations for the hidden structures of the 
networks: 

• 2 hidden layers: the first with 30 neurons and a tanh activation 
function; the second with 15 neurons and a linear activation 
function. No dropout. 

 

• 2 hidden layers: the first with 30 neurons and a tanh activation 
function; the second with 15 neurons and a linear activation 
function. Dropout rate of 0.5. 

 

The results for our CNN based model – RL policy model –  The networks 
that do not use dropout seem to learn well.  The percentage of desired 
generation for the  networks (without dropout) is high. 
Although we only have partial results, we can make the following 
observations: the networks that do not use dropout  seem to learn well, 
while the network using dropout does not; it either learns very slowly or 
just converges to very low level of generation requirements. 
 

CONCLUSION 

Quantum Generators (QG) creates new seeds iteratively using the 
single input seed and the process leads to a phenomenon of generating 
multiple copies of kernels in repetition. We presented a robotic synthesis 
equipped with AI-driven learning that can effectively explore unknown 
and complex phenomenon of protein folding in cell synthesizer and is 
also designed a microcontroller unit with RL agent (Q-learning) to add or 
to remove the controls  to maintain a correct flow and to build through a 



series of steps( adding or removing controls) for improving the 
performance &  efficiency of cell structural patterns in an open-ended 
way. In this way, an automation assisted synthesizer with reconfigurable 
system that is part of CellSynputer is feasible for automated 
experimentation of diverse protein folding outcomes depending on the 
crop tissues and in that respect an implementation of Reinforcement 
Learning agent as a part of microcontroller unit based on small model is 
presented. Although the platform model with learning agents given us a 
method of automating and optimizing cellular assemblies however, this 
need to be tested using natural crop cells for quantum generation. 
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