Long-Term Forecasting of Pollutant Emissions in the Arctic Ocean Based on Cross-Dimensional Dependency Network Using Arctic Ship Traffic Data

Sunghyun Sim, Younghwi Kim, Ki-Tae Kim and Hyerim Bae

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

July 11, 2024
Long-Term Forecasting of Pollutant Emissions in the Arctic Ocean Based on Cross-Dimensional Dependency Network using Arctic Ship Traffic Data

Sunghyun Sim¹, Younghwi Kim², Ki-Tae Kim³ and Hyerim Bae⁴

¹ Departments of Industrial Management & Big Data Engineering, Dong-eui University, 176 Eomgwang No, Gaya Dong 24, Busanjin Gu, 47340 Busan, South Korea
ssh@deu.ac.kr

² Safe & Clean Supply Chain Research Center, Pusan National University, 30-Jan-jeon Dong, Geum-Jeong Gu, 46241, Busan, South Korea
dudgnl6032@naver.com

³ Department of Business & Logistics, Youngsan University, 142 Bansongsunhwan-ro, Haeundae-gu, Busan, South Korea
jeha@ysu.ac.kr

⁴ Department of Data Science, Graduate School of Data Science, Pusan National University, 30-Jan-jeon Dong, Geum-Jeong Gu, 46241, Busan, South Korea
hrbae@pnu.ac.kr

Abstract. Recently, due to global warming, the ice in the arctic ocean is rapidly melting, leading to an increase in the navigable period for ships in the Arctic Ocean. As a result, the number of ships passing through the arctic ocean is also steadily increasing, leading to a rise in the emission of pollutants within the arctic ocean. These environmental changes are exacerbating pollution in the arctic ocean. We aim to analyze the changes in pollutant emissions in the arctic ocean using Arctic Ship Traffic Data (ASTD). Additionally, we aim to conduct long-term predictions of pollutant emissions from ships passing through the arctic ocean to forecast the future pollution levels in the arctic ocean. To achieve this, we propose a neural network architecture called Cross-Dimensional Dependency Network. This model has been proposed to improve the accuracy of long-term predictions of pollutant emissions in the arctic ocean. Compared to existing spatiotemporal data-based long-term prediction models, this model shows an improvement in prediction performance of over 10%. This model is expected to be used as fundamental data for the development of environmental protection policies by predicting future pollution levels in the arctic ocean and comparing them with current IMO regulations and policies.

Keywords: Cross-Dimensional Dependency Network, Arctic Ship Traffic Data, Arctic Ocean Pollutant Emission, Long-Term Forecasting

1 Introduction

Climate change is causing a reduction in ice along the arctic ocean routes, impacting navigation in the arctic ocean [1]. In the past, ships could navigate for five months,
including during the summer. However, in 2020, it was reported that ships could navigate for seven months, and this period is expected to increase gradually [2]. Indeed, over the past decade, maritime activity in the arctic ocean region has increased by an average of 7% per year, with winter navigation activity also significantly increasing [3]. These changes are also accelerating the increase in pollutants emitted from arctic shipping routes.

Fig. 1 visualizes the emission data included in the Arctic Ship Traffic Data (ASTD). According to this result, although emissions decreased from 2019 to 2020 due to factors such as COVID-19 and the Ukraine conflict leading to a reduction in vessel traffic, there is a consistent upward trend in emissions over the past decade [4].

We utilize the ASTD to perform long-term predictions of pollutants discharged through the arctic maritime routes. Additionally, we propose a novel artificial neural network architecture called Cross-Dimensional Dependency Networks (CDDNet) to enhance the accuracy of long-term predictions of pollutants discharged through the arctic maritime routes. We expected that the proposed CDDNet will contribute to establishing relevant policy regulations by providing accurate long-term predictions of emissions discharged along the arctic shipping routes.

2 Cross-Dimensional Dependency Network

We aim to long-term forecasting the emissions of 7 substances (CO, CO₂, SO₂, NOₓ, N₂O, NMVOC, CH₄) at ASTD. Fig. 1 show the overall architecture of the Cross-Dimensional Dependency Networks (CDDNet) used to predict seven emissions from ships navigating in the arctic ocean. CDDNet is composed of n Cross-Dimensional Dependency mapping blocks. Each block consists of an embedding layer composed of linear layers, followed by a temporal layer and a spatial layer arranged in sequence. This structure is designed to learn temporal and spatial feature in the input data.

To generate input data for each network, the location information of the ships collected at the same time and the individual emissions discharged at each location are represented on a 32x32 grid. Subsequently, input data of size (32, 32, i) is generated by considering sequence information of i instances to be trained. Before entering the CDDNet, the input data is partitioned into patches using patch embeddings, with the entire grid divided into patch units.
Long-Term Forecasting of Pollutant Emissions in the Arctic Ocean Based on Cross-Dimensional Dependency Network using Arctic Ship Traffic Data

3 Experiments.

We have conducted comparative experiments between CDDNet and two representative baseline models (ConvLSTM [5], SimVP [6]) commonly used in spatiotemporal prediction to evaluate the predictive performance. The experimental data have been collected from ASTD over a period of 10 years from January 2013 to December 2022. The training and test data have been divided into a 7:3 ratio. The forecasting term has been set at one month and six months ahead for experimentation. For performance evaluation, we utilized metrics including Mean Squared Error (MSE), Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM) MSE and MAE are metrics for evaluating the difference between actual values and predicted values. Smaller values indicate better performance of the prediction model. PSNR and SSIM are metrics for evaluating the similarity between grids containing actual emissions, represented as (32, 32, \(T\)), and grids containing predicted emissions, also represented as (32, 32, \(T\)). Larger values indicate better performance of the forecasting model.

Table 1 represents the results of the comparative experiments. Initially, on a one-month prediction basis, our proposed model exhibited improved performance across all metrics compared to the existing model. While there were variations across performance metrics, they showed enhancements ranging from 3% to 10%. Furthermore, on a six-month prediction basis, there were performance improvements in all metrics except for the minimum PSNR, with up to a 26% enhancement in prediction performance. These results demonstrate that the structure of our proposed CDDNet is suitable for long-term prediction of pollutants emitted from ships in the arctic route.
4 Sunghyun Sim, Younghwi Kim, Ki-Tae Kim and Hyerim Bae

Table 1. Table captions should be placed above the tables.

<table>
<thead>
<tr>
<th>Forecasting Term</th>
<th>Metric</th>
<th>ConvLSTM</th>
<th>SimVP</th>
<th>CCDNet (Our)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Month (30 days)</td>
<td>MSE</td>
<td>5.074</td>
<td>4.921</td>
<td>4.401</td>
</tr>
<tr>
<td></td>
<td>MAE</td>
<td>2.370</td>
<td>2.587</td>
<td>2.154</td>
</tr>
<tr>
<td></td>
<td>PSNR</td>
<td>44.203</td>
<td>44.267</td>
<td>44.613</td>
</tr>
<tr>
<td></td>
<td>SSIM</td>
<td>0.919</td>
<td>0.917</td>
<td>0.928</td>
</tr>
<tr>
<td>Half of Year (180 days)</td>
<td>MSE</td>
<td>5.931</td>
<td>5.881</td>
<td>5.757</td>
</tr>
<tr>
<td></td>
<td>MAE</td>
<td>2.550</td>
<td>3.204</td>
<td>2.534</td>
</tr>
<tr>
<td></td>
<td>PSNR</td>
<td>43.651</td>
<td>43.769</td>
<td>43.678</td>
</tr>
<tr>
<td></td>
<td>SSIM</td>
<td>0.911</td>
<td>0.897</td>
<td>0.912</td>
</tr>
</tbody>
</table>

4 Conclusion

Our study presents a new CDDNet artificial neural network architecture for long-term prediction of substances discharged from ships in the Arctic Ocean. We found that the proposed model outperformed existing models, showing up to a 26% improvement in performance, particularly in long-term predictions such as 6 months ahead. By utilizing such predictive models, precise estimations of emissions from ships within the Arctic route can be made, serving as crucial foundational data for environmental regulations. Future research aims to further enhance the existing model structure to develop a model capable of accurate predictions up to 5 years ahead.

Acknowledgments. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(No.RS-2023-00218913) and by MSIT, Korea, under the Grand Information Technology Research Center support program (IITP-2020-0-01791) supervised by the Institute for Information & Communications Technology Planning & Evaluation.

References

2. Anna, A. The Emerging Arctic Shipping Corridors. Geophysical Research Letters, 49(10), pp 1-10 (2022)
3. Denis, K. et al. Analysis of spatio-temporal changes in Arctic Ocean ecosystem using machine learning and its impact on marine transportation system. Transportation research procedia, 63, pp 2967-2971 (2022)