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THE DISPERSIONLESS INTEGRABLE SYSTEMS AND RELATED

CONFORMAL STRUCTURE GENERATING EQUATIONS OF
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AND ANATOLIJ K. PRYKARPATSKI

Abstract. Based on the diffeomorphism group vector fields on the complexi-

fied torus and the related Lie-algebraic structures, we study multi-dimensional
dispersionless integrable systems, describing conformal structure generating equa-

tions of mathematical physics. An interesting modification of the devised Lie-

algebraic approach subject to the spatial dimensional invariance and meromor-
phicity of the related differential-geometric structures is described and applied

to proving complete integrability of some conformal structure generating equa-

tions. As examples, we analyzes the Einstein–Weyl metric equation, the modified
Einstein–Weyl metric equation, the Dunajski heavenly equation system, the first

and second conformal structure generating equations, the inverse first Shabat

reduction heavenly equation, the first and modified Plebański heavenly equa-
tions and its multi-dimensional generalizations, the Husain heavenly equation

and its multi-dimensional generalizations, the general Monge equation and its

multi-dimensional generalizations. We also construct superconformal analogs of
the Whitham heavenly equation.

1. Vector fields on the complexified torus and the related
Lie-algebraic properties

Consider the loop Lie group G̃ := D̃iff(TnC), consisting [14] of the set of smooth
mappings {C1 ⊃ S1 −→ G = Diff(Tn}, extended, respectively, holomorphically
from the circle S1 ⊂ C1 on the set D1

+ of the internal points of the circle S1, and

on the set D1
− of the external points λ ∈ C\D1

+. The corresponding diffeomorphism

Lie algebra splitting G̃ := G̃+ ⊕ G̃−, where G̃+ := d̃iff(Tn)+ ⊂ Γ(TnC;T (TnC)) is
a Lie subalgebra, consisting of vector fields on the complexified torus TnC ' Tn ×
C, suitably holomorphic on the disc D1

+ , G̃− := d̃iff(TnC)− ⊂ Γ(TnC;T (TnC)) is a
Lie subalgebra, consisting of vector fields on the complexified torus TnC ' Tn × C,
suitably holomorphic on the set D1

−. The adjoint space G̃∗ := G̃∗+ ⊕ G̃∗−, where

the space G̃∗+ ⊂ Γ(TnC;T ∗(TnC)) consists, respectively, from the differntial forms on

the complexified torus TnC, suitably holomorphic on the set C\D1

+, and the adjoint

space G̃∗− ⊂ Γ(TnC;T ∗(TnC)) consists, respectively, from the differntial forms on the

complexified torus TnC, suitably holomorphic on the set D1
+, so that the space G̃∗+ is

dual to G̃+ and G̃∗− is dual to G̃− with respect to the following convolution form on

the product G̃∗ × G̃ :

(1.1) (l̃|ã) := resλ

∫
Tn

< l, a > dx

for any vector field ã :=< a(x), ∂∂x >∈ G̃ and differential form l̃ :=< l(x), dx > ∈
G̃∗ on TnC, depending on the coordinate x := (λ;x) ∈ TnC, where, by definition,

< ·, · > is the usual scalar product on the Euclidean space En+1 and ∂
∂x :=

( ∂
∂λ ,

∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

)> is the usual gradient vector. The Lie algebra G̃ allows the
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direct sum splitting G̃ = G̃+ ⊕ G̃−, causing with respect to the convolution (1.1) the

direct sum splitting G̃∗ = G̃∗+⊕G̃∗−. If to define now the set I(G̃∗) of Casimir invariant

smooth functionals h : G̃∗ → R on the adjoint space G̃∗ via the coadjoint Lie algebra
G̃ action

(1.2) ad∗∇h(l̃) l̃ = 0

at a seed element l̃ ∈ G̃∗, by means of the classical Adler-Kostant-Symes scheme
[15, 7, 2, 1] one can generate [11, 12, 16, 9] a wide class of multi-dimensional com-
pletely integrable dispersionless (heavenly type) commuting to each other Hamiltonian
systems

(1.3) dl̃/dt := −ad∗∇h+(l̃)
l̃ ,

for all h ∈ I(G̃∗), ∇h(l̃) := ∇h+(l̃) ⊕ ∇h−(l̃) ∈ G̃+ ⊕ G̃−, on suitable functional
manifolds. Moreover, these commuting to each other flows (1.3) can be equivalently
represented as a commuting system of Lax-Sato type [9] vector field equations on the
functional space C2(TnC;C), generating an complete set of first integrals for them. As
it was appeared, amongst them there are present important equations for modern
studies in physics, hydrodynamics and, in particular, in Riemannian geometry, being
related with such interesting conformal structures on Riemannian metric spaces as
Einstein and Einstein-Weyl metrics equations, the first and second Plebański confor-
mal metric equations, Dunajski metric equations etc. What was observed, some of
them were generated by seed elements l̃ ∈ G̃∗, meromorphic at some points of the
complex plane C, whose analysis needed some modification of the theoretical back-
grounds. Moreover, the general differential-geometric structure of seed elements,
related with some conformal metric equations, proved to be invariant subject to the
spatial dimension of the Riemannian spaces under regard, that made it possible to de-
scribe them analytically. Namely these and related aspects of the integrable conformal
metric equations, mentioned above, are studied and presented in the work.

2. The Lie-algebraic structures and integrable Hamiltonian systems

Consider the loop Lie algebra G̃, determined above. This Lie algebra has elements

representable as a(x;λ) :=< a(x;λ), ∂∂x >=
n∑
j=1

aj(x;λ) ∂
∂xj

+ a0(x;λ) ∂
∂λ ∈ G̃ for

some holomorphic in λ ∈ D1
± vectors a(x;λ) ∈ E×En for all x ∈ Tn, where ∂

∂x :=

( ∂
∂λ ,

∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

)> is the generalized Euclidean vector gradient with respect to

the vector variable x := (λ, x) ∈ TnC. As it was mentioned above, the Lie algebra G̃
naturally splits into the direct sum of two subalgebras:

(2.1) G̃ = G̃+ ⊕ G̃−,

allowing to introduce on it the classical R-structure:

(2.2) [ã, b̃]R := [Rã, b̃] + [ã,Rb̃]

for any ã, b̃ ∈ G̃, where

(2.3) R := (P+ − P−)/2,

and

(2.4) P±G̃ := G̃± ⊂ G̃.

The space G̃∗ ' Λ̃1(TnC), adjoint to the Lie algebra G̃ of vector fields on TnC, is

functionally identified with G̃ subject to the metric (1.1). Now for arbitrary f, g ∈
D(G̃∗), one can determine two Lie–Poisson type brackets

(2.5) {f, g} := (l̃, [∇f(l̃),∇g(l̃)])

and

(2.6) {f, g}R := (l̃, [∇f(l̃),∇g(l̃)]R) ,
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where at any seed element l̄ ∈ G̃∗ the gradient element ∇f(l̃) and ∇g(l̃) ∈ G̃ are
calculated with respect to the metric (1.1).

Now let us assume that a smooth function γ ∈ I(G̃∗) is a Casimir invariant, that is

(2.7) ad∗∇γ(l̃) l̃ = 0

for a chosen seed element l̃ ∈ G̃∗. As the coadjoint mapping ad∗∇f(l̃) : G̃∗ → G̃∗ for

any f ∈ D(G̃∗) can be rewritten in the reduced form as

(2.8) ad∗∇f(l̃)(l̃) =

〈
∂

∂x
, ◦∇f(l)

〉
l̄ +

n∑
j=1

〈〈
l,

∂

∂x
∇f(l)

〉
, dx

〉
,

where, by definition, ∇f(l̃) :=< ∇f(l), ∂∂x > . For the Casimir function γ ∈ D(G̃∗)
the condition (2.7) is then equivalent to the equation

(2.9) l

〈
∂

∂x
,∇γ(l)

〉
+

〈
∇γ(l),

∂

∂x

〉
l +

〈
l, (

∂

∂x
∇γ(l))

〉
= 0,

which should be solved analytically. In the case when an element l̃ ∈ G̃∗ is singular
as |λ| → ∞, one can consider the general asymptotic expansion

(2.10) ∇γ := ∇γ(p) ∼ λp
∑
j∈Z+

∇γ(p)j λ−j

for some suitably chosen p ∈ Z+, and upon substituting (2.10) into the equation (2.9),
one can proceed to solving it recurrently.

Now let h(y), h(t) ∈ I(G̃∗) be such Casimir functions for which the Hamiltonian
vector field generators

(2.11) ∇h(y)+ (l) := ( ∇γ(py)(l))|+, ∇h(t)+ (l) := ( ∇h(pt)(l))|+
are, respectively, defined for special integers py, pt ∈ Z+. These invariants generate,
owing to the Lie–Poisson bracket (2.6), the following commuting flows:

(2.12) ∂l/∂t = −
〈
∂

∂x
, ◦∇h(t)+ (l)

〉
l −

〈
l, (

∂

∂x
∇h(t)+ (l))

〉
and

(2.13) ∂l/∂y = −
〈
∂

∂x
, ◦∇h(y)+ (l)

〉
l −

〈
l, (

∂

∂x
∇h(y)+ (l))

〉
,

where y, t ∈ R are the corresponding evolution parameters. Since the invariants
h(y), h(t) ∈ I(G̃∗) commute with respect to the Lie–Poisson bracket (2.6), the flows
(2.12) and (2.13) also commute, implying that the corresponding Hamiltonian vector
field generators

(2.14) A∇h(t)
+

:=

〈
∇h(t)+ (l),

∂

∂ x

〉
, A∇h(y)

+
:=

〈
∇h(y)+ (l),

∂

∂ x

〉
satisfy the Lax compatibility condition

(2.15)
∂

∂y
A∇h(t)

+
− ∂

∂t
A∇h(y)

+
= [A∇h(t)

+
, A∇h(y)

+
]

for all y, t ∈ R. On the other hand, the condition (2.15) is equivalent to the compati-
bility condition of two linear equations

(2.16)

(
∂

∂t
+A∇h(t)

+

)
ψ = 0,

(
∂

∂y
+A∇h(y)

+

)
ψ = 0

for a function ψ ∈ C2(R2 × TnC;C) for all y, t ∈ R and any λ ∈ C. The above can be
formulated as the following key result:

Proposition 2.1. Let a seed vector field be l̃ ∈ G̃∗ and h(y), h(t) ∈ I(G̃∗) be Casimir

functions subject to the metric (·|·) on the loop Lie algebra G̃ and the natural coadjoint

action on the loop co-algebra G̃∗. Then the following dynamical systems

(2.17) ∂l̃/∂y = −ad∗
∇h(y)

+ (l̃)
l̃, ∂l̃/∂t = −ad∗

∇h(t)
+ (l̃)

l̃



4OKSANA E. HENTOSH, YAREMA A. PRYKARPATSKY, DENIS BLACKMORE, AND ANATOLIJ K. PRYKARPATSKI

are commuting Hamiltonian flows for all y, t ∈ R. Moreover, the compatibility con-
dition of these flows is equivalent to the vector fields representation (2.16), where

ψ ∈ C2(R2 × TnC;C) and the vector fields A∇h(y)
+
, A∇h(t)

+
∈ G̃ are given by the expres-

sions (2.14) and (2.11).

Remark 2.2. As mentioned above, the expansion (2.10) is effective if a chosen seed

element l̃ ∈ G̃∗ is singular as |λ| → ∞. In the case when it is singular as |λ| → 0, the
expression (2.10) should be replaced by the expansion

(2.18) ∇γ(p)(l) ∼ λ−p
∑
j∈Z+

∇γ(p)j (l)λj

for suitably chosen integers p ∈ Z+, and the reduced Casimir function gradients
then are given by the Hamiltonian vector field generators

∇h(y)− (l) := λ(λ−py−1∇γ(py)(l))−,(2.19)

∇h(t)− (l) := λ(λ−pt−1∇γ(pt)(l))−

for suitably chosen positive integers py, pt ∈ Z+ and the corresponding Hamiltonian

flows are, respectively, written as ∂l̃/∂t = ad∗
∇h(t)

− (l̃)
l̃, ∂l̃/∂y = ad∗

∇h(y)
− (l̃)

l̃.

It is also worth of mentioning that, following Ovsienko’s scheme [11, 12], one can
consider a slightly wider class of integrable heavenly equations, realized as compatible
Hamiltonian flows on the semidirect product of the holomorphic loop Lie algebra G̃
of vector fields on the torus TnC and its regular co-adjoint space G̃∗, supplemented
with naturally related cocycles.

3. The Lax-Sato type integrable systems and related conformal
structure generating equations

3.1. Einstein–Weyl metric equation. Define G̃∗ = d̃iff(T1
C)∗ and take the seed

element

l̃ = (uxλ− 2uxvx − uy) dx+
(
λ2 − vxλ+ vy + v2x

)
dλ,

which generates with respect to the metric (1.1) the gradient of the Casimir invariants

h(pt), h(py) ∈ I(G̃∗) in the form

∇h(pt)(l) ∼ λ2(0, 1)> + (−ux, vx)>λ + (uy, u− vy)> +O(λ−1),(3.1)

∇h(py)(l) ∼ λ(0, 1)> + (−ux, vx)> + (uy,−vy)>λ−1 +O(λ−2)

as |λ| → ∞ at pt = 2, py = 1. For the gradients of the Casimir functions h(t), h(y) ∈
I(G̃∗), determined by (2.11) one can easily obtain the corresponding Hamiltonian
vector field generators

A∇h(t)
+

=

〈
∇h(t)+ (l),

∂

∂x

〉
= (λ2 + λvx + u− vy)

∂

∂x
+ (−λux + uy)

∂

∂λ
,(3.2)

A∇h(y)
+

=

〈
∇h(y)+ (l),

∂

∂x

〉
= (λ+ vx)

∂

∂x
− ux

∂

∂λ
,

satisfying the compatibility condition (2.15), which is equivalent to the set of equations

uxt + uyy + (uux)x + vxuxy − vyuxx = 0,(3.3)

vxt + vyy + uvxx + vxvxy − vyvxx = 0,

describing general integrable Einstein–Weyl metric equations [6].
As is well known [10], the invariant reduction of (3.3) at v = 0 gives rise to the

famous dispersionless Kadomtsev–Petviashvili equation

(3.4) (ut + uux)x + uyy = 0,
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for which the reduced vector field representation (2.16) follows from (3.2) and is given
by the vector fields

A∇h(t)
+

= (λ2 + u)
∂

∂x
+ (−λux + uy)

∂

∂λ
,(3.5)

A∇h(y)
+

= λ
∂

∂x
− ux

∂

∂λ
,

satisfying the compatibility condition (2.15), equivalent to the equation (3.4). In par-
ticular, one derives from (2.16) and (3.5) the vector field compatibility relationships

∂ψ

∂t
+ (λ2 + u)

∂ψ

∂x
+ (−λux + uy)

∂ψ

∂λ
= 0(3.6)

∂ψ

∂y
+ λ

∂ψ

∂x
− ux

∂ψ

∂λ
= 0,

satisfied for ψ ∈ C2(R2 × T1
C;C) and any y, t ∈ R, (x, λ) ∈ T1

C.

3.2. The modified Einstein–Weyl metric equation. This equation system is

uxt = uyy + uxuy + u2xwx + uuxy + uxywx + uxxa,(3.7)

wxt = uwxy + uywx + wxwxy + awxx − ay,
where ax := uxwx − wxy, and was recently derived in [17]. In this case we take also

G̃∗ = d̃iff(T1
C), yet for a seed element l̃ ∈ G̃ we choose the form

l̃ = [λ2ux + (2uxwx + uy + 3uux)λ+ 2ux∂
−1
x uxwx + 2ux∂

−1
x uy +(3.8)

+ 3uxwx
2 + 2uywx + 6uuxwx + 2uuy + 3u2ux − 2aux]dx+

+ [λ2 + (wx + 3u)λ+ 2∂−1x uxwx + 2∂−1x uy + wx
2 + 3uwx + 3u2 − a]dλ,

which with respect to the metric (1.1) generates two Casimir invariants γ(j) ∈ I(G̃∗),
j = 1, 2, whose gradients are

∇γ(2)(l) ∼ λ2[(ux,−1)> + (uux + uy,−u+ wx)>λ−1 +(3.9)

+ (0, uwx − a)>λ−2] +O(λ−1) ,

∇γ(1)(l) ∼ λ[(ux,−1)> + (0, wx)> λ−1] +O(λ−1),

as |λ| → ∞ at py = 1, pt = 2. The corresponding gradients of the Casimir func-

tions h(t), h(y) ∈ I(G∗), determined by (2.11), generate the Hamiltonian vector field
expressions

∇h(y)+ := ∇γ(1)(l)|+ = (uxλ,−λ+ wx)>,(3.10)

∇h(t)+ = ∇γ(2)(l)|+ = (uxλ
2 + (uux + uy)λ,−λ2 + (wx − u)λ+ uwx − a)>.

Now one easily obtains from (3.10) the compatible Lax system of linear equations

∂ψ

∂y
+ (−λ+ wx)

∂ψ

∂x
+ uxλ

∂ψ

∂λ
= 0,(3.11)

∂ψ

∂t
+ (−λ2 + ( wx − u)λ+ uwx − a)

∂ψ

∂x
+ (uxλ

2 + (uux + uy)λ)
∂ψ

∂λ
= 0,

satisfied for ψ ∈ C2(R2 × T1
C;C) and any y, t ∈ R, (λ, x) ∈ T1

C.

3.3. The Dunajski heavenly equation system. This equation, suggested in [5],
generalizes the corresponding anti-self-dual vacuum Einstein equation, which is re-
lated to the Plebański metric and the celebrated Plebański [13, 8] second heavenly
equation. To study the integrability of the Dunajski equations

ux1t + uyx2
+ ux1x1

ux2x2
− u2x1x2

− v = 0,(3.12)

vx1t + vx2y + ux1x1
vx2x2

− 2ux1x2
vx1x2

= 0,

where (u, v) ∈ C∞(R2 × T2;R2), (y, t;x1, x2) ∈ R2 × T2, we define G̃∗ = d̃iff(T2
C)∗

and take the following as a seed element l̄ ∈ G̃∗

(3.13) l̃ = (λ+vx1−ux1x1 +ux1x2)dx1+(λ+vx2 +ux2x2−ux1x2)dx2+(λ−x1−x2)dλ.
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With respect to the metric (1.1), the gradients of two functionally independent

Casimir invariants h(py), h(py) ∈ I(G̃∗) can be obtained as |λ| → ∞ in the asymptotic
form as

∇h(py) (l) ∼ λ(1, 0, 0)> + (−ux1x2
, ux1x1

,−vx1
)> +O(λ−1),(3.14)

∇h(pt) (l) ∼ λ(0,−1, 0)> + (ux2x2
,−ux1x2

, vx2
)> +O(λ−1),

at pt = 1 = py. Upon calculating the Hamiltonian vector field generators

∇h(y)+ := ∇h(py) (l)|+ = (λ− ux1x2
, ux1x1

,−vx1
)>,(3.15)

∇h(t)+ := ∇h(pt) (l)|+ = (ux2x2
,−λ− ux1x2

, vx2
)>,

following from the Casimir functions gradients (3.14), one easily obtains the following
vector fields

A∇h(t)
+

=< ∇h(t)+ ,
∂

∂x
>= ux2x2

∂

∂x1
− (λ+ ux1x2)

∂

∂x2
+ vx2

∂

∂λ
,(3.16)

A∇h(y)
+

=< ∇h(y)+ ,
∂

∂x
>= (λ− ux1x2

)
∂

∂x1
+ ux1x1

∂

∂x2
− vx1

∂

∂λ
,

satisfying the Lax compatibility condition (2.15), which is equivalent to the vector
field compatibility relationships

∂ψ

∂t
+ ux2x2

∂ψ

∂x1
− (λ+ ux1x2)

∂ψ

∂x2
+ vx2

∂ψ

∂λ
= 0,(3.17)

∂ψ

∂y
+ (λ− ux1x2

)
∂ψ

∂x1
+ ux1x1

∂ψ

∂x2
− vx1

∂ψ

∂λ
= 0,

satisfied for ψ ∈ C2(R2 × T2
C;C), any (y, t) ∈ R2 and all (λ;x1, x2) ∈ T2

C. As
was mentioned in [3], the Dunajski equations (3.12) generalize both the dispersionless
Kadomtsev–Petviashvili and Plebański second heavenly equations, and is also a Lax
integrable Hamiltonian system.

3.4. First conformal structure generating equation: uyt + uxtuy − utuxy = 0.

The seed element l̃ ∈ G̃∗ = d̃iff(T1)∗ in the form

(3.18) l̃ = [u−2t (1− λ)λ−1 + u−2y λ(λ− 1)−1]dx,

where u ∈ C2(T1 ×R2;R), x ∈ T1, λ ∈ C\{0, 1} and ”d” denotes the full differential,

generates two independent Casimir functionals γ(1) and γ(2) ∈ I(G̃∗), whose gradients
have the following asymptotic expansions:

∇γ(1)(l) ∼ uy +O(µ2),

as |µ| → 0, µ := λ− 1, and

∇γ(2)(l) ∼ ut +O(λ2),

as |λ| → 0. The commutativity condition

(3.19) [X(y), X(t)] = 0

of the vector fields

(3.20) X(y) := ∂/∂y +∇h(y)(l̃), X(t) := ∂/∂t+∇h(t)(l̃),

where

∇h(y)(l̃) := −(µ−1∇γ(1)(l̃))|− = − uy
λ− 1

∂

∂x
,(3.21)

∇h(t)(l̃) := −(λ−1∇γ(2)(l̃))|− = −ut
λ

∂

∂x
,

leads to the heavenly type equation

uyt + uxtuy − uxyut = 0.
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Its Lax-Sato representation is the compatibility condition for the first order partial
differential equations

∂ψ

∂y
− uy
λ− 1

∂ψ

∂x
= 0,(3.22)

∂ψ

∂t
− ut
λ

∂ψ

∂x
= 0,

where ψ ∈ C2(R2 × T1
C;C).

3.5. Second conformal structure generating equation: uxt+uxuyy−uyuxy = 0.

For a seed element l̃ ∈ G̃∗ = d̃iff(T1)∗ in the form

(3.23) l̃ = [u2x + 2u2x(uy + α)λ−1 + u2x(3u2y + 4αuy + β)λ−2]dx,

where u ∈ C2(T1×R2;R), x ∈ T1, λ ∈ C\{0},and α, β ∈ R, there is one independent

Casimir functional γ
(1) ∈ I(G̃∗) with the following asymptotic as |λ| → 0 expansion

of its functional gradient:

∇γ(1)(l) ∼ c0u−1x + (−c0uy + c1)u−1x λ+ (−c1uy + c2)u−1x λ2 +O(λ3),

where cr ∈ R, r = 1, 2. If one assumes that c0 = 1, c1 = 0 and c2 = 0, then we obtain
two functionally independent gradient elements

∇h(y)(l̃) := −(λ−1∇γ(1)(l̃))|− = − 1

λux

∂

∂x
,(3.24)

∇h(t)(l̃) := (λ−2∇γ(1)(l̃))|− =

(
1

λ2ux
− uy
λux

)
∂

∂x
.

The corresponding commutativity condition (3.19) of the vector fields (3.20) give rise
to the following heavenly type equation:

(3.25) uxt + uxuyy − uyuxy = 0,

whose linearized Lax-Sato representation is given by the first order system

∂ψ

∂y
− 1

λux

∂ψ

∂x
= 0,(3.26)

∂ψ

∂t
+

(
1

λ2ux
− uy
λux

)
∂ψ

∂x
= 0

of linear vector field equations on a function ψ ∈ C2(R2 × T1
C;R).

3.6. Inverse first Shabat reduction heavenly equation. A seed element l̃ ∈
G̃∗ = d̃iff(T1)∗ in the form

(3.27) l̃ = (a0u
−2
y u2x(λ+ 1)−1 + a1u

2
x + a1u

2
xλ)dx,

where u ∈ C2(T1 × R2;R), x ∈ T1, λ ∈ C \ {−1}, and a0, a1 ∈ R, generates two

independent Casimir functionals γ(1) and γ(2) ∈ I(G̃∗), whose gradients have the
following asymptotic expansions:

(3.28) ∇γ(1)(l) ∼ uyu−1x − uyu−1x µ+O(µ2),

as |µ| → 0, µ := λ+ 1, and

(3.29) ∇γ(2)(l) ∼ u−1x +O(λ−2),

as |λ| → ∞. If we put, by definition,

∇h(y)(l̃) := (µ−1∇γ(1)(l̃))|− = − λ

λ+ 1

uy
ux

∂

∂x
,(3.30)

∇h(t)(l̃) := (λ∇γ(2)(l̃))|+ =
λ

ux

∂

∂x
,

the commutativity condition (3.19) of the vector fields (3.20) leads to the heavenly
equation

(3.31) uxy + uyutx − utyux = 0,
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which can be obtained as a result of the simultaneous changing of independent vari-
ables R 3x → t ∈ R, R 3y → x ∈ R and R 3t → y ∈ R in the first Shabat reduction
heavenly equation. The corrersponding Lax-Sato representation is given by the com-
patibility condition for the first order vector field equations equations

∂ψ

∂y
− λ

λ+ 1

uy
ux

∂ψ

∂x
= 0,(3.32)

∂ψ

∂t
+

λ

ux

∂ψ

∂x
= 0,

where ψ ∈ C2(R2 × T1
C;R).

3.7. First Plebański heavenly equation and its generalizations. The seed el-

ement l̃ ∈ G̃∗ = d̃iff(T2)∗ in the form

(3.33) l̃ = λ−1(uyx1
dx1 + uyx2

dx2) = λ−1duy,

where u ∈ C2(T2 × R2;R), (x1, x2) ∈ T2, λ ∈ C\{0} and ”d” designates a full

differential, generates two independent Casimir functionals γ(1) and γ(2) ∈ I(G̃∗),
whose gradients have the following asymptotic expansions:

∇γ(1)(l) ∼ (−uyx2 , uyx1 , )
> +O(λ),(3.34)

∇γ(2)(l) ∼ (−utx2
, utx1

)> +O(λ),

as |λ| → 0. The commutativity condition (3.19) of the vector fields (3.20), where

∇h(y)(l̃) := (λ−1∇γ(1)(l̃))|− = −uyx2

λ

∂

∂x1
+
uyx1

λ

∂

∂x2
,(3.35)

∇h(t)(l̃) := (λ−1∇γ(2)(l̃))|− = −utx2

λ

∂

∂x1
+

utx1

λ

∂

∂x2
,

leads to the first Plebański heavenly equation [4]:

(3.36) uyx1
utx2
− uyx2

utx1
= 1.

Its Lax-Sato representation entails the compatibility condition for the first order par-
tial differential equations

∂ψ

∂y
− uyx2

λ

∂ψ

∂x1
+
uyx1

λ

∂ψ

∂x2
= 0,

∂ψ

∂t
− utx2

λ

∂ψ

∂x1
+

utx1

λ

∂ψ

∂x2
= 0,

where ψ ∈ C∞(R2 × T2
C;C).

Taking into account that the determining condition for Casimir invariants is sym-
metric and equivalent to the system of nonhomogeneous linear first order partial
differential equations for the covector function l = (l1, l2)>, the corresponding seed
element can be also chosen in another forms. Moreover, the form (3.33) is invariant
subject to the spatial dimension of the underlying torus Tn, what makes it possible to
describe the related generalized conformal metric equations for arbitrary dimension.

In particular, one easily observes that the asymptotic expansions (3.34) are also
true for such invariant seed elements as

l̃ = λ−1dut,

and

l̃ = λ−1(duy + dut).

The above described Lie-algebraic scheme can be easily generalized for any dimension
n = 2k, where k ∈ N, and n > 2. In this case one has 2k independent Casimir func-

tionals γ(j) ∈ I(G̃∗), where G̃∗ = d̃iff(T2k)∗, j = 1, 2k, with the following asymptotic
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expansions for their gradients:

∇γ(1)(l) ∼ (−uyx2 , uyx1 , 0, . . . , 0︸ ︷︷ ︸
2k−2

)> +O(λ),

∇γ(2)(l) ∼ (−utx2 , utx1 , 0, . . . , 0︸ ︷︷ ︸
2k−2

)> +O(λ),

∇γ(3)(l) ∼ (0, 0,−uyx4 , uyx3 , 0, . . . , 0︸ ︷︷ ︸
2k−4

)> +O(λ),

∇γ(4)(l) ∼ (0, 0,−utx4
, utx3

, 0, . . . , 0︸ ︷︷ ︸
2k−4

)> +O(λ),

. . . ,

∇γ(2k−1)(l) ∼ (0, . . . , 0︸ ︷︷ ︸
2k−2

,−uyx2k
, uyx2k−1

)> +O(λ),

∇γ(2k)(l) ∼ (0, . . . , 0︸ ︷︷ ︸
2k−2

,−utx2k
, utx2k−1

)> +O(λ).

If we put

∇h(y)(l̃) := (λ−1(∇γ(1)(l̃) + . . .+∇γ(2k−1)(l̃)))|− =

= −
k∑

m=1

(
uyx2m

λ

∂

∂x2m−1
−
uyx2m−1

λ

∂

∂x2m

)
,

∇h(t)(l̃) := (λ−1(∇γ(2)(l̃) + . . .+∇γ(2k)(l̃)))|− =

= −
k∑

m=1

(
utx2m

λ

∂

∂x2m−1
−
utx2m−1

λ

∂

∂x2m

)
,

the commutativity condition (3.19) of the vector fields (3.20) leads to the following
multi-dimensional analogs of the first Plebański heavenly equation:

k∑
m=1

(uyx2m−1
utx2m

− uyx2m
utx2m−1

) = 1.

3.8. Modified Plebański heavenly equation and its generalizations. For the

seed element l̃ ∈ G̃∗ = d̃iff(T2)∗ in the form

l̃ = (λ−1ux1y + ux1x1 − ux1x2 + λ)dx1 +(3.37)

+(λ−1ux2y + ux1x2
− ux2x2

+ λ)dx2 =

= d(λ−1uy + ux1
− ux2

+ λx1 + λx2).

where dλ = 0, u ∈ C2(T2×R2;R), (x1, x2) ∈ T2, λ ∈ C\{0}, there exist two indepen-

dent Casimir functionals γ(1) and γ(2) ∈ I(G̃∗) with the following gradient asymptotic
expansions:

∇γ(1)(l) ∼ (uyx2
,−uyx1

)> +O(λ),

as |λ| → 0, and

∇γ(2)(l) ∼ (0,−1)> + (−ux2x2
, ux1x2

)>λ−1 +O(λ−2),

as |λ| → ∞. In the case, when

∇h(y)(l̃) := (λ−1∇γ(1)(l̃))|− =
uyx2

λ

∂

∂x1
− uyx1

λ

∂

∂x2
,

∇h(t)(l̃) := (λ∇γ(2)(l̃))|+ = −ux2x2

∂

∂x1
+ (ux1x2

− λ)
∂

∂x2
,

the commutativity condition (3.19) of the vector fields (3.20) leads to the modified
Plebański heavenly equation [4]:

(3.38) uyt − uyx1ux2x2 + uyx2ux1x2 = 0,
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with the Lax-Sato representation given by the first order partial differential equations

∂ψ

∂y
− uyx2

λ

∂ψ

∂x1
+
uyx1

λ

∂ψ

∂x2
= 0,

∂ψ

∂t
− ux2x2

∂ψ

∂x1
+ (ux1x2

− λ)
∂ψ

∂x2
= 0

for functions ψ ∈ C2(R2 × T2
C;C).

The differential-geometric form of the seed element (3.37) is also dimension in-
variant subject to additional spatial variables of the torus Tn, n > 2, what poses a
natural question of finding the corresponding multi-dimensional generalizations of the
modified Plebański heavenly equation (3.38).

If a seed element l̃ ∈ G̃∗ = d̃iff(T2k)∗ is chosen in the form (3.37), where u ∈
C2(T2k×R2;R), we have the following asymptotic expansions for gradients of 2k ∈ N
independent Casimir functionals γ(j) ∈ I(G̃∗), where G̃∗ = d̃iff(T2k)∗, j = 1, 2k:

∇γ(1)(l) ∼ (−uyx2
, uyx1

, 0, . . . , 0︸ ︷︷ ︸
2k−2

)> +O(λ),

∇γ(3)(l) ∼ (0, 0,−uyx4
, uyx3

, 0, . . . , 0︸ ︷︷ ︸
2k−4

)> +O(λ),

. . . ,

∇γ(2k−1)(l) ∼ (0, . . . , 0︸ ︷︷ ︸
2k−2

,−uyx2k
, uyx2k−1

)> +O(λ),

as |λ| → 0, and

∇γ(2)(l) ∼ (0,−1, 0, . . . , 0︸ ︷︷ ︸
2k−2

)> + (−ux2x2
, ux1x2

, 0, . . . , 0︸ ︷︷ ︸
2k−2

)>λ−1 +O(λ−2),

∇γ(4)(l) ∼ (0, 0,−ux4x2
, ux3x2

, 0, . . . , 0︸ ︷︷ ︸
2k−4

)>λ−1 +O(λ−2),

. . . ,

∇γ(2k)(l) ∼ (0, . . . , 0︸ ︷︷ ︸
2k−2

,−ux2kx2
, ux2k−1x2

)>λ−1 +O(λ−2),

as |λ| → ∞. In the case, when

∇h(y)(l̃) := −(λ−1(∇γ(1)(l̃) + . . .+∇γ(2k−1)(l̃)))|− =

=

k∑
m=1

(
uyx2m

λ

∂

∂x2m−1
−
uyx2m−1

λ

∂

∂x2m

)
,

∇h(t)(l̃) := (λ(∇γ(2)(l̃) + . . .+∇γ(2k)(l̃)))|+ =

= −ux2x2

∂

∂x1
+ (ux1x2 − λ)

∂

∂x2
−

k∑
m=2

(
ux2mx2

∂

∂x2m−1
− ux2m−1x2

∂

∂x2m

)
,

the commutability condition (3.19) of the vector fields (3.20) leads to the following
multi-dimensional analogs of the modified Plebański heavenly equation:

uyt −
k∑

m=1

(uyx2m
ux2x2m−1

− uyx2m−1
ux2x2m

) = 0.

3.9. Husain heavenly equation and its generalizations. A seed element l̃ ∈
G̃∗ = d̃iff(T2)∗ in the form

(3.39) l̃ =
d(uy + iut)

λ− i
+
d(uy − iut)

λ+ i
=

2(λduy − dut)
λ2 + 1

,

where i2 = −1, dλ = 0, u ∈ C2(T2 × R2;R), (x1, x2) ∈ T2, λ ∈ C\{−i; i}, generates

two independent Casimir functionals γ(1) and γ(2) ∈ I(G̃∗), with the following gradient
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asymptotic expansions:

∇γ(1)(l) ∼ 1

2
(−uyx2 − iutx2 , uyx1 + iutx1)> +O(µ), µ := λ− i,

as |µ| → 0, and

∇γ(2)(l) ∼ 1

2
(−uyx2

+ iutx2
, uyx1

− iutx1
)> +O(ξ), ξ := λ+ i,

as |ξ| → 0. In the case, when

∇h(y)(l̃) := (µ−1∇γ(1)(l̃) + ξ−1∇γ(2)(l̃))|− =

=
1

2µ

(
(−uyx2

− iutx2
)
∂

∂x1
+ (uyx1

+ iutx1
)
∂

∂x2

)
+

+
1

2ξ

(
(−uyx2 + iutx2)

∂

∂x1
+ (uyx1 − iutx1)

∂

∂x2

)
=

=
utx2
− λuyx2

λ2 + 1

∂

∂x1
+
λuyx1

− utx1

λ2 + 1

∂

∂x2
,

∇h(t)(l̃) := (−µ−1i∇γ(1)(l̃) + ξ−1i∇γ(2)(l̃))|− =

=
1

2µ

(
(−utx2

+ iuyx2
)
∂

∂x1
+ (utx1

− iuyx1
)
∂

∂x2

)
+

+
1

2ξ

(
−(utx2

+ iuyx2
)
∂

∂x1
+ (utx1

+ iuyx1
)
∂

∂x2

)
=

= −uyx2
+ λutx2

λ2 + 1

∂

∂x1
+

uyx1
+ λutx1

λ2 + 1

∂

∂x2
,

the commutativity condition (3.19) of the vector fields (3.20) leads to the Husain
heavenly equation [4]:

(3.40) uyy + utt + uyx1
utx2
− uyx2

utx1
= 0,

with the Lax-Sato representation given by the first order partial differential equations

∂ψ

∂y
+
utx2 − λuyx2

λ2 + 1

∂ψ

∂x1
+
λuyx1 − utx1

λ2 + 1

∂ ψ

∂x2
= 0,

∂ψ

∂t
− uyx2

+ λutx2

λ2 + 1

∂ψ

∂x1
+

uyx1
+ λutx1

λ2 + 1

∂ ψ

∂x2
= 0,

where ψ ∈ C2(R2 × T2
C;C).

The differential-geometric form of the seed element (3.39) is also dimension invari-
ant subject to additional spatial variables of the torus Tn, n > 2, what poses a natural
question of finding the corresponding multi-dimensional generalizations of the Husain
heavenly equation (3.40).

If a seed element l̃ ∈ G̃∗ = d̃iff(T2k)∗ is chosen in the form (3.39), where u ∈
C2(T2k×R2;R), we have the following asymptotic expansions for gradients of 2k ∈ N
independent Casimir functionals γ(j) ∈ I(G̃∗), where G̃∗ = d̃iff(T2k)∗, j = 1, 2k:

∇γ(1)(l) ∼ 1

2
(−uyx2

− iutx2
, uyx1

+ iutx1
, 0, . . . , 0︸ ︷︷ ︸

2k−2

)> +O(µ),

∇γ(3)(l) ∼ 1

2
(0, 0,−uyx4

− iutx4
, uyx3

+ iutx3
, 0, . . . , 0︸ ︷︷ ︸

2k−4

)> +O(µ),

. . . ,

∇γ(2k−1)(l) ∼ 1

2
(0, . . . , 0︸ ︷︷ ︸

2k−2

,−uyx2k
− iutx2k

, uyx2k−1
+ iutx2k−1

)> +O(µ),
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as |µ| → 0, and

∇γ(2)(l) ∼ 1

2
(−uyx2

+ iutx2
, uyx1

− iutx1
, 0, . . . , 0︸ ︷︷ ︸

2k−2

)> +O(ξ),

∇γ(4)(l) ∼ 1

2
(0, 0,−uyx4

+ iutx4
, uyx3

− iutx3
, 0, . . . , 0︸ ︷︷ ︸

2k−4

)> +O(ξ),

. . . ,

∇γ(2k)(l) ∼ 1

2
(0, . . . , 0︸ ︷︷ ︸

2k−2

,−uyx2k
+ iutx2k

, uyx2k−1
− iutx2k−1

)> +O(ξ),

as |ξ| → 0. In the case, when

∇h(y)(l̃) :=

k∑
m=1

(µ−1∇γ(2m−1)(l̃) + ξ−1∇γ(2m)(l̃))|− =

=

k∑
m=1

(
utx2m

− λuyx2m

λ2 + 1

∂

∂x2m−1
+
λuyx2m−1

− utx2m−1

λ2 + 1

∂

∂x2m

)
,

∇h(t)(l̃) :=

k∑
m=1

i(−µ−1∇γ(2m−1)(l̃) + ξ−1∇γ(2m)(l̃))|− =

=

k∑
m=1

(
−uyx2m

+ λutx2m

λ2 + 1

∂

∂x2m−1
+
uyx2m−1

+ λutx2m−1

λ2 + 1

∂

∂x2m

)
,

the commutability condition (3.19) of the vector fields (3.20) leads to the following
multi-dimensional analogs of the Husain heavenly equation:

uyy + utt +

k∑
m=1

(uyx2m−1
utx2m

− uyx2m
ux2x2m−1

) = 0.

3.10. The general Monge heavenly equation and its generalizations. A seed

element l̃ ∈ G̃∗ = d̃iff(T4)∗, taken in the form

(3.41) l̃ = duy + λ−1(dx1 + dx2),

where u ∈ C2(T4 × R2;R), (x1, x2, x3, x4) ∈ T4, λ ∈ C \ {0}, generates four indepen-

dent Casimir functionals γ(1), γ(2), γ(3) and γ(4) ∈ Ĩ(G̃∗), whose gradients have the
following asymptotic expansions:

∇γ(1)(l) ∼ (0, 1, 0, 0)> +(3.42)

+(−uyx2
− (∂x2

− ∂x1
)−1uyx2x1

, (∂x2
− ∂x1

)−1uyx2x1
, 0, 0)>λ+O(λ2),

∇γ(2)(l) ∼ (1, 0, 0, 0)> +

+(∂x1
− ∂x2

)−1uyx1x2
,−uyx1

− (∂x1
− ∂x2

)−1uyx1x2
, 0, 0)>λ+O(λ2),

∇γ(3)(l) ∼ (0, 0,−uyx4
, uyx3

)> +O(λ2),

∇γ(4)(l) ∼ (0, 0,−utx4 , utx3)> + (uyx3utx4 − uyx4utx3 , 0,

uyx4utx1 − uyx1utx4 , uyx1utx3 − uyx3utx1)>λ+O(λ2),

as |λ| → 0. In the case, when

∇h(y)(l̃) := (λ−1(∇γ(1)(l̃) +∇γ(3)(l̃)))|− =(3.43)

= 0
∂

∂x1
+

1

λ

∂

∂x2
− uyx4

λ

∂

∂x3
+
uyx3

λ

∂

∂x4
,

∇h(t)(l̃) := (λ−1(−∇γ(2)(l̃) +∇γ(4)(l̃)))|− =

= − 1

λ

∂

∂x1
+ 0

∂

∂x2
− utx4

λ

∂

∂x3
+
utx3

λ

∂

∂x4
,
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the commutability condition (3.19) of the vector fields (3.20) leads to the general
Monge heavenly equation [20]:

(3.44) uyx1
+ utx2

+ uyx3
utx4
− uyx4

utx3
= 0,

with the Lax-Sato representation given by the first order partial differential equations

∂ψ

∂y
+

1

λ

∂ψ

∂x2
− uyx4

λ

∂ψ

∂x3
+
uyx3

λ

∂ψ

∂x4
= 0,

∂ψ

∂t
− 1

λ

∂ψ

∂x1
− utx4

λ

∂ψ

∂x3
+
utx3

λ

∂ψ

∂x4
= 0,

where ψ ∈ C2(T4 × R2;R) and λ ∈ C\{0}.
Taking into account that the condition for Casimir invariants is equivalent to a

system of homogeneous linear first order partial differential equations for a covector
function l = (l1, l2, l3, l4), the corresponding seed element can be chosen in different
forms. For example, if the expression

l̃ = dut + λ−1(dx1 + dx2)

is considered as a seed element, one obtains that it generates four independent Casimir
functionals γ(1), γ(2), γ(3) and γ(4) ∈ I(G̃∗), whose gradients have the following as-
ymptotic expansions:

∇γ(1)(l) ∼ (0, 1, 0, 0)> +

+(−utx2
− (∂x2

− ∂x1
)−1utx2x1

, (∂x2
− ∂x1

)−1utx2x1
, 0, 0)>λ+O(λ2),

∇γ(2)(l) ∼ (1, 0, 0, 0)> +

+((∂x1 − ∂x2)−1utx1x2 ,−utx1 − (∂x1 − ∂x2)−1utx1x2 , 0, 0)>λ+O(λ2),

∇γ(3)(l) ∼ (0, 0,−utx4
, utx3

)> + (0, utx3
uyx4

− utx4
uyx3

,

utx4
uyx2

− utx2
uyx4

, utx2
uyx3

− utx3
uyx2

)>λ+O(λ2),

∇γ(4)(l) ∼ (0, 0,−uyx4 , uyx3)> +O(λ2),

as |λ| → 0. If a seed element has the form

(3.45) l̃ = duy + dut + λ−1(dx1 + dx2),

the asymptotic expansions for gradients of four independent Casimir functionals
γ(1), γ(2), γ(3) and γ(4) ∈ I(G̃∗) are written as

∇γ(1)(l) ∼ (0, 1, 0, 0)> + (−(uyx2
+ utx2

)−
−(∂x2 − ∂x1)−1(uyx2x1 + utx2x1),

(∂x2 − ∂x1)−1(uyx2x1 + utx2x1), 0, 0)>λ+O(λ2),

∇γ(2)(l) ∼ (1, 0, 0, 0)> + ((∂x1
− ∂x2

)−1(uyx1x2
+ utx1x2

),

−(uyx1
+ utx1

)− (∂x1
− ∂x2

)−1(uyx1x2
+ utx1x2

), 0, 0)>λ+O(λ2),

∇γ(3)(l) ∼ (0, 0,−uyx4
, uyx3

)> + (0, utx3
uyx4

− utx4
uyx3

,

utx4
uyx2

− utx2
uyx4

, utx2
uyx3

− utx3
uyx2

)>λ+O(λ2),

∇γ(4)(l) ∼ (0, 0,−utx4 , utx3)> + (uyx3utx4 − uyx4utx3 , 0,

uyx4utx1 − uyx1utx4 , uyx1utx3 − uyx3utx1)>λ+O(λ2),

as |λ| → 0.
The above described scheme is generalized for all n = 2k, where k ∈ N, and

n > 2. In this case one has 2k independent Casimir functionals γ(j) ∈ Ĩ(G̃∗), where

G̃∗ = d̃iff(T2k)∗, j = 1, 2k, whose gradient asymptotic expansions are equal to the
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following expressions:

∇γ(1)(l) ∼ (0, 1, 0, . . . , 0︸ ︷︷ ︸
2k−2

)> + (−(uyx2 + utx2)−

−(∂x2 − ∂x1)−1(uyx2x1 + utx2x1), (∂x2 − ∂x1)−1(uyx2x1 + utx2x1),

0, . . . , 0︸ ︷︷ ︸
2k−2

)>λ+O(λ2),

∇γ(2)(l) ∼ (1, 0, 0, . . . , 0︸ ︷︷ ︸
2k−2

)> + ((∂x1
− ∂x2

)−1(uyx1x2
+ utx1x2

),

−(uyx1
+ utx1

)− (∂x1
− ∂x2

)−1(uyx1x2
+ utx1x2

), 0, 0)>λ+O(λ2),

∇γ(3)(l) ∼ (0, 0,−uyx4
, uyx3

, 0, . . . , 0︸ ︷︷ ︸
2k−4

)> + (0, utx3
uyx4

− utx4
uyx3

,

utx4
uyx2

− utx2
uyx4

, utx2
uyx3

− utx3
uyx2

, 0, . . . , 0︸ ︷︷ ︸
2k−4

)>λ+O(λ2),

∇γ(4)(l) ∼ (0, 0,−utx4
, utx3

, 0, . . . , 0︸ ︷︷ ︸
2k−4

)> + (uyx3
utx4
− uyx4

utx3
, 0,

uyx4utx1 − uyx1utx4 , uyx1utx3 − uyx3utx1 , 0, . . . , 0︸ ︷︷ ︸
2k−4

)>λ+O(λ2),

∇γ(2k−1)(l) ∼ (0, . . . , 0︸ ︷︷ ︸
2k−4

, 0, 0,−uyx2k
, uyx2k−1

)> +

+(0, . . . , 0︸ ︷︷ ︸
2k−4

, 0, utx2k−1
uyx2k

− utx2k
uyx2k−1

,

utx2k
uyx2

− utx2
uyx2k

, utx2
uyx2k−1

− utx2k−1
uyx2

)>λ+O(λ2),

∇γ(2k)(l) ∼ (0, . . . , 0︸ ︷︷ ︸
2k−4

, 0, 0,−utx2k
, utx2k−1

)> +

+(0, . . . , 0︸ ︷︷ ︸
2k−4

, uyx2k−1
utx2k

− uyx2k
utx2k−1

, 0,

uyx2k
utx1
− uyx1

utx2k
, uyx1

utx2k−1
− uyx2k−1

utx1
)>λ+O(λ2),

when a seed element l̃ ∈ G̃∗ is chosen as in (3.45). If

∇h(y)(l̃) := (λ−1(∇γ(1)(l̃) +∇γ(3)(l̃) + . . .+∇γ(2k−1)(l̃)))|− =

= 0
∂

∂x1
+

1

λ

∂

∂x2
− uyx4

λ

∂

∂x3
+
uyx3

λ

∂

∂x4
+ . . .−

−uyx2k

λ

∂

∂x2k−1
+
uyx2k−1

λ

∂

∂x2k
=

= 0
∂

∂x1
+

1

λ

∂

∂x2
−

k∑
j=2

(
uyx2j

λ

∂

∂x2j−1
−
uyx2j−1

λ

∂

∂x2j

)
,

∇h(t)(l̃) := (λ−1(−∇γ(2)(l̃) +∇γ(4)(l̃) + . . .+∇γ(2k)(l̃)))|− =

= − 1

λ

∂

∂x1
+ 0

∂

∂x2
− utx4

λ

∂

∂x3
+
utx3

λ

∂

∂x4
+ . . .−

−utx2k

λ

∂

∂x2k−1
+
utx2k−1

λ

∂

∂x2k
=

= − 1

λ

∂

∂x1
+ 0

∂

∂x2
−

k∑
j=2

(
utx2k

λ

∂

∂x2k−1
−
utx2k−1

λ

∂

∂x2k

)
,
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the commutability condition (3.19) of the vector fields (3.20) leads to the following
multi-dimensional analogs of the general Monge heavenly equation:

uyx1 + utx2 +

k∑
j=2

(uyx2j−1utx2j − uyx2jutx2j−1) = 0.

3.11. Superanalogs of the Whitham heavenly equation. Assume now that an
element l̃ ∈ G̃∗, where G̃ := ˜diff(T1|N ) = ˜diff+(T1|N )⊕ ˜diff (T1|N ) is the loop Lie

algebra of the superconformal diffeomorphism group ˜Diff(T1|N ) of vector fields on
the 1|N -dimensional supertorus T1|N := S1 × ΛN1 (see [23]), imbedded into a finite-
dimensional Grassmann algebra Λ := Λ0 ⊕ Λ1 over C, Λ0 ⊃ R, admits the following
asymptotic expansions for gradients of the Casimir invariants h(1), h(2) ∈ I(G̃∗) :

(3.46) ∇h(1)(l) ∼ wy +O(λ)

as |λ| → 0, and

(3.47) ∇h(2)(l) ∼ 1− wxλ−1 +O(λ−2)

as |λ| → ∞. Then the commutability condition for the Hamiltonian flows

dl̃/dy = ad∗
∇h(y)

− (l̃)
l̃, ∇h(y)− (l) = −(λ−1∇h1(l))− = −wyλ−1,(3.48)

dl̃/dt = −ad∗
∇h(t)

+ (l̃)
l̃, ∇h(t)+ (l) = −(λ∇h(2)(l))+ = −λ+ wx,

naturally leads to the heavenly type equation

(3.49) wyt = wxwyx − wywxx −
1

2

N∑
i=1

(Dϑi
wx)(Dϑi

wy),

where w ∈ C∞(R2×T1|N ; Λ0) and Dϑi := ∂/∂ϑi+ϑi∂/∂x, i = 1, N, are superderiva-
tives with respect to the anticommuting variables ϑi ∈ Λ1, i = 1, N.

This equation can be considered as a supergeneralization of the Whitham heavenly
one [21, 22, 9] for arbitrary N ∈ N. The compatibility condition for the first order
partial differential equations

ψy +
1

λ

(
wyψx +

1

2

N∑
i=1

(Dϑi
wy)(Dϑi

ψ)

)
= 0,

ψt + (−λ+ wx)ψx +
1

2

N∑
i=1

(Dϑi
wx)(Dϑi

ψ) = 0,

where ψ ∈ C2(R2×T1|N ; Λ0) and λ ∈ C\{0}, give rise to the corresponding Lax-Sato
representation of the heavenly type equation (3.49).

Moreover, based on easy calculations, one can obtain from the Casimir invariant
equation the corresponding seed element l̃ := ldx ∈ G̃∗, which can be written in the
following form for an arbitrary N ∈ N:

l = Ca−
4−N

2 , a := ∇h(l),

where a scalar function C = C(x;ϑ) satisfies a linear homogeneous ordinary differen-
tial equation

Cx =< DC,Q >,

Q = (Q1, . . . , QN ), Qi = (−1)N
2 (Dϑi ln a), in the superspace R2N−1|2N−1 ' Λ2N−1

0 ×
Λ2N−1

1 . Moreover, C ∈ C∞(T1|N ; Λ1), if N is an odd natural number, and suitably
C ∈ C∞(T1|N ; Λ0), if N is an even integer. In the case of N = 1 one has

l = C1(∂−1x Dθ1a
− 1

2 )a−
3
2 ,

where C1 ∈ R is some real constant.
If N = 1 and C1 = 1, the corresponding seed-element l̃ ∈ G̃∗, related to the

asymptotic expansions (3.46) and (3.47), can be reduced to

l̃ = [λ−1(∂−1x Dθ1w
− 1

2
y )w

− 3
2

y + ξx/2 + θ1(2ux + λ)]dx,
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where w := u+ θ1ξ, u ∈ C∞(R2 × S1; Λ0) and ξ ∈ C∞(R2 × S1; Λ1).

4. Conclusion

We succeeded in applying the Lie-algebraic approach to studying vector fields on
the complexified n-dimensional torus and the related Lie-algebraic structures, which
made it possible to construct a wide class of multi-dimensional dispersionless inte-
grable systems, describing conformal structure generating equations of modern math-
ematical physics. There was described a modification of the approach subject to
the spatial dimensional invariance and meromorphicity of the related differential-
geometric structures, giving rise to new generalized multi-dimensional conformal met-
ric equations. There have been analyzed in detail the related differential-geometric
structures of the Einstein–Weyl conformal metric equation, the modified Einstein–
Weyl metric equation, the Dunajski heavenly equation system, the first and second
conformal structure generating equations, the inverse first Shabat reduction heav-
enly equation, the first and modified Plebański heavenly equations and its multi-
dimensional generalizations, the Husain heavenly equation and its multi-dimensional
generalizations, the general Monge equation and its multi-dimensional generalizations
and superconformal analogs of the Whitham heavenly equation
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