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THE DISPERSIONLESS INTEGRABLE SYSTEMS AND RELATED
CONFORMAL STRUCTURE GENERATING EQUATIONS OF
MATHEMATICAL PHYSICS
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AND ANATOLIJ K. PRYKARPATSKI

ABSTRACT. Based on the diffeomorphism group vector fields on the complexi-
fied torus and the related Lie-algebraic structures, we study multi-dimensional
dispersionless integrable systems, describing conformal structure generating equa-
tions of mathematical physics. An interesting modification of the devised Lie-
algebraic approach subject to the spatial dimensional invariance and meromor-
phicity of the related differential-geometric structures is described and applied
to proving complete integrability of some conformal structure generating equa-
tions. As examples, we analyzes the Einstein—Weyl metric equation, the modified
Einstein—Weyl metric equation, the Dunajski heavenly equation system, the first
and second conformal structure generating equations, the inverse first Shabat
reduction heavenly equation, the first and modified Plebanski heavenly equa-
tions and its multi-dimensional generalizations, the Husain heavenly equation
and its multi-dimensional generalizations, the general Monge equation and its
multi-dimensional generalizations. We also construct superconformal analogs of
the Whitham heavenly equation.

1. VECTOR FIELDS ON THE COMPLEXIFIED TORUS AND THE RELATED
LIE-ALGEBRAIC PROPERTIES

Consider the loop Lie group G := %(T@L consisting [14] of the set of smooth
mappings {C' D S! — G = Diff(T"}, extended, respectively, holomorphically
from the circle S' C C! on the set D} of the internal points of the circle S*, and
on the set DL of the external points A € (C\ﬁi. The corresponding diffeomorphism
Lie algebra splitting G := G, & G_, where G, := Ei\f/j"(’]l‘”)Jr C I(TE;T(TZ)) is
a Lie subalgebra, consisting of vector fields on the complexified torus Tg ~ T" x
C, suitably holomorphic on the disc ]D)}r .G = m(ﬂ‘@, C I(Tg; T(TR)) is a
Lie subalgebra, consisting of vector fields on the complexified torus T¢ ~ T" x C,
suitably holomorphic on the set D'. The adjoint space G = gi @ G*, where
the space gi C I(TZ; T*(TZ)) consists, respectively, from the differntial forms on
the complexified torus Tg¢, suitably holomorphic on the set (C\ﬁi, and the adjoint
space G* C T(TZ;T*(T%)) consists, respectively, from the differntial forms on the
complexified torus T¢, suitably holomorphic on the set ]D>1+, so that the space C;i is
dual to C;Jr and éi is dual to C;, with respect to the following convolution form on
the product Q* X (_3 :

(1.1) (la) := res,\/ <l,a>dz

for any vector field @ :=< a(x), & >€ G and differential form [ :=< I(x),dx > €

G* on TZ, depending on the coordinate x := (A\;z) € Tg, where, by definition,
< .- > is the usual scalar product on the Euclidean space E"*!  and % =
(8%, 6%17 6%27 e a%n)—r is the usual gradient vector. The Lie algebra G allows the
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direct sum splitting G = G, & G_, causing with respect to the convolution (1.1) the
direct sum splitting G* = G ©G* . If to define now the set I(G*) of Casimir invariant
smooth functionals k : G* — R on the adjoint space G* via the coadjoint Lie algebra

G action

(1.2) ad*w@i: 0

at a seed element [ € G*, by means of the classical Adler-Kostant-Symes scheme
[15, 7, 2, 1] one can generate [11, 12, 16, 9] a wide class of multi-dimensional com-
pletely integrable dispersionless (heavenly type) commuting to each other Hamiltonian
systems

(1.3) dl/dt .= _ad*vm(i)l ,

for all h € I(G*), Vh(l) := Vhy(l) ® Vh_(I) € G4 ® G_, on suitable functional
manifolds. Moreover, these commuting to each other flows (1.3) can be equivalently
represented as a commuting system of Lax-Sato type [9] vector field equations on the
functional space C?(TZ%; C), generating an complete set of first integrals for them. As
it was appeared, amongst them there are present important equations for modern
studies in physics, hydrodynamics and, in particular, in Riemannian geometry, being
related with such interesting conformal structures on Riemannian metric spaces as
FEinstein and Einstein-Weyl metrics equations, the first and second Plebanski confor-
mal metric equations, Dunajski metric equations etc. What was observed, some of
them were generated by seed elements [ e Q*, meromorphic at some points of the
complex plane C, whose analysis needed some modification of the theoretical back-
grounds. Moreover, the general differential-geometric structure of seed elements,
related with some conformal metric equations, proved to be invariant subject to the
spatial dimension of the Riemannian spaces under regard, that made it possible to de-
scribe them analytically. Namely these and related aspects of the integrable conformal
metric equations, mentioned above, are studied and presented in the work.

2. THE LIE-ALGEBRAIC STRUCTURES AND INTEGRABLE HAMILTONIAN SYSTEMS

Consider the loop Lie algebra G, determined above. This Lie algebra has elements

representable as a(z;\) =< a(z;)), 2 >= Y a;(z;\) 52 + ao(z;\) & € G for
7=1 ’

some holomorphic in A € DL vectors a(z;A) € ExE" for all x € T", where 2 =
(a%, 8%1, 8%2, - %)T is the generalized Euclidean vector gradient with respect ~to
the vector variable x := (\,z) € T¢. As it was mentioned above, the Lie algebra G
naturally splits into the direct sum of two subalgebras:

(2.1) G=G,9G_,
allowing to introduce on it the classical R-structure:
(2.2) [a,br := [Ra,b] + [a, Rb|
for any &,5 € G, where

(2.3) Ri= (P —P_)/2,
and

(2.4) P G:=G: CG.

The space G* ~ AI(T6)7 adjoint to the Lie algebra G of vector fields on Tg, is
functionally identified with G subject to the metric (1.1). Now for arbitrary f,g €
D(G*), one can determine two Lie—Poisson type brackets

(2.5) {f.9} = (I,[V£(I),Vg(D)])

and

(2.6) {f.9}r = LIVF(1), VgDIR) .
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where at any seed element [ € G* the gradient element Vf(I) and Vg(l) € G are
calculated with respect to the metric (1.1).
Now let us assume that a smooth function v € I(G*) is a Casimir invariant, that is

(2.7) adsy T=0

for a chosen seed element | € G*. As the coadjoint mapping ad} . G* — G* for

Vi)
any f € D(G*) can be rewritten in the reduced form as

(2.8) ady, (1) = <§ oV f(1 >z+z<< l)>,dx>,

where, by definition, Vf(I) :=< Vf(l), 2 5 > - For the Casimir function v € D(G*)
the condition (2.7) is then equivalent to the equation

(2.9) z<§x,w<1)> + <vw), aax> It <z, (iw(m> 0,

which should be solved analytically. In the case when an element leGris singular
as |A\| = oo, one can consider the general asymptotic expansion

(2.10) Vo i= VAP~ AP Z V’yj(.p))fj
JELy
for some suitably chosen p € Z, , and upon substituting (2.10) into the equation (2.9),
one can proceed to solving it recurrently.
Now let h¥) b)) € I(G*) be such Casimir functions for which the Hamiltonian
vector field generators
(2.11) VY (W) = (VAP0 VAL (@) = (VAP @)

are, respectively, defined for special integers p,,p; € Z,. These invariants generate,
owing to the Lie-Poisson bracket (2.6), the following commuting flows:

(2.12) ol/ot = — <§X,0Vh(f)(l)>l— <l,(£{Vh$’(l))>
:1;) ol/oy = <§,ovh<y)< >>z <l,<8iwi%’>(1>>>,

where y,t € R are the corresponding evolution parameters. Since the invariants
@) h®) € I(G*) commute with respect to the Lie-Poisson bracket (2.6), the flows
(2.12) and (2.13) also commute, implying that the corresponding Hamiltonian vector
field generators

._ Wy 9 —[orwp 9
(2.14) AVhﬁ:) = < Vh+ (), B X>’ AVh(f) = <Vh+ (), 3 X>
satisfy the Lax compatibility condition
0 0]
(215) @Athf) - aAthry) = [Avhgf) ) AthjJ)]

for all y,t € R. On the other hand, the condition (2.15) is equivalent to the compati-
bility condition of two linear equations

d o
(2.16) <8t + Awit)) W =0, (ay + AW(P) W=0

for a function ¢ € C%(R? x T%;C) for all y,¢ € R and any A € C. The above can be
formulated as the following key result:

Proposition 2.1. Let a seed vector field be | € G* and ), h®) ¢ I(G*) be Casimir
functions subject to the metric (-|-) on the loop Lie algebra G and the natural coadjoint
action on the loop co-algebra G*. Then the following dynamical systems

(2.17) 0l/0y = I, ol/ot= ]

Vh(y)( no Vh(t)( I
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are commuting Hamiltonian flows for all y,t € R. Moreover, the compatibility con-

dition of these flows is equivalent to the vector fields representation (2.16), where

Y € C*(R? x TZ; C) and the vector fields Agpws Ay, € G are given by the expres-
+ +

sions (2.14) and (2.11).

v

Remark 2.2. As mentioned above, the expansion (2.10) is effective if a chosen seed
element [ € G* is singular as |A\| — oo. In the case when it is singular as |A| — 0, the
expression (2.10) should be replaced by the expansion

(2.18) VY@ @) ~ 277 3T vy ()N
JELy

for suitably chosen integers p € Z,, and the reduced Casimir function gradients
then are given by the Hamiltonian vector field generators

VAU (1) = APy PO (1)

(2.19) VAW (1) := AAPv 1w~ @) (1))

for suitably chosen positive integers p,,p: € Z, and the corresponding Hamiltonian
. . 7 _ * 7 7 . * '

flows are, respectively, written as 01/t = ath(f)(l")l’ ol/oy = ath(f)([)l.
It is also worth of mentioning that, following Ovsienko’s scheme [11, 12], one can

consider a slightly wider class of integrable heavenly equations, realized as compatible

Hamiltonian flows on the semidirect product of the holomorphic loop Lie algebra G

of vector fields on the torus Tg and its regular co-adjoint space G*, supplemented

with naturally related cocycles.

3. THE LAX-SATO TYPE INTEGRABLE SYSTEMS AND RELATED CONFORMAL
STRUCTURE GENERATING EQUATIONS

3.1. Einstein—-Weyl metric equation. Define G* = W(T}C)* and take the seed
element
[ = (ugA — 2ugvy — uy) do + ()\2 —Ug A+ vy + vi) dX,

which generates with respect to the metric (1.1) the gradient of the Casimir invariants
R hPy) € [(G*) in the form

(31) Vh(pt)(l) ~ )‘Q(Oa 1)T + (_UCE’UI)TA + (uyvu - vy)T + O(/\il)v
VAP (1) ~ M0,1) T + (—ttayva) |+ (uy, —vy) AT+ O(A72)

as |A\| = oo at p =2, p, = 1. For the gradients of the Casimir functions QNN

1(G*), determined by (2.11) one can easily obtain the corresponding Hamiltonian
vector field generators

0
+ (=g + uy)

_ (t) 9 ()2 0
(3.2) Avh$> = <Vh+ 1), 8x> = (AN 4+ vy +u—vy)— o

ox
gy = <Vh$’)<l), aax> =)
satisfying the compatibility condition (2.15), which is equivalent to the set of equations
(3.3) Ugt + Uyy + (UUg)p + VglUpy — VylUyy = 0,
Vgt + Vyy + Uz + VpUpy — VyUge = 0,
describing general integrable Einstein—Weyl metric equations [6].

As is well known [10], the invariant reduction of (3.3) at v = 0 gives rise to the
famous dispersionless Kadomtsev—Petviashvili equation

(3.4) (Ut + Uy )y + Uyy = 0,
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for which the reduced vector field representation (2.16) follows from (3.2) and is given
by the vector fields

0 0
— ()2 —_ — —_
(3.5) AVh(j) = (A4 u) % + (—Auy —|—uy)8/\,
0 0
Aony = Agg ~ My

satisfying the compatibility condition (2.15), equivalent to the equation (3.4). In par-
ticular, one derives from (2.16) and (3.5) the vector field compatibility relationships

) 9 )
(3.6) (;f (A + )a—f + (=g + uy)ai//\’ =0
o\ o _o,

By ox “"”ﬁ
satisfied for ¢ € C?(R? x T{;C) and any y,t € R, (z,\) € T¢.
3.2. The modified Einstein—Weyl metric equation. This equation system is
(3.7) Ut = Uyy + UgUy + ulw, + Ullgy + UgyWy + Uzed,
Wyt = UWgy + UyWy + WrWsy + AQWgy — Ay,

where ag = UzW,; — Wey, and was recently derived in [17]. In this case we take also
,C’;* = (ﬁ\f?('ﬂ‘l) yet for a seed element le G we choose the form
(3.8) [ = Ny + (upw, + Uy + 3uuz) A+ 2u, 0, ugwy + 2,0, ! Uy +

+ 3umw$ + 2uyw, + 6uugw, + 2uny, + 3u? Uy — 2au,|dx+

+ [N+ (wy 4+ 3u) A+ 20, upw, + 20, P uy +w,? + 3uw, + 3u® — ald),

which with respect to the metric (1.1) generates two Casimir invariants y9) er (é*),
j =1,2, whose gradients are

(3.9) VA1) ~ Nty —1) T+ (wtty + wy, =1+ wy) AT+
+ (0, uw, —a) "' AT+0ON\Y)
VA1) ~ Al(ue, 1) T + (0,w5) T A7+ 0N,

as |A| — oo at p, = 1,p; = 2. The corresponding gradients of the Casimir func-
tions (), h¥) € I(G*), determined by (2.11), generate the Hamiltonian vector field
expressions

(3.10) VAY = VAD (D)4 = (uah, A+ w,) ",
VA = Vv ()]5 = (uad? + (wtig + )X, =A% + (wy — w)A + uw, —a) .

Now one easily obtains from (3.10) the compatible Lax system of linear equations

o o oY
(3.11) afyjt( )\er)(9 +u )\8)\ 0,
oY )2 _ o 2 81/}

satisfied for ¢ € C?(R? x T};C) and any y,t € R, (\,z) € T¢.

3.3. The Dunajski heavenly equation system. This equation, suggested in [5],
generalizes the corresponding anti-self-dual vacuum Einstein equation, which is re-
lated to the Plebanski metric and the celebrated Plebanski [13, 8] second heavenly
equation. To study the integrability of the Dunajski equations

(3.12) Ugyt T Uygy + Ugyzy Uzozy — uilb —v =0,

Vgt + Vzoy + Ugqiz1Vaozs — 2uw1wgvmla:2 = 07
where (u,v) € C®(R? x T2 R?), (y,t;x1,22) € R? x T2, we define G* = Ez\f/f(’]r%)*
and take the following as a seed element leg*

(3.13) 1= (A0g, —Ug,a; +Ua;2y)dT1 + (A FVay +Upyzy — U, 2, )dTo +(A—21 — 22 )dA.
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With respect to the metric (1.1), the gradients of two functionally independent
Casimir invariants h(Pv) h(Pv) € T(G*) can be obtained as |\| — oo in the asymptotic
form as

(3.14) VAP (1) ~ A(1,0,0) T + (=g 0y, Uzyzys —Ve,) |+ OANTL),

VAPD (1) ~ M0, =1,0) T + (s, ~Uayza; Vs) T + O,

at pr = 1 = p,. Upon calculating the Hamiltonian vector field generators
(3.15) VAY = Vh®D) ()] = (A = tgyags Uray s —Vy) |
VA = VAP (D] = (s =X = tisyan, 00) T

following from the Casimir functions gradients (3.14), one easily obtains the following
vector fields

0 0 0 0

1 A t) — (t)i = Ugoxo A — x1x2) T2 Ay
(3.16) Vhi) <Vh+,8x> u225$1 (/\+U12)ax2+’026)\,
0 0 0 0

A y) — W = = — Ugyay ) 5 121 o . Y1y
Vhs_) <Vh+ 78X > (/\ Uy 2)8$1 tu 1 1ax2 v 18)\,

satisfying the Lax compatibility condition (2.15), which is equivalent to the vector
field compatibility relationships

I 9 o oy
(3.17) ot + Um'zm'zaixl —(A+ umm)aix? + Uma =0,

Oy Ox1 T Gy Yrign T

satisfied for ¢ € C?(R? x T?%;C), any (y,t) € R? and all (\;z1,22) € TZ. As
was mentioned in [3], the Dunajski equations (3.12) generalize both the dispersionless
Kadomtsev—Petviashvili and Plebanski second heavenly equations, and is also a Lax
integrable Hamiltonian system.

3.4. First conformal structure generating equation: w,; + Uguy — UsUyy = 0.
The seed element [ € G* = dif f(T)* in the form
(3.18) I=[u2(1= )X 0,2 A\ — 1) da,

where u € C?(T! x R%;R), x € T', A € C\{0,1} and ”d” denotes the full differential,
generates two independent Casimir functionals ") and (2 € I(G*), whose gradients
have the following asymptotic expansions:

VYD) ~ uy + O,
as |p| = 0, p:=X—1, and
VAP (1) ~ u + O(N?),

as |A| = 0. The commutativity condition

(3.19) (X, x®) =0
of the vector fields
(3.20) XW .= 9/0y +VhW(D), XU .=a/0t+ VD (),
where
(321) VHO (D) = (VO D)) = 2
~ up O

VAO() .= — (A"t~ @ (] Y
RO = —(A T O)- = N 0z
leads to the heavenly type equation

Uyt + UgtUy — UgyUy = 0.



THE DISPERSIONLESS INTEGRABLE SYSTEMS AND RELATED CONFORMAL STRUCTURE GENERATING EQUATIONS OF MATHEM/

Its Lax-Sato representation is the compatibility condition for the first order partial
differential equations

oY uy, 0P
(3.22) 9y N_10z =0,

W _wdy

ot Xox

where ¢ € C?(R? x T}; C).

3.5. Second conformal structure generating equation: w,;+ugUyy —Uytzy = 0.
For a seed element [ € G* = dif f(T")* in the form

(3.23) I = [u? +2u2(uy + )X + ul (3u; + 4oy, + B)A"dx,

where u € C?(T* xR?%*R), z € T, A € C\{0},and «, 3 € R, there is one independent
Casimir functional fy(l) € 1(G*) with the following asymptotic as |A| — 0 expansion
of its functional gradient:
V’y(l)(l) ~ couy 4+ (—couy + e1)uy A+ (—cruy + co)uy A2+ O(N3),
where ¢, € R, r = 1, 2. If one assumes that ¢y = 1, ¢; = 0 and ¢y = 0, then we obtain
two functionally independent gradient elements
1 0
Ny O
VRO (1) = A2V ()] = ( L ) 9
Nu,  Aug ) Ox

The corresponding commutativity condition (3.19) of the vector fields (3.20) give rise
to the following heavenly type equation:

(3.24) VAW (1) := — (AW ()| =

(3.25) Ugt + UgUyy — UyUzy = 0,

whose linearized Lax-Sato representation is given by the first order system
ow_ 10w

Oy  Auy Ox ’

aiw < 1 Uy ) % =0

(3.26)

ot Ny, Aug ) O

of linear vector field equations on a function ¢ € C?*(R? x T¢;R).

3.6. Inverse first Shabat reduction heavenly equation. A seed element l e
G* = dif f(T")* in the form

(3.27) [= (aou?jQui()\ + 1)+ agu + ayuiN)dz,

where u € C?(T! x R%R), x € T, A € C\ {-1}, and agp,a; € R, generates two

independent Casimir functionals v(!) and v e I1(G*), whose gradients have the
following asymptotic expansions:

(3.28) VYW ) ~ uyugt = wyugt p+ O,
as gl = 0, p:=A+1, and
(3.29) VA (1) ~u;t + 0(N72),
as |A\| = oo. If we put, by definition,
- - A uy, 0
W = (- 1w~D) A il
(3.30) VA (@) = (A O] = - o
- ~ A0
O = (2 - - =
VHO@) = OO = 22

the commutativity condition (3.19) of the vector fields (3.20) leads to the heavenly
equation

(3.31) Ugy + UyUty — Utylg = 0,
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which can be obtained as a result of the simultaneous changing of independent vari-
ables Rox -t € R, Roy — z € R and R 3¢ — y € R in the first Shabat reduction
heavenly equation. The corrersponding Lax-Sato representation is given by the com-
patibility condition for the first order vector field equations equations

oY A u, 0P

NI
ot Twar Y

where ¢ € C?(R? x TE; R).

3.7. First Plebanski heavenly equation and its generalizations. The seed el-
ement [ € G* = dif f(T?)* in the form

(3.33) [ = A" YNy, doy + uyg,das) = N~ duy,

where u € C?(T? x R%R), (z1,22) € T?, A € C\{0} and ”d” designates a full
differential, generates two independent Casimir functionals v and v® € I(G*),
whose gradients have the following asymptotic expansions:

(3.34) VAW (1) ~ (—thyay, Uy, ) T + O(N),
VY (1) ~ (—thay e, "+ O(N),

as |A| = 0. The commutativity condition (3.19) of the vector fields (3.20), where

7 = 0 U 0

. h(y) l) := )\_1 (1) M = _’u’yﬂ?z v ye1 9
(3.35) VA1) :== (A VA (1)) TR i
7u’t12 0 Utz 0

VO (D) = A VAP ()] = =% dr ' A Oy’

leads to the first Plebaniski heavenly equation [4]:
(336) Uyzy Utz — Uyzs Utz = L.

Its Lax-Sato representation entails the compatibility condition for the first order par-
tial differential equations

Y _ ys, OV Uys, OY
6y A (91'1 A 61'2
%_ utigai utwlal :O
ot A 3x1 A 81'2 ’

where ¢ € C*(R? x T%;C).

Taking into account that the determining condition for Casimir invariants is sym-
metric and equivalent to the system of nonhomogeneous linear first order partial
differential equations for the covector function I = (I3, l2>T, the corresponding seed
element can be also chosen in another forms. Moreover, the form (3.33) is invariant
subject to the spatial dimension of the underlying torus T", what makes it possible to
describe the related generalized conformal metric equations for arbitrary dimension.

In particular, one easily observes that the asymptotic expansions (3.34) are also
true for such invariant seed elements as

[ = X\"'duy,
and
[ = 2\"Y(duy + duy).

The above described Lie-algebraic scheme can be easily generalized for any dimension
n = 2k, where k € N, and n > 2. In this case one has 2k independent Casimir func-
tionals ) € I(G*), where G* = dif f(T?*)*, j = 1,2k, with the following asymptotic
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expansions for their gradients:

VAW (1) ~ (tiyay, tUyay, 0, ..., 0) T +O(N),
N——

2k—2
V’Y(Q)(l) ~ (—Uth, uml,O, ey O)T + O(/\),
N—_——
2k—2
VAB (1) ~ (0,0, —tiya, , Uyzs, 0, ..., 0) T 4+ O(N),
N——
2k—4
VAD (1) ~ (0,0, =y, Uiy, 0, - .., 0) T+ O(N),
N——
2k—4

V»Y(Qk*l)(l) ~ (0, ...,0, —Uygcgkyuyﬂfzkfl)—r + O(A)7
N——
V’Y(zk)(l) ~ (0,...,0, _U‘tﬂfzk?utﬁzkfl)—r +O().
N——

If we put
vh® (ZN) = (A_l(V’y(l)(i) +...+ V’Y(zk_l)(i))”* =

— i uy$27n a _ uyEZm/—l a
a 1 A 81‘2m,1 A 8.’L‘2m ’

V(D) = (A*l(w(?) (D) + ...+ V(D)) =

— zk: ut-l'2m _ utman,1 a
A 8x2m 1 A 8$2m ’

the commutativity condition (3.19) of the vector fields (3.20) leads to the following
multi-dimensional analogs of the first Plebanski heavenly equation:

k

(uyxszlutxzm - uyxzmutxszl) =1
m=1

3.8. Modified Plebarls\k/i heavenly equation and its generalizations. For the
seed element [ € G* = dif f(T?)* in the form
(3.37) [ = (A Mgy 4 Upyoy — Ugyay + N)dag +
F A gy + Uiy — Uy + N2 =
=d\ " My + Uy, — Uy, + AT+ AT2).
where d\ = 0, u € C%(T? x R%;R), (z1,22) € T2, A € C\{0}, there exist two indepen-

dent Casimir functionals v(!) and v e T (G*) with the following gradient asymptotic
expansions:

V’Y(l)(l) ~ (uy127 7“?4961)1— + O(A)a
as |A| = 0, and
v7(2)(l) ~ (07 _1)T + (—uwzxza u3613?2)T/\71 + O()‘72)’
as |A\| = oco. In the case, when

B B ~ Uy s 6 Uyay a
VAW (D) := AV (D) = 5 0r1 3 Oy’
0

7]
® @] - S
VRO (@) 1= VYD D) =ty 5+ (tares = N

the commutativity condition (3.19) of the vector fields (3.20) leads to the modified
Plebanski heavenly equation [4]:

(3'38) Uyt — Uyz; Uzgzy T Uyzo Uz zy = 0,
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with the Lax-Sato representation given by the first order partial differential equations

W Uyay OV | Uy, OV

dy X\ Ori A Oxo =0,
o H 9
o Ummagy T (teraz =) By 0

for functions ¢ € C?(R? x T%;C).

The differential-geometric form of the seed element (3.37) is also dimension in-
variant subject to additional spatial variables of the torus T™, n > 2, what poses a
natural question of finding the corresponding multi-dimensional generalizations of the
modified Plebariski heavenly equation (3.38).

If a seed element [ € G* = c/lz_'}?('ll‘%)* is chosen in the form (3.37), where u €
C?(T?* x R?; R), we have the following asymptotic expansions for gradients of 2k € N

independent Casimir functionals vU) € I(Q*), where G* = cﬁ}/f(']l‘%)*, j=12k:
VA1) ~ (—Uyays Uyzy 0y, 0) T + O(N),
——
2k—2
V(1) ~ (0,0, —tyey, Uy, 0, . ..,0) T+ O(N),
——

2k—4
L]

v7(2k_1)(l> ~ (07 o 07 _u?ﬂ?zmuyl%—l)—r + O()‘)7
——
2k—2
as |A| = 0, and

VAP (1) ~ (0,-1,0,...,0) " 4+ (—tgyey, Uz s, 0, ..., 0) T AT+ O(N72),
N—— N——
2k—2 2k—2
V’Y(4) (l) ~ (07 03 7u$4$27uz3f2? 05 MR O)T)\71 + O()\72)7
N——

2k—4

V’Y(Qk) (l) ~ (Oa Tty Oa “Uzgpzss u$2k71x2)T>\71 + O(/\iz)7
N——
2k—2

as |A| = co. In the case, when

VAW 1) = AN (VAW (@) + .+ VD)) =

k
— ( uyﬂizm a _ “ywsz 1 8 )
- )

el A 6$2m_1 A 85827”
VRO (1) := MVAP D) + ... + VYR, =
0 0 < ) )
= T Ugyxs 7 r1r2*>\ a_ TomTo o Yxoy 1oy |
Heare o + )8»’52 mZ=2 (u T gy T 8$2m>

the commutability condition (3.19) of the vector fields (3.20) leads to the following
multi-dimensional analogs of the modified Plebaniski heavenly equation:
k
Uyt — Z (uyrzm,u$212m—1 - uyﬂﬂzm—luﬂﬂzfzm) = 0.

m=1

3.9. Husain heavenly equation and its generalizations. A seed element [ €
G* = dif f(T?)* in the form

=~ d(uy Fiug) o d(uy —iug)  2(Aduy — duy)
3.39 l= Y Y = Y
(3:39) A—i A+ JUNI
where i? = —1, d\ =0, u € C*(T? x R%R), (z1,22) € T2, XA € C\{—i;i}, generates
two independent Casimir functionals v(!) and 4(?) € I(G*), with the following gradient
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asymptotic expansions:

1 ) . .
V’Y(l)(l) ~ 5(_%!!1'2 = Wy, Uya,y + Zutl‘l)T + O(ﬂ)) pi= A— 2

as |p| — 0, and
1
V’Y(Z)(l) ~ 5(_“1/962 + iutﬂfz?uyﬂﬂl - iutﬁ?l)—r + 0(5)7 5 =A + iv
as €| — 0. In the case, when

VRO (D) = (VD () + €1 VA D)) =
1
T

_|_i (_ +14 )i + ( —q )i —
2§ uywz WUz, 81171 uym Wiz, 8z2 =

_ Utgy, — )\uywz 0 )\Uyml — Utg, 0

X2 +1  Oxg N2 +1  Ozo

(s = itr) e + (g + 120,) ) +
Ugyzy — Wiz, o1 Uy, T WUty Oo

VO @) i= (—p 197D + € vy D)) =

1 (—Utzy +iu )i—k(u —iu )i +
- 2/1* txo Yyr2 a.’L’l txy Y1 (91'2

L (e, + ity 2 + (s, + itya,) < ) =
25 txo Yo a(L’l txy ES 5‘:52 -
| Uya, + Agy, O Uygy + Mgz, O

)\2+1 8x1 >\2+1 ({91'2’

the commutativity condition (3.19) of the vector fields (3.20) leads to the Husain
heavenly equation [4]:

(340) Uyy + Uy + Uyg) Utgy — Uyz, Utz = 07

with the Lax-Sato representation given by the first order partial differential equations

O | Utmy = Miyay O | Niyo, — e, 09 _

=0
5‘y A2 +1 81’1 A2 +1 8$2 ’
O Uyay + Mitay O | Uyay + Nlttay 09
ot A2 +1 8x1 A2 +1 8502 n

where ¢ € C?(R? x T%;C).

The differential-geometric form of the seed element (3.39) is also dimension invari-
ant subject to additional spatial variables of the torus T", n > 2, what poses a natural
question of finding the corresponding multi-dimensional generalizations of the Husain
heavenly equation (3.40).

If a seed element | € G* = W(T%)* is chosen in the form (3.39), where u €
C?(T? x R2;R), we have the following asymptotic expansions for gradients of 2k € N

independent Casimir functionals ) € I(G*), where G = W(T%)*, ji=12k:

1 . .
V’Y(l)(l) ~ 5(_uy:82 - Zut$27uy$1 + Zut:cuoa sty O)T + O(,LL),
~——
2k—2
1 . .
V’y(3)(l) ~ 5(07 0, —Uypy — Wiay, Uygy + 1Utg,, 0, . .. L0 4+ 0(p),
~——

2k—4
L]

_ 1 ) .
v7(2k 1)(l) ~ 5(07 coes 0y = Uy, — Wity Uyas, o, + Zuthk—l)T —+ O(M)v

2k—2
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as |pu| — 0, and

1
V’7(2)(Z) ~ 7(_uyw2 + iuto:27uy11 - iutw1 ) 07 e ao)T + 0(5)7
2 N——
2k—2
1
VA (1) ~ (0,0, —thy, + Ute, s Uyzy — iUtzy, 0, .., 0) T 4+ O(E),
2 ——

2k—4

1 . .
V’y(2k)(l) ~ 5(07 LR 07 —Uyzoy + Wtmogs Uyzop_1 — Zutl‘Qk—l)T + 0(5)7
——
2k—2

as |¢| — 0. In the case, when

k
VAO(D) := (oDl + €710y B0 =

m=1
k
_ Z Utzy,, — )\uyaczm 0 + AU’Z/-'L'Zm—l — Wtwop, o 0
1 A +1 O0Tom—1 A2 41 O%om
k

VAO([) =Y " i(—p 'V (0) + VA CM(D)) - =

m=1
o zk: _ Uyaor, + Autmgm 0 + Uyzs,,_1 T >\ut$27n—1 0
o = A2 +1 O0Zom—1 A2 +1 O0%om

the commutability condition (3.19) of the vector fields (3.20) leads to the following
multi-dimensional analogs of the Husain heavenly equation:
k

Uyy + Uuge + § (uyl’2m—1ut12m - uyOEQmuI2I2m—1) =0.
m=1

3.10. The general Monge heavenly equation and its generalizations. A seed
element [ € G* = dif f(T*)*, taken in the form

(3.41) [ = duy + X"V (dzy + day),

where u € C?(T* x R%;R), (21, 72,73, 24) € T4, XA € C\ {0}, generates four indepen-
dent Casimir functionals (), 4() 4®) and (% € I(G*), whose gradients have the
following asymptotic expansions:

(3.42) VA1) ~ (0,1,0,0)" +
F(=tUyay = Oy = 02)) Mtiyznars (Dny — Oy)  yanar» 0,00 T A+ O(N2),
V@ (1) ~ (1,0,0,0)" +
F(0y — Oy) Muyzras —Uyzy — Oy — ) Myay s, 0,0) TN+ O(N?),
V'y(3)(l) ~ (0,0, —tUyg,, uywS)T + O()\Q),
V’Y(4)(l) ~ (0,0, —ua,, Uthg)T + (nygutm — Uyzy Utz 0,

T 2
uyz4ut:1:1 - uyzl utz47 uy:rl utzg - ungutml) )‘ + O()‘ )7
as |A\| = 0. In the case, when

(3.43) VA (@) := A1 (VD () + V@ ()] =
0 1 0 Uyp, O  Uyzyy O

BTV SR W e w
VO ) = A =V (0) + VA D)) =
1 0 0 _ Uty ﬂ Utgs 0

“Nows  Vors T N Oms T X 0wy
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the commutability condition (3.19) of the vector fields (3.20) leads to the general
Monge heavenly equation [20]:

(3.44) Uya, + Uty T Uyas Uty — UyzyUtzy = 0,
with the Lax-Sato representation given by the first order partial differential equations

oy 1O uye, O | uya, 871# -0

67y+/\8x2 )\ 6.133 /\ 8$4_ ’
8’1/1 1 &b Utgy 81/} Utz 8'1,[1 —0

ot )\6.2?1 A 8l‘3 A 81‘4

where 1) € C?(T* x R%;R) and A € C\{0}.

Taking into account that the condition for Casimir invariants is equivalent to a
system of homogeneous linear first order partial differential equations for a covector
function | = (I1,12,13,14), the corresponding seed element can be chosen in different
forms. For example, if the expression

[ = duy + X" (dzy + dxy)

is considered as a seed element, one obtains that it generates four independent Casimir
functionals v, 42 ~B) and ) e I1(G*), whose gradients have the following as-
ymptotic expansions:

VAW (1) ~(0,1,0,0)7 +
+(_ut3:g - (6322 - 83:1)717%3:23617 (8372 - axl)ilutxycl ,0, O)TA + O(/\2)7

VY@ (1) ~ (1,0,0,0)" +
J’_((aﬂh - awz)_lutwwz’ —Utzy — (awl - 8w2)_1ut11w2707 O)T/\ + O(/\2)’
V’Y(S) (l) ~ (07 0, —Utgy, utwg)T + (07 UtgzUyx, — Uty Uyxs,

T 2
Utz Uyzy — WtaoUyzy Utoy Uyrs — Utwsuyxz) A+ O(X7),

VAD (1) ~ (0,0, —uye,, Uyes) T + O(N?),
as |A| = 0. If a seed element has the form
(3.45) [ = duy + dug + X" (dxy + ds),

the asymptotic expansions for gradients of four independent Casimir functionals
71 42 43) and 44 € I(G*) are written as

VA1) ~ (0,1,0,0) T + (—(uyay + Utay) —
—(0zy = Ou,) " (Uyyay + Utanay),
Dy — Ony) " (Uygzy + Utznz, )5 0,0) T X+ O(N?),
VY@ (1) ~ (1,0,0,0)7 + (0, = r) ™ (Uyayay + Uty s,
—(Uya, + Utay) — Oy — Oy) ™ (Uyaran + Utay),0,0) T A + O(N?),
V’y(3)(l) ~ (0,0, —uyg,, uyzS)T + (0, Uty Uy — Uty Uyyary s
Uty Uy — Uty Uy Uty Uy, — Uty Uyar) | A+ O(X?),
VAD (1) ~ (0,0, =g, , ey ) T + (Uyg Utzy — Uyzy Utas, 0,
Uy, Uty — Uy Uty s Uyary Utz — Uyag Uty ) A + O(N?),
as [A| = 0.

The above described scheme is generalized for all n = 2k, where k € N, and
n > 2. In this case one has 2k independent Casimir functionals v) € I(G*), where

G = (Zﬁ (T%)*7 j = 1,2k, whose gradient asymptotic expansions are equal to the
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following expressions:

VYW (@) ~ (0,1,0,..,0)" + (—=(uya, + tta,) —
——
2k—2
—(O, — am)_l(“ywzm + Utzya, ), (O, — am)_l(uya:zwl + Utzoa, )
0,...,0) " A+ 0(\?),
——
2k—2
V’V@)(Z) ~ (17 0,0,..., O)T + ((8x1 - awg)_l(uywlwz + utwlzz);
2k—2
*(Uyml + utml) - (ah - aﬂcz)il(uyrﬂcg + utﬂ?lﬁh)? 0, O)TA + O()‘2)’
V’Y(g) (l) ~ (07 0, Uy, Uyxs, 0,... 70)T + (07 Utpz Uyr, — UtxyUyxs,
2k—4
Uty Uyzy — Wty Uy s Utzy Uyzy — Utzy Uyzs, 0, .. -, O)TA + O()\z),
2k—4
V’}/(4) (l) ~ (07 Oa _utw4a utwga 07 ey O)T + (unguta:4 - uyw4ut1‘3 ) 07
2k—4
Uyzy Utz — Uyz Utzy Uyzy Utzy — uyxsutfﬂnoa ceey O)TA + O(>‘2)a
2k—4
v7(2k71)(l) ~ (07 ...,0,0,0, 7uym2k7uym2k,1)—r +
——
2k—4
+(0,...,0,0, Uty Uyzsy — Utasy Uywor 15
———
2k—4
WUtzop Uywy — UtayUyzsy, > Utas Uyzsy, 1 — utrquuym)T)‘ + O()‘Q)7
VACE(1) ~ (0,...,0,0,0, —Uray, , Utz ,) | +
——
2k—4
Jr(O? te 707 Uyzoy_1 Utza, — Uyzo Utzgy_15 Ov
——
2k—4

T 2
Uyzop Utey — Uyzy Utzoy s Uyay Utaoy 1 — uyl’zk—lutl’l) A+ O()‘ )7
when a seed element [ € G* is chosen as in (3.45). If

VAW (1) = AN VAD D) + VD (1) + .+ VD)) - =

09 L0 e O Uyey O _
8$1 A@xg A 81‘3 A 8I4

Uyzoy 0 Uyzok_1 0 .

N Oz A Owar
8 1 a - uyl’zj 8 unyZj—l a
_06.131+)\61‘2_J2_:2< A 61‘2j_1 B A 81}2]‘)’
VA1) := A1 (=VAyD D) + VD) + ...+ VD))= =
10,0 e ) we D
A Oxq Oxo A Oz A Oxy

Utaoy, 0 Utzop_1 0 o

B A Bxgk,l A 8;10% -

19 0 = U, O Utpy, , O
__A(fhl+063:r2_jz_:2( N B a)
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the commutability condition (3.19) of the vector fields (3.20) leads to the following
multi-dimensional analogs of the general Monge heavenly equation:
k
Uyzy + Uty + Z(uywzj—lum% = Uyzy; ut$2j—1) =0.
=2

3.11. Superanalogs of the Whitham heavenly equation. Assume now that an
element | € G*, where G := dif f(T'W) = dif f  (T*™) @ dif f (T*V) is the loop Lie
algebra of the superconformal diffeomorphism group Dif f(THY) of vector fields on
the 1|N-dimensional supertorus THY := S' x AN (see [23]), imbedded into a finite-
dimensional Grassmann algebra A := Ag & Ay over C, Ag D R, admits the following
asymptotic expansions for gradients of the Casimir invariants h("), h(?) € I(G*) :

(3.46) VAW (1) ~ w, +O(N)

as |A| = 0, and

(3.47) VA (1) ~ 1 — w7+ 0N 72)

as |A\| = co. Then the commutability condition for the Hamiltonian flows
(3.48) difdy = ady,, ) 1 VAW (1) = ~(A'WAL(D) - = —w A,

dijdt = —ady, ol VEY W) = ~OVEO D) = A+ ws,

naturally leads to the heavenly type equation
N

Z(Dﬂiwx)(Dﬂiwy)’

i=1

(3.49) Wyt = WyWyy — WyWgy — %
where w € C®(R? x THN; Ag) and Dy, := 9/00; +19;0/0z,i = 1, N, are superderiva-
tives with respect to the anticommuting variables 9¥; € A, i =1, N.

This equation can be considered as a supergeneralization of the Whitham heavenly
one [21, 22, 9] for arbitrary N € N. The compatibility condition for the first order
partial differential equations

N
Yy + % (wywr + % Z(Dﬂ1,wy)(Dt9i¢)> =0,
i=1

N
Yt (At w)e + 5 3 (Do,wa) (Do) =0,
i=1
where 1) € C?(R? x T!V; Ag) and A € C\{0}, give rise to the corresponding Lax-Sato
representation of the heavenly type equation (3.49).
Moreover, based on easy calculations, one can obtain from the Casimir invariant
equation the corresponding seed element [ := ldz € G*, which can be written in the
following form for an arbitrary N € N:

l=Ca "2, a:=Vh),

where a scalar function C' = C(z;9) satisfies a linear homogeneous ordinary differen-
tial equation
C, =< DC,Q >,
Q=(Q1,...,Qn), Q; = (7;)N (Dy, In @), in the superspace R2" ~ A%N_l X
A2""" Moreover, C € C®(T!N;Ay), if N is an odd natural number, and suitably
Ce(C>® (T”N; Ag), if N is an even integer. In the case of N = 1 one has
l= Cl(agnggla_%)a_%7

where C7 € R is some real constant. R 5
If N =1 and C; = 1, the corresponding seed-element [ € G*, related to the
asymptotic expansions (3.46) and (3.47), can be reduced to

—1‘2N—1

[ = N0 Dgywy 2wy ® + €,/2 + 01 (2up + \)]de,

xT
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where w := u + 61£, u € C®°(R? x St; Ag) and £ € C*°(R? x St; Ay).

4. CONCLUSION

We succeeded in applying the Lie-algebraic approach to studying vector fields on
the complexified n-dimensional torus and the related Lie-algebraic structures, which
made it possible to construct a wide class of multi-dimensional dispersionless inte-
grable systems, describing conformal structure generating equations of modern math-
ematical physics. There was described a modification of the approach subject to
the spatial dimensional invariance and meromorphicity of the related differential-
geometric structures, giving rise to new generalized multi-dimensional conformal met-
ric equations. There have been analyzed in detail the related differential-geometric
structures of the Einstein—Weyl conformal metric equation, the modified Einstein—
Weyl metric equation, the Dunajski heavenly equation system, the first and second
conformal structure generating equations, the inverse first Shabat reduction heav-
enly equation, the first and modified Plebanski heavenly equations and its multi-
dimensional generalizations, the Husain heavenly equation and its multi-dimensional
generalizations, the general Monge equation and its multi-dimensional generalizations
and superconformal analogs of the Whitham heavenly equation
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