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Abstract. Electroencephalogram (EEG) motor imagery (MI) has attracted much
attention in brain-computer interfaces (BCIs) as it directly encodes human inten-
tions. However, the variability of EEG-based brain signals between individuals
requires current BCI systems to undergo calibration procedures before its us-
age. In this paper, we propose a model that targets minimizing such procedures
by improving inter-subject classification performance. The purpose of our pro-
posed method is to extract features using previously studied convolution-based
deep learning structures while utilizing a graph structure to analyze inter-subject
relationships with multiple subjects. By utilizing not only features but also the
relationship between subject-specific features, it becomes possible to make pre-
dictions focusing on subjects with high similarity. Therefore, even new users not
seen during the training process are predicted relatively efficiently. To validate
our method, we evaluated our model with the public dataset BCI Competition IV
IIa. The results in our study suggest that our proposed method improved the cross-
subject classification accuracy by combining it with the previous deep learning
model and induced a balanced prediction for the classes. Our study has shown
the potential to develop MI-based BCI applications that do not require user cali-
bration by training the model with pre-existing datasets.

Keywords: Brain-computer interfaces (BCIs) · graph convolutional network (GCN)
· deep learning (DL) · electroencephalography (EEG) · motor imagery (MI) ·
subject-independent

1 Introduction

Brain-computer interface (BCI) systems provide a communication path that can inter-
act with external devices by classifying the user’s brain neural activity patterns [1–3].
One of the non-invasive ways to record brain activity is through electroencephalogram
(EEG), which utilizes multiple electrodes placed on a specific scalp area. EEG signals
have been widely used in BCI applications as they can record brain activity relatively
easily and inexpensively compared to other neural acquisition techniques [4–8].

So far, EEG-based BCI applications have been developed using neurophysiological
patterns, including steady-state visual evoked potential (SSVEP), event-related poten-
tial (ERP), movement-related cortical potentials (MRCPs), and motor imagery (MI)
[9–12]. Among these BCI studies, MI, which classifies EEG signals based on the imag-
ination of body movement, has recently attracted much attention. MI EEG signal can be
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elicited in a specific pattern when a subject imagines performing a specific movement,
such as moving of hand or foot. Several studies have researched MI-based EEG patterns
in advance, as it is a signal that both healthy and disabled people can control without
external stimulation.

Recently, with the success of machine learning and deep learning in computer vision
[13] and speech recognition [14], many studies have been conducted to apply them to
the EEG classification task. For instance, Ang et al. and Pfurtscheller et al. applied ma-
chine learning techniques using power spectral density (PSD) measures from MI EEG
to classify participants’ intentions [15, 16]. However, machine learning has a limitation
in that it relies on the handcrafted features of human experts. Therefore, to overcome
the limitations of machine learning, deep learning-based methods have been proposed,
and significant improvements have been made. In particular, convolutional neural net-
work (CNN) has been widely applied to MI classification tasks because they effectively
extract temporal and spatial features from EEG signals [17, 18].

In general, human EEG signals change according to the difference in each indi-
vidual’s mental state, resulting in large variability on inter-subject relations [19, 20].
Existing machine learning and deep learning methods have been successful in MI clas-
sification, but many have poor performance when there is insufficient data on new users.
Therefore, most MI task methods, including the studies mentioned above, require the
calibration process to be performed using sufficient data from new users. However, the
calibration process is time-consuming and inconvenient [21]. This is a significant obsta-
cle in the practical application of the BCI system, and research to eliminate or minimize
the calibration process is necessary.

In this paper, we focus on improving subject-independent classification accuracy to
take a step closer to BCI systems that do not require calibration from the user. Thus,
the proposed model in our study performs the relation-based prediction by defining the
relationship between multiple subjects through a graph structure. This approach enables
efficient prediction even for new users by focusing on subjects with high similarity. The
main contributions are as follows.

• In order to improve the inter-subject classification performance, we developed a
method applicable to the existing deep learning-based MI classification model.
• We applied the proposed method to the previously studied MI classification model

and analyzed the performance with and without our method.

2 Related work

Most of the existing methods for the MI EEG task have been developed based on
the intra-subject situation requiring calibration time [22, 23]. In previous studies, re-
searchers have employed techniques based on machine learning using handcrafted fea-
tures. As one of several methods, common spatial pattern (CSP) is a method for max-
imizing the variance difference between different classes [24, 25]. In particular, filter
bank CSP (FBCSP), an algorithm based on CSP method, is one of the widely used
methods in MI-based BCI [26]. These features are fed to classifiers such as support
vector machine (SVM) [27] and Random Forest [28] to generate predictions.
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Existing machine learning methods classified EEG MI data with good performance.
However, such methods have limitations on achieving higher accuracy as it relies heav-
ily on handcrafted features created by human experts. Deep learning methods such as
CNN overcome these limitations through automated feature extraction. For example,
Schirrmeister et al. [17] outperformed the existing FBCSP [26] algorithm by using
CNN.

MI classification methods mentioned above are intra-subject-based methods that
require a calibration process. However, the calibration process is time-consuming and
inconvenient to acquire data [21]. Recently, several methods have been proposed to
reduce the calibration time in the MI-based BCI system. For example, Tang et al. [29]
suggested a method using the adversarial domain adaptation technology and reduced
the inconvenience of the calibration process by using only unlabeled data of new users.
An et al. [30] applied the attention module to the few-shot relation network structure
[31] and reduced the calibration time by using only a few seconds of data from new
users.

Wang et al. [32] tried to solve the lack of data in the target domain in computer
vision by utilizing multi-source domain adaptation. We applied this study to improve
inter-subject classification performance in BCI applications. We defined the relationship
between each EEG feature of subjects as a graph structure and utilized the relationship
information for prediction using a graph convolution network [33]. In addition, it was
implemented as a model suitable for classifying EEG signals by designing a structure
to extract temporal and spatial characteristics of EEG signals effectively.

3 Method

3.1 Definition and notation

Before a detailed description of the proposed model, we first describe the definitions
and notations.

Data of a single subject is defined with {(Xi,yi) , i = 1,2, ..., l}, where l denotes the
number of motor imagery EEG trials, Xi ∈ RE×T denotes EEG signals from a single
trial with dimensions E, the number of electrodes, by T , the number of time points
sampled, y corresponds to a label defined by y ∈ {1,2, ...,C}, and C is the number of
classes.

3.2 Network architecture

Fig. 1 shows the overall architecture of the proposed model. The description of the
architecture is divided into Feature extraction, Prototype update, Graph construction,
Prediction, and Model inference. In the feature extraction part, the raw EEG signals
of subjects from S1 to Sn are passed through the feature extractor and are converted
into fixed-dimensional feature embeddings. The extracted features are used in two dif-
ferent ways: as updating elements for prototypes representing features per class for
each subject, and as queries used for classification. While prototypes are used to learn
similarities between classes and subjects using graph structure, the feature embeddings
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are also concatenated as a query sample and are predicted through the graph convo-
lutional network to classify into labels. As the query is predicted by considering the
relationships between all subjects and classes, subject-independent prediction is taken
in consideration within the model.

Fig. 1. An overview of the proposed model. From left to right, raw EEG signals, feature extractor,
extracted features, prototype features, prototype graph, and prediction probability are shown.
S1,S2, . . . ,Sn denote subjects, and c1,c2,c3,c4 denote classes.

Feature extraction The raw EEG signal is first band-pass filtered from 4 to 38 Hz, the
range of motor imagery frequency, and then cropped to fixed window size. A feature
extractor f (·) serves to convert EEG signals into features and is designed by modifying
the representative MI classifier model. The feature extractor can be flexibly replaced,
and in this paper, we designed the feature extractor by modifying the architectures of
Shallownet [17], and EEGnet [18], which were used as comparison groups. In the case
of Shallownet, features are extracted using temporal and spatial convolution and square
and logarithm activation functions. EEGnet extract features using depth-wise separable
convolution and Elu activation function. The detailed structure is in Table 1 and Table 2.

Prototype update For every mini-batch, sampled EEG feature embeddings are used to
estimate prototypes representing each subject and class label. The estimated prototype
p̂Sn,c is measured as the average value of the corresponding features (Subject Sn, class
c) for each mini-batch. The prototype features pSn,c are updated while accommodating
some of the estimated prototypes as follows:

pSn,c = β pSn,c +(1−β )p̂Sn,c n = 1,2, ...,N (1)

β is an exponential decay rate that determines the update rate, and N is the number of
train subjects.
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Table 1. Details of the Shallownet feature extractor. Parameters contain the kernel size, the num-
ber of the feature map, and the type of layer.

Layers Output size Parameters
Input 1×22×1000 -

Temporal conv 40×22×976 (1×22), 40, conv
Spatial conv 40×1×976 (22×1), 40, conv
Batch norm 40×1×976 -

Square activation 40×1×976 -
Average pooling 40×1×61 (1×75), stride 15, avg pool

Logarithm activation 40×1×61 -
Dropout 40×1×61 rate = 0.5

Global average pooling 40×1×1 (1×61), avg pool

Table 2. Details of the EEGnet feature extractor. Parameters contain the kernel size, the number
of the feature map, and the type of layer.

Layers Output size Parameters
Input 1×22×1000 -
Conv 8×22×1000 (1×125), 8, conv, pad=same

Batch norm 8×22×1000 -
Depth-wise conv 16×1×1000 (22×1), 16, depth-wise conv

Batch norm 16×1×1000 -
Elu activation 16×1×1000 -
Max pooling 16×1×250 (1×4), max pool

Dropout 16×1×250 rate = 0.5
Separable conv 16×1×250 (1×16), 16, separable conv, pad=same

Batch norm 16×1×250 -
Max pooling 16×1×31 (1×8), max pool

Dropout 16×1×31 rate = 0.5
Flatten 496 -

Graph construction One of our important purposes is to make good predictions on a
sampled query sample. In order to use the relationship between each subject and class
for query sample prediction, prototype features were utilized to construct a graph Gp.
To be specific, the graph is composed of a prototype feature matrix M ∈ RNC×d and
a prototype adjacency matrix A ∈ RNC×NC, where C is the number of classes and d is
the size of a single feature. Each feature of the feature matrix constitutes as a vertex
of the graph, and the adjacency matrix represents all edges between the vertices. The
prototype feature matrix M is produced by concatenating the prototype features pSn,c
calculated in Eq. 1.

The prototype adjacency matrix represents the relationship between each vertex.
As the distance between vertices increases, the element value of A should decrease.
Specifically, all elements of A are computed as Gaussian kernel values of two pairs of
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vertex features:

Ai, j = exp

(
−
∥∥Mi−M j

∥∥2
2

2σ2

)
(2)

σ is a parameter that controls the sparsity of A and is set to 0.005 in this paper.

Prediction In this step, predictions are performed on the query samples and prototype
features for each batch B. To begin with, an expanded graph Ḡ is constructed by adding
query samples to the prototype graph Gp. The expanded feature matrix M̄ ∈R(NC+|B|)×d

of Ḡ is created by concatenating the features of query samples into the prototype feature
matrix of Gp.

To obtain the expanded adjacency matrix Ā∈R(NC+|B|)×(NC+|B|) of the Ḡ, adjacency
matrix A′ between the prototypes and query samples is measured. A′ is computed using
a Gaussian kernel as before when calculating A:

A′i, j = exp

(
−
∥∥Mi− f (q j)

∥∥2
2

2σ2

)
(3)

Finally, the Ā is calculated by connecting A and A′ with the identity matrix I. The
reason for using I is that the similarity between a query and another query is uncertain.
Ā is obtained as:

Ā =

[
A A′

A′T I

]
(4)

After the expanded graph Ḡ is completed, it is fed to graph convolutional network
to generate predicted values. Specifically, the graph convolutional network receives the
expanded feature matrix and expanded adjacency matrix of Ḡ and outputs the classifica-
tion prediction probability. The architecture of a graph convolutional network is shown
in Table 3.

Table 3. Details of the graph convolutional network. Parameters contain the output feature size
and the type of layer.

Layers Type of input Output size Parameters
Input feature, adj matrix (NC+ |B|)×d, (NC+ |B|)× (NC+ |B|) -

Graph conv feature, adj matrix (NC+ |B|)×d d, GCN
Relu activation gcn feature (NC+ |B|)×d -

Dropout gcn feature (NC+ |B|)×d rate = 0.5
Classifier gcn feature, adj matrix (NC+ |B|)×C C, GCN

Model inference During the testing process, no more prototype updates are performed,
and only the feature extraction and query sample prediction phase are used. Specifically,
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after the training process is over, the feature extractor, the graph convolutional network,
the prototype feature matrix M, and the prototype adjacency matrix A are stored prior
to testing. As a testing procedure, the Prediction phase is performed using the test data
as query data. The process includes creating an expanded feature matrix and an ex-
panded adjacency matrix as described in the Prediction phase, and going through graph
convolutional network to output the classification probability of test samples.

3.3 Model optimization

During training, the proposed model is optimized by four losses. The total loss function
can be expressed as:

L = λ1Lglobal +λ2Llocal +Lproto +Lquery (5)

where λ1 and λ2 are trade-off parameters between Lglobal and Llocal .
Lglobal serves to reinforce the invariance of features, and the higher the λ1, the

stronger the influence of Lglobal . Llocal plays a role in improving the feature compact-
ness of each class, and the higher the λ2, the stronger the influence of Llocal . Lproto and
Lquery are classification losses that allow features to be distinguished by category.

Global relation alignment loss In the training process, the relative position of feature
embeddings should be constrained, excluding the effort to extract subject-independent
features. This loss aims to align the features of subjects at the global level. By setting
the similarity of all element pair combinations of the adjacency matrix A to loss, the
similarity between all subjects and classes is maintained consistently.

Lglobal =
1

N4

N

∑
i, j,m,n=1

∥∥Ai, j−Am,n
∥∥

F (6)

where |·|F denotes the Frobenius norm.

Local relation alignment loss The Llocal aims to align the features of subjects at the
local level. It is calculated as the average of the l2 distance between all query samples
and their corresponding prototype features. By minimizing the l2 distance, the com-
pressibility of the feature is improved.

Prototype classification loss The Lproto is a loss to increase the distinguishability of
prototype features. A cross-entropy loss was employed to calculate the difference be-
tween the label and the predicted probability. Lproto is calculated as the average of the
cross-entropy loss of the true value and the predicted probability in the prototype fea-
tures.

Query classification loss The Lquery is a loss to increase the distinguishability of query
features. Like Lproto, it is calculated as the average of the cross-entropy loss of the true
value and the predicted probability in the query samples.
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4 Experiments and Results

4.1 Datasets

To evaluate the proposed method, one of the public datasets of the MI task, BCI Com-
petition IV IIa [34], was used. The dataset contains nine subjects, where each subject
performed imagination of four different body movements (left hand, right hand, both
feet, and tongue). The EEG signal was measured using a 22 Ag/AgCl electrode with
a sampling frequency of 250 Hz. The dataset was divided into two sessions, and each
session was measured on a different day. A single session included 72 trials per each
MI task. Overall, there are a total of 288 trials of EEG data per session.

4.2 Experiment settings

To demonstrate the advantages of the proposed model, Shallownet [17], and EEGnet
[18] which are two popular models for MI classification, were used. Shallownet is a
CNN-based deep learning model designed to extract discriminative oscillatory EEG
features. EEGnet is a compressed CNN framework designed to be applied to various
BCI paradigms, including MI. For a fair comparison, both models were implemented
with the optimal set of hyperparameters recommended in the original paper, and condi-
tions such as data preprocessing process and GPU device were set the same.

The experiment is performed with a leave-one(subject)-out cross-validation (LOSO-
CV) protocol. For example in [34], when the test set is the data of sub ject1, the train
and validation set consists of the remaining subjects (sub ject2 to sub ject9) excluding
sub ject1.

The proposed method was implemented using the Pytorch framework, and the train-
ing process was implemented using the NVIDIA GeForce GTX 1080 Ti with 11GB
memory. The loss function was optimized using the Adam optimizer for Shallownet
and EEGnet with learning rates of 2× 10−4, 1× 10−3 respectively. Batch size was set
to 32, λ1 was set to 20, λ2 was set to 0.01. The EEG data was cropped with 4 s slid-
ing window, 0.5 s stride before being fed to the model. Moreover, the early stopping
technique [35] was used to prevent overfitting. So, if there was more than the minimum
epoch and the validation loss did not decrease for 20 epochs, training was terminated
early. The minimum epochs of Shallownet and EEGnet were set to 200 and 800, re-
spectively.

4.3 Experimental Results

Classification performance For Shallownet and EEGnet, we evaluated the version
with and without our method. Accuracy and F1-score were used to evaluate the perfor-
mance of the All considered algorithm. We reported the experimental results of ‘Shal-
lownet without our method’ and ‘Shallownet with our method’ in Table 4, and the ex-
perimental results of ‘EEGnet without our method’ and ‘EEGnet with our method’ were
reported in Table 5. As seen on the tables, performance improvements were observed
in both models when using along with our method.
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Table 4. Comparison of classification performance (average accuracy ± standard deviation and
average F1-score ± standard deviation) in % with and without our method in Shallownet

Method Avg accuracy ± Std Avg F1-score ± Std
Shallownet 42.86 ± 12.24 37.96 ± 15.13

Shallownet w/ Ours 44.33 ± 15.07 39.95 ± 17.34

Table 5. Comparison of classification performance (average accuracy ± standard deviation and
average F1-score ± standard deviation) in % with and without our method in EEGnet

Method Avg accuracy ± Std Avg F1-score ± Std
EEGnet 42.59 ± 16.30 38.61 ± 17.42

EEGnet w/ Ours 44.40 ± 16.02 40.83 ± 18.82

Fig. 2 shows the accuracy with and without our model as a scatter plot. The diago-
nal dash line corresponding to y = x indicates a boundary line with the same accuracy
regardless of applying our model. Based on the diagonal dash line, the upper dots cor-
respond to the subject with improved performance by combining our model, and the
lower dots correspond to the subject with reduced performance. As seen on the figure,
accuracy was enhanced from five and six subjects out of nine total for Shallownet and
EEGnet, respectively, when using along with our method.

Fig. 2. Scatter plots for the baseline model and the model combining our method with the base-
line. The left plot is the comparison result when combined with Shallownet, and the right plot is
the comparison result when combined with EEGnet.

Efficiency analysis Fig. 3 shows the confusion matrix with and without our model
using Shallownet and EEGnet. The values on the diagonal of the confusion matrix are
correctly predicted samples in the MI classification task. As seen from the figure, the
diagonal values of the confusion matrix were balanced when our method was applied
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to the model, indicating the balance of classification accuracy between classes. As for
Shallownet, relatively great improvements were observed for accurately classifying feet
class. And in EEGnet, by using our model, the prediction biased to the feet class was
changed in a balanced way, and the accuracy related to the right hand and tongue, the
lowest two classes, was improved.

Fig. 3. Confusion matrices for the baseline model and the model combining our method with the
baseline. The plots on the left are the results for the baseline model, and the plots on the right are
the results for the model combining our method with the baseline. And the upper plots are the
results for Shallownet, and the below plots are the results for EEGnet.

Feature visualization To further investigate how balancing accuracy between different
classes were resulted, we employed t-SNE embeddings [36] to visualize the distribution
of extracted features. As shown in Fig. 4, the distributions by class became clear in
Shallownet and EEGnet when using along with our method for sub ject1 and sub ject8,
respectively.
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Fig. 4. Examples of t-SNE visualization for the baseline model and the model combining our
method with the baseline. The upper plots are the results of sub ject1 for Shallownet, and the
plots below are the results of sub ject8 for EEGnet.

5 Discussion and Conclusion

This paper proposed a framework that can improve the prediction probability for new
users not seen in the training process. The proposed method was applied to the existing
deep learning models for MI classification to improve subject-independent classifica-
tion accuracy. Thus, we used relationship information between multiple subjects for
training and prediction through a graph convolutional network. The public dataset BCI
Competition IV IIa was used to validate the inter-subject classification performance of
our method. As a result, the average classification performance was enhanced by apply-
ing our method to two types of MI classification deep learning models.

Most previous deep learning-based studies have only used features of EEG sig-
nals for training. However, we performed efficient prediction on new users while uti-
lizing not only EEG features but also relationship information between subject-specific
features for learning. The relationship between subjects was defined using the graph
structure, and this relationship was used for training and prediction through a graph
convolutional network.

The effectiveness of our method is clearly shown through the confusion matrixes
and t-SNE plots. The existing deep learning-based MI classification model used in the
experiments showed biased results in inter-subject classification. For example, Shal-
lownet output biased results to all classes except feet class, whereas EEGnet output
biased results to feet class. However, after applying our method, all classes were pre-
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dicted in a balanced way. The t-SNE plots are also relatively well aligned for each class
after applying our method.

In this work, we have proven through experiments that we can make more efficient
predictions in inter-subject tasks by using our method. In addition, the proposed method
has the potential to be applied to various deep learning-based MI classification models.
This study provides insight to develop BCI applications that work well in the real world
without a calibration process for new users.
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