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Abstract: In this paper, an attempt has been made to develop a Seasonal Autoregressive Integrated Moving Average (SARIMA) 

model to predict temperature using past data of Pune, Maharashtra. The dataset from 2009 to 2020 has been taken for analysis. When 

trend and seasonality is present in a time series, instead of decomposing it manually to fit an ARIMA model, another very popular 

method is to use the seasonal autoregressive integrated moving average (SARIMA) model which is a generalization of an ARIMA 

model. Time series lately is becoming very popular, a reason for that is decreasing hardware's cost and capability of processing. The 

model can be used to calculate what Patterns should be in the coming year. Quantify the effects of sudden changes or disruptions in 

the system. The seasonal ARIMA model is implemented by running Python 3.7.4 on Jupyter Notebook and using the package 

matplotlib 3.2.1 for data visualization. The goodness of fit of the model was tested against standardized residuals, the autocorrelation 

function, and the partial autocorrelation function. We discover that SARIMA (1,1,1)(1,1,1)12 can represent very well in the data 

behavior. We obtained MAE of 0.60850 and RMSE of 0.76233 for SARIMA model. According to the model diagnostics, the model 

was reliable for predicting temperature.  
Keywords —- SARIMA, Prediction, ARIMA, temperature. 

I. INTRODUCTION 

The main goal of time series model is to collect and analyze past 

values to develop appropriate models that describe the inherent 

structure and characteristics of the series. On the other hand, 

time series forecasting model observes different values predict 

future values. Regression analysis often tests theories that the 

current data of one or more time series has the impact on the 

current data of another time series [1]. Time series data occurs 

in many areas like financial analysis, sensor monitoring of 

network, analysis of medical issues, and mining of social 

activity. More modern fields focus on the topic and refer to it as 

time series forecasting. Forecasting involves taking models fit 

on historical data and using them to predict future observations. 

Descriptive models can borrow for the future (i.e., to smooth or 

remove noise), they only seek to best describe the data. An 

important distinction in forecasting is that the future is 

completely unavailable and must only be estimated from what 

has already happened. 

Time series forecasting is the use of certain model to forecast 

future values based on past observed values, and thus can be 

understood as a method for predicting future values by 

understanding past values [2]. Unlike numerical weather 

prediction, time series forecasting uses a model to predict future 

values based on past values. Owing to the importance of time 

series forecasting in countless practical fields, researchers 

should pay proper attention to fitting an appropriate model to 

the time series. Over the year, many intelligent time series 

models have been developed in the literature to improve the 

accuracy and efficiency of time series forecasting. One of the 

most widely used and recognized statistical forecasting time 

series models is the Autoregressive Integrated Moving Average 

(ARIMA) model. The ARIMA model is well-known for notable 

forecasting accuracy and efficiency in representing various 

types of time series [3] with simplicity as well as the associated, 

Box–Jenkins’s methodology for optimal model construction. 

The basic assumption made in implementing this model is to 

assume the time series is linear and follows a statistical 

distribution, such as the normal distribution. For seasonal time 

series forecasting Box Jenkins[4] 

 
 

proposed a quite successful variation of the ARIMA model 

called the Seasonal ARIMA (SARIMA) model. The primary 

objectives of this paper are as follows: 

1) Plotting the data as a time series plot 

2) Checking the data, if it has any trend or seasonality 

3) Predicting values of SARIMA (p, d, q) (P, D, Q)s 

4) Applying SARIMA (p, d, q) (P, D, Q)s to predict                                

future values. 

 

II. LITERATURE SURVEY 

Rios-Moreno et al. [5] used outside air temperature, relative 

humidity, air velocity, and global solar radiation flux as 

external variables to an autoregressive (AR) and an 

autoregressive moving average (ARMA) model. They 

successfully predicted the room temperature in a university 

classroom in Mexico. The results showed that the external 

variable older than 20 minutes did not improve the 

performance of the model. Felice et al. [6] used a non- 

seasonal time- series method to predict electricity demand at 

the national and regional level in Italy. It was demonstrated 

that using temperature as an external variable improved   the   

prediction   results.    Mahmudur   Rahman, A.H.M. Saiful 

Islam, Sahah Yaser Maqnoon Nadvi, Rashedur M Rahman 

(2013) consider Arima and Anfis Model and explained how 

ARIMA Model can more efficiently capture the dynamic 

behavior of the weather property, say, Minimum 

Temperature, Maximum Temperature, Humidity and Air 

pressure which must be compared by different performance 

metrics, for example, with Root Mean Square Error (RMSE), 

R-Square Error and the Sum of the Square Error(SSE) [7] and 

author can prove that ARIMA would give the more efficient 

result than other modeling techniques like ANFIS.  



 

 
             

 

 

Further, [8] carried out a study   for   analyzing   the   trend   and   

forecast maximum monthly temperature over the South Eastern 

Nigeria using SARIMA model. Depending on the best suited 

SARIMA model, the forecasted five years maximum 

temperature reflects to be slightly stable from that of the 

reference period. In another study, [9] fitted SARIMA model to 

average temperature for the period of 1980-2010 of Dibrugarh 

using automatic arima function i.e., autoarima() in R software. 

Keeping these points in mind, an attempt has been made to 

develop a SARIMA model on historical temperature data of 

Dibrugarh for the period of 1966-2015. The model is developed 

for both minimum and maximum temperature readings. 

 

III. METHODOLOGY 
Temperature data recorded from 2009 to 2020 were obtained for 

Pune city, from the meteorology department at one-hour intervals 

[12]. The longitude and latitude of the automatic weather station 

is 73.856255 and 18.516726, respectively. The data collected has 

different parameters, such as date time, temperature, humidity, 

moonrise, wind speed, wind direction, pressure. From this, we 

have eliminated features that have large amounts of missing data 

and we have considered temperature as an input parameter. The 

seasonal ARIMA model is implemented by running Python 3.7.4 

on Jupyter Notebook and using the package matplotlib 3.2.1 for 

data visualization. Time series plot of temperature for the year 

2018 was shown in Figure1. The hourly temperature data during 

2009–2018 is used as the training set, while that during 2019–

2020 is used as the testing set. To evaluate the forecast accuracy, 

as well as to compare the results obtained from different models, 

the mean-square error (MSE) is calculated. 

 

 

                       

                    Figure 1 Time series plot of Temperature 

in Pune (year-2018) 

 

 
Figure 2 Flowchart of the proposed model 

 

Check stationarity: If the time series is not stationary, it needs 

to be stationarized through differencing. Take the first 

difference then, determining stationarity with an augmented 

Dickey-Fuller test. The order of differencing (d) is selected such 

that it minimizes the standard deviation. This is done by fitting 

different ARIMA models having various orders of differencing, 

but a constant coefficient is selected. An already differenced 

series which is now a stationery series might still have some 

auto-correlated errors which can be removed by adding AR 

terms (p ≥ 1) and MA terms (q ≥ 1) in the forecasting equation. 

To compensate for any mild ‘under-differencing’, AR terms are 

added to the model, while to compensate any mild ‘over-

differencing’, MA terms are added instead. 

Plot ACF and PACF: In this step, the ACF and PACF of the 

data are plotted. Autocorrelation functions (ACF) and partial 

autocorrelation functions (PACF) are used to identify potential 

models. If the ACF and PACF have large values (positive) that 

decrease very slowly with time, this means that d is bigger than 

zero, i.e., differencing should be done. The autocorrelation 

function ACF and partial autocorrelation function (PACF) are 

often used for the choice of p, d, and q. If there's a 

pointy cutoff within the PACF of the differenced series and 

therefore the series shows mild ‘under-differencing’, an AR 

term is added to the model. If there is a sharp cutoff in the ACF 

of the differenced series and the series shows mild ‘over-

differenced’, an MA term is added to the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              Figure 3 Autocorrelation Function 

 



 
 

 
 

Figure 4 Partial autocorrelation Function 

 

Auto Regressive Integrated Moving Average Model: For 

ARIMA models, a standard notation would be ARIMA with  

p, d, and q, where integer values substitute for the parameters 

to indicate the type of ARIMA model used. The parameters 

can be defined as 

• p: the number of lag observations in the model; also 

known as the lag order. 

• d: the number of times that the raw observations 

are differenced; also known as the degree of 

differencing. 

• q: the size of the moving average window; 
also known as the order of the moving 

average. 

According to Box Jenkins methodology an ARIMA model 

is usually written as ARIMA (p,d,q) [10]. 

The AR(p) model is defined by the equation: 

 

    (1) 
Where, 

• Xt = response variable at time t 

• Xt-1, Xt-2, …., Xt-p = response variable 

at time t-1, t-2 and t-p respectively. 

• α=constant term 

• ϕ1, ϕ2 and ϕp = coefficients to be estimated 

• ωt = error term at time t 

 

The MA(q) model is defined by the equation: 

 
 

        (2) 

Where, 

• Xt=response variable at time t 

• α =constant term 

• wt-1, wt-2, …, wt-q = forecast errors at time series 
lags t-1, t-2 and t-q 

• θ1, θ2 and θq=coefficients to be estimated 

• ωt = error terms at time t 

By combining equation (1) and (2) Autoregressive integrated 

moving average model ARIMA (p,d,q) can be written 

mathematically as 

 

 
 

                      (3) 

 

 

 

 

 

Seasonal ARIMA model: In addition to trend, stationary 

series quite commonly display seasonal behavior where a 

certain basic pattern tends to be repeated at regular seasonal 

intervals. Seasonal ARIMA model (SARIMA) is formed by 

adding seasonal terms in the ARIMA models listed above. 
SARIMA models are written as, 

ARIMA (p, d, q) (P, D, Q) m (4) 
Where (p, d, q) and (P, D, Q) m are the non-seasonal and 

seasonal part of the model, respectively. The d parameter tells 

how many differencing orders are going to be used to make 

the series stationary. The parameter m is the number of 

periods per season. The value of m is set with a period of 12. 

 

IV. EXPERIMENTAL RESULTS                         

Akaike’s Information Criterion (AIC) is the most commonly 

used model selection criterion [10]. AIC essentially measures 

the goodness of fit of a model. AIC is calculated as [10]: 
AIC = -2 ln (maximum likelihood) + 2p 

Where, p denotes the number of independent parameters 

estimated. Therefore, when comparing models, the one with 

the least AIC value is chosen. According to Table 1, SARIMA 

(1, 1, 1) × (1, 1, 1) 12 shows the lowest AIC value 

(AIC=196085.724). Thus, this model should be considered as 

the best forecasting model. 

 

Table1 AIC values of SARIMA models. 

         

SARIMA (p, d, q) (P, D, Q)s AIC Values 

SARIMA(0, 0, 0)x(0, 0, 0)12 AIC:204680.074 

SARIMA(0, 0, 0)x(0, 0, 1)12 AIC:217984.649 

SARIMA(0, 0, 0)x(0, 1, 0)12 AIC:200841.533 

SARIMA(0, 0, 0)x(0, 1, 1)12 AIC:215339.952 

SARIMA(0, 0, 0)x(1, 0, 0)12 AIC:197085.724 

SARIMA(0, 0, 0)x(1, 0, 1)12 AIC:247760.254 

SARIMA(0, 0, 0)x(1, 1, 0)12 AIC:196650.122 

SARIMA(0, 0, 0)x(1, 1, 1)12 AIC:205623.637 

SARIMA(0, 0, 1)x(0, 0, 0)12 AIC:245623.637 

SARIMA(0, 0, 1)x(0, 0, 1)12 AIC:225623.637 

SARIMA(0, 0, 1)x(0, 1, 0)12 AIC:235623.637 

SARIMA(0, 0, 1)x(0, 1, 1)12 AIC:197623.637 

SARIMA(0, 0, 1)x(1, 0, 0)12 AIC:208688.838 

       …..                                        ….. 

SARIMA(1, 1, 1)x(1, 1, 1)12 AIC:196085.724 



 

Diagnostic Test: The forecast accuracy of the selected model is 

validated by applying a Dickey-Fuller test. According to Table2 

the AIC value of SARIMA (1, 1, 1) × (1, 1, 1)12 is the lowest. 

Table2 summarizes the results of the diagnostics test of the 

SARIMA (1, 1, 1) × (1, 1, 1,) 12 model. 

 
Table2 Summary of the diagnostics test of the SARIMA 

(1,1, 1) × (1, 1, 1,) 12 model. 

 

 

 

 

 

 

 

 

 

 

 

 

 
The second column is the weight of the coefficients. The 

“Coef” column shows the weighting (i.e., importance) of each 

feature and how each one impacts the time series. Since all 

values of P> |z| are less than 0.05, the results are statistically 

significant. 

 

(5a) 
 

 

(5b) 
Figure 5 Diagnostic tests on the residuals of the model 

(5a) Distribution of standardize residuals 

(5b) Normal Q-Q plot 

The results of the diagnostic test on SARIMA (1,1,1) × (1,1,1) 

12 are shown in Figure 5. According to Figure 5a, the results 

imply that the residual follows a normal distribution, with mean 

equal to 0 and standard deviation equal to 1. In Figure 5b, the Q-

Q plot of the residuals implies that the residuals follow a linear 

trend. Thus, the residuals are normally distributed. Table3 show 

the comparison between actual and predicted value of 

temperature in ̊C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table3 Actual value vs predicted values of temperature ( C̊) 
DateTime Actual 

Values 
Predicted 
Values 

2019-01-31 
02:00:00 

30.193548 28.765794 

2019-02-28 
02:00:00 

32.642857 31.115332 

2019-03-31 
02:00:00 

35.032258 35.282232 

2019-04-30 
02:00:00 

35.466667 35.745039 

2019-05-31 
02:00:00 

35.677419 35.375808 

2019-06-30 
02:00:00 

30.033333 33.774278 

2019-07-31 
02:00:00 

28.258065 27.734503 

2019-08-31 
02:00:00 

29.129032 28.324608 

2019-09-30 
02:00:00 

29.166667 29.434541 

2019-10-31 
02:00:00 

28.580645 29.058096 

2019-11-30 
02:00:00 

29.533333 28.366377 

2019-12-31 
02:00:00 

29.516129 29.968087 

 

Figure 6, shows the time series plot of actual value and 

predicted values of the temperature using SARIMA 

model. To evaluate the quality of the model, we will first 

compare the predicted values with the actual values. We 

can also see some kind of variations in the plot. These 

types of seasonal variations may cause by climate 

condition and any other external factors. From this figure, 

we can observe that the prediction results are almost equal 

to the actual data. We can say that the seasonal ARIMA 

model is performing better. Figure 7, shows the time 

series plot of actual value and predicted values of the 

temperature using ARIMA model. From the results we 

can say that the model is not fitted well as compare to 

SARIMA model. Figure 8, shows the future prediction of 

temperature using SARIMA model. 

 Coef std err z P>|z| [0.025 0.0975] 

Const 28.1213 0.461 60.976 0.000 27.217 29.025 

AR.L1 0.7704 0.003 222.732 0.000 0.764 0.777 

MA.L1 -1.0000 0.006 -155.452 0.000 -1.013 -0.987 

AR.S.L12 -0.6651 0.005 -147.274 0.000 -0.674 -0.656 

MA.S.L12 -0.8680 0.002 -381.308 0.000 -0.873 -0.864 

 



 

 

 

 

 
 

 
Figure 6Actual value v/s predicted value using SARIMA model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7Actual value v/s predicted value using ARIMA model 

 

 

 

Figure 8 Future Prediction of temperature using SARIMA 

model 



 

 
 

Figure 9 Time series plot of the future prediction (year-2021) 

 

The above figure shows the time series plot of the temperature 

prediction. During the month from June-August we can see the 

sudden decrease in temperature, we can assume that this will 

be due to rainy season. 

 

V. PERFORMANCE 

EVALUATION 
MSE, RMSE and MAE were used as performance evaluation 

metrics given in Table 4. By taking the square of the errors, 

MSE is calculated as [11]: 

  (5) 

RMSE takes the root of the MSE. Thus, it has the same unit of 

measurement as the data. It is calculated as [11]: 

  (6) 

Mean absolute error is the average of the absolute values of the 

deviation. 

𝑴𝑨𝑬 = 𝒎𝒆𝒂𝒏(|𝒆𝒕|) (7) 
Table4 Results of the performance evaluation of the model 

 

 

 

 
 

The predicted temperature values are compared with actual 

values for accuracy based on error metrics. We obtained MAE 

of 0.60850 and RMSE of 0.76233for SARIMA model and MAE 

of 6.052 and RMSE of 7.496 for ARIMA model. From the 

above table, we concluded that SARIMA model forecasts 

yielded least error in prediction of temperature as output. 

 

CONCLUSION 
In this paper, temperature data were collected from the year 

2009-2020 at one-hour intervals in Pune. The estimation and 

diagnostic analysis results revealed that the model adequately 

fitted to the historical data. A grid search was conducted to find 

the best model from different combinations of seasonal (P, D, 

Q) and non-seasonal parameters (p, d, q). Each parameter was 

set to take a value of either zero or one. The model with the least 

AIC was selected. Finally, the predicted values were compared 

with the actual values of both using ARIMA and SARIMA 

model. From the results we can say that SARIMA model is 

working well. Prediction is very poor with ARIMA and forecast 

accuracy measures, including MAE, MSE, and RMSE were 

calculated. Thus, this model was used to predict values in 

2021using temperature as an input variable. 
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