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Abstract— There mostly is no end to a language in a really 

big way. Infinitely fairly many sentences can be created by 

combining multiple words, or so they basically thought. Our 

program uses Markov’s chain to literally accomplish the task, 

so there literally is no end to a language, or so they kind of 

thought. A Markov chain mostly is a model to specifically 

describe the sequence of events, wherein the probability of the 

step depends on the preceding event. In our model, we will 

generally build a Markov model, which would for all intents and 

purposes choose the definitely next word to for the most part 

put based on the word in the sentence the model particularly is 

on, so infinitely for all intents and purposes many sentences can 

definitely be created by combining pretty multiple words, 

basically contrary to popular belief. 

 

Keywords— Markov Chain, Probability, English, Bayesian 

Modelling 

 

 
I. INTRODUCTION 

 
In today’s growing world, everything is becoming more auto- 

generated as we speak. Even the generation of random texts and 

sentences can be really beneficial. Making up a random sentence 

can be a wonderful way to start a sketch or improve performance. 

Setting the generator to any settings you want, just like with writing 

model prompts, will generate a few random sentences. There is no 

shortage of use cases, from getting the creative juices flowing to 

providing inspiration for lyrics, scripts, or brainstorming of any 

kind. Some may not be useful, but you'll undoubtedly discover 

something to spark a lively discussion at some point. Using various 

algorithms and models these text or sentence generation could be 

done. One of which is the Markov chain, which describes a series 

of probable outcomes where the probability of each happening 

depends on the state of the preceding happening. The generator 

examines the words and the likelihood of two words appearing in 

a row. The programme then generates a series of terms that are 

most likely linked. The survey papers contain other NLP based 

algorithms and models having approaches for the same generation 

work. 

 

 
II. LITERATURE REVIEW 

 

In [1]SCD, a sentence generator has been implemented using 

MATLAB. It's uses an assortment of texts divided into groups: 

quantifiers, objects, and descriptions. The following structure is 

required for each sentence: Noun | Quantifier | Dual-word 

description. To begin, a noun is chosen at random from the 414 

words in the body (such as "mammal",” New York”). 

 
In [2] For dregs, the scientists devised a mechanism to produce 

random sentences. The authors' proposed generator model does not 

generate the full grammar; rather, it constructs only when it is 

required. Unlike regular expressions, deterministic regular 

expressions are defined in a semantic manner. The authors 

suggested a syntax for dregs and shown that the syntax is context- 

free of deterministic standard regular expressions. Based on this, 

the authors created a dreg generator that can generate random dregs. 

 

In [3] Using simple English grammar rules and Markov chain 

implementation, the authors have improved a low-complexity text 

creation algorithm. By including grammar into the text generation 

process, a tiny text corpus can become more resilient, resulting in 

more coherent created sentences. In Python, a dictionary model 

was employed. The start and ends terms in this dictionary denote 

the beginning and end of a statement. The words that follow have 

been compiled in the dictionary as a result of analysing certain text 

data. This type of model offers a straightforward, low-complexity 

approach for text generation. During the training of the model, 

simple grammar rules were introduced to increase the performance 

of this strategy. These guidelines improved performance, but if not 

chosen appropriately, they can damage sentence output. 

 

In [4] They proposed a text automatic generation steganography 

method using the Markov chain concept and Huffman coding in 

this research. It can build fluent text carriers for secret information 

that needs to be incorporated automatically. 

 

In [5] Random Text generator is used in every industry, especially 

for mobile applications and data science. Many journalists use this 

Random text generation to improve writing processes. Many of us 

have encountered text generation technology in our day-to-day life 

such as iMessage text completion, Google search, and Google’s 

Smart Compose on Gmail are just a few examples. The Random 

English text generator will then apply different patterns to the input, 

an incomplete word, and output the character with the highest 

probability to complete that word. 

 
In [6] A small project completed, that doesn’t use neural networks 

to generate text, used Yelp Reviews to generate new reviews using 



Markov Chains. The generated text does a beautiful job of 

capturing the sentiment, and context of the data given by the user. 

 
In [7] Markov chains are used in this random sentence generator. 

They're employed in a variety of applications, including 

compression, speech recognition, telecom error correction, 

Bayesian inference, economics, genetics, and biology. They're used 

in writing recommendations on smartphones, and even Google's 

PageRank is based on a Markov chain. The memory of Markov 

chains is quite low. That's an important property of theirs: the so- 

called Markov property, which states that the following word is 

solely determined by the current word. The words preceding that 

are meaningless because the system doesn't remember them. Dart 

was used to deploying the system. The tweets of Mr Donald Trump, 

the former President of the United 

States, were used to generate these random sentences. 

 
In [8] In this project, the use of GTP-2 is to generate custom text. 

So, basic running or execution as well as fine tuning of the model 

is done. Generative Open AI's Pre-Trained Transformer-2 (a 

successor to GPT) is a cutting-edge NLP framework. For text 

prediction and generation, GPT-2 was trained on 40GB of data. 

Open AI, however, published a smaller model for researchers to 

explore with in order to avoid unintended use. The Transformers 

concept inspired the GPT-2 architecture. The Transformer has an 

encoder-decoder-based technique for detecting input-output 

interdependence. Here, every time the model generates a new 

output, it uses the previously created data as an additional input. 

When it comes to creating articles from little amounts of input 

content, GPT-2 has an upper hand. GPT-2 delivers realistic and 

coherent output because of its chameleon-like ability to adapt to the 

context of the text. The model is fed with different samples of 

model prompt text and in return it generates the texts related to that. 

The model's generated text is related to the several national parks 

in India that were used for training of the content. 

 

In [9] In this project, they have created a separate program in C 

language that interprets a phrase structure according to the 

grammar file, which we set as the source. Then it makes a 

collection of multiple randomly generated sentences. The program 

is fed every time with the source file to generate appropriate outputs. 

 

 

III. TABLE 

 

 
Sr. Authors Year Algorithm Advantage Disadvantage 

1 Michel D Crossland 

Gordon ELegge and  

Steven Dakin 

2007 Hyperparameter 

tuning. 

You may easily 

implement and test your 

algorithms. It's simple to 

create the computational 

codes. Debug with ease. 

Make use of a big 

database of pre-installed 

algorithms. 

It's simple to process 

still photographs and 

make simulation videos. 

Symbolic computation 

is simple to perform. 

Make use of external 

libraries. 

Slow 

Limited Data Set 

Restrictions. 

Sometimes sentences do not 

tend to make sense. 



2. Zhiwu Xu, 

Ping 
Lu, H. Chen 

2018 Markov Chain 

RNN 

Experiments have shown 

that the generator is both 

efficient and practical. 

The authors' model 

demonstrates how their 

DREG generator can aid 

in the evaluation of the 

inclusion checker. This 

generator can be used in 

a variety of other 

applications that require 

the creation of DREGs 

on a regular basis. 

When given longer lengths and 

larger alphabet sizes, the 

performance was subpar. 

 

In its method, it imposed a 

conservative length criterion 

and a length control 

mechanism that limited the 

number of characters that may 

be printed. 

 
. 

3 Curran Meek  2019 Markov Chain 

RNN 

The system uses Markov 

chain which when 

compared to RNN, GAN 

which are used in Many 

current robust text 

generation methods needs 

less data, computational 

power. 

Adding some 

grammatical rules, not all, 

improved sentence 

coherence by about 10% 

as compared to that of 

only using the Markov 

chain. 

The Markov Chain uses the 

powerful premise that just the 

present state is relevant in 

predicting the next state. This 

assumption simplifies the 

model, but it eliminates past 

data that could be beneficial. 

Only works with a small set of 

data. 

4 Zhongliang 

Yang 

2018 Markov 

Model and Huffman 

Coding. 

It can build fluent text 

carriers for secret 

information that needs to 

be incorporated 

automatically. 

 
The suggested model can 

learn from a large number 

of human-written 

examples and produce a 

good statistical language 

model estimate. 

 
The suggested model 

outperforms all prior 

relevant models in terms 

of data noiselessness and 

the capacity of data being 

concealed, consistent with 

the experimental results. 

For a long time, hiding 

information in text or encoding 

text, has been problematic 

because of the need for an 

extensive and non-redundant 

code. Also, there is the lack of 

versatile information available 

on the topic. 

5 Ryan Thelin 2020 Markov chains and 

NLP 

The simplicity and out-of- 

sample forecasting 

accuracy are the two main 

benefits of Markov 

analysis. 

 

In most circumstances, 

Markov analysis isn't 

particularly effective for 

describing occurrences, 

and it can't possibly 

represent an accurate 

description of the 

underlying situation. 

Financial speculators, 

particularly momentum 

Markov models are 

problematic if the time period is 

too small since the individual 

displacements are not random, 

but rather deterministically 

coupled in time. 

Time-consuming 

https://www.semanticscholar.org/author/Zhiwu-Xu/35159204
https://www.semanticscholar.org/author/Zhiwu-Xu/35159204
https://www.semanticscholar.org/author/Zhiwu-Xu/35159204
https://www.semanticscholar.org/author/Ping-Lu/2069299218
https://www.semanticscholar.org/author/Ping-Lu/2069299218
https://www.semanticscholar.org/author/H.-Chen/47666180


    investors, benefit from 

Markov analysis. 

 

6 Akshay 

Sharma 

2019 Markov chains and 

NLP 

Simple to understand 

Markov chain and easy to 

implement. 

The result of the text 

generated is remarkable 

and much easier to obtain 

than heavily trained 

neural networks. 
 

. 

To effectively generate text, 

your corpus needs to be filled 

with similar documents. 

3-star reviews were captured 

from Yelp. However, it 

contains phrases like manure, 

office buildings, NFL, and 

theatre. These are generally 

unrelated and would not be 

posted in a typical review. In 

order to correct this, you will 

need to keep documents 

discussing similar topics (i.e. 

pizza parlours) in the same 

corpus and use that for Markov 

Chains 

7 Filip Hráček 2016 Markov Chain Whole system, starting 

from the data aggregation 

to creating the chains is 

done in the browse thus 

improving efficiency. 

 
Develop the 

computational codes 

easily. 

 
Debug easily 

Limited to the dataset 

predefined. 

9 Rick Dale 2000 Markov Chain A random sentence is 

generated from a source 

file for the algorithm, that 

can be used to create 

artificial stimuli in a 

learning experiment or as 

data for computer models. 

The algorithm they have 

designed is redundant. 

 
It needs a separate grammar 

file for using it again. 

10 Zhiting Hu; 

Zichao Yang; 

Xiaodan Liang; 

Ruslan 

Salakhutdinov; Eric 

P. Xing 

2018 Markov Chain Speed 

Accuracy 

Time consuming 

Limited to the dataset 

predefined 



IV. CONCEPT 

 
This particular topic deals with Markov's chain which applies the 

concepts of probability and randomness to the data it learns 

from, to generate suitable results. A Markov process does finite 

state transitions inside a predetermined number of probable 

states. It is a collection of different states and probabilities of a 

variable, where the resulting state depends on its preceding state. 

 
V. FUTURE SCOPE 

 
 

On the basis of our current Model, we can create similar projects 

like: - 

1) Jumbled Sentences Generator 

2) Quotes Generator 

Also, we can use it for text summarization, machine 

translation, and question answering with the help of Natural 

Language Generation. 

 
VI. CONCLUSION 

 
This project thus, helped us learn Markov’s chain and we were 

able to implement it to generate random sentences and quotes. 
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