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Abstract. Clustering by fast search and find of density peaks (CFSFDP) is an 

efficient algorithm for density-based clustering. However, such algorithm inevi-

tably results in privacy leakage. In this paper, we propose DP-CFSFDP to ad-

dress this problem with differential privacy, which adds random noise in order 

to distort the data but preserve its statistical properties. Besides, due to the poor 

performance of CFSFDP on evenly distributed data, we further optimize the 

clustering process with reachable-centers and propose DP-rcCFSFDP. The ex-

perimental results show that, under the same privacy budget, DP-rcCFSFDP 

can improve the clustering effectiveness while preserving data privacy com-

pared with DP-CFSFDP. 
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1 Introduction 

In the era of big data, the launches of services and products are relying more on the 

user data (i.e. privacy) and information mined from it. As data privacy is inevitably 

exposed in the process of data collection, analysis and publication, privacy protection 

technology is developed to address these privacy threats. Recently, many privacy 

protection methods based on k-anonymity [1,2] and partition [3,4] have emerged. 

Although these methods can protect more details of data, they all under special attack 

assumptions. 

Differential privacy is an innovative conception demonstrated by Dwork [5,6,7] for 

privacy leakage of statistical databases. With random noise, it distorts the sensitive 

data and preserves the privacy from the malicious attackers. This technique inspires 

researchers to introduce appropriate noise to data and arm clustering analyses with 

differential privacy correspondingly. 

For example, Blum et al. [8] first introduced differential privacy into clustering 

analysis. They improved a k-means clustering algorithm and perturbed the query re-

sponse to protect each database entry. Wu et al. [9] then applied differential privacy 

technique to density-based clustering algorithm for the first time and proposed DP-
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DBSCAN algorithm. Though the clustering methods with differential privacy are 

improving year by year, the algorithms are still limited by the unsuitability of clusters 

with complex shapes [8,10,11] and the sensitiveness to input parameters [9,12,13,14]. 

In this paper, we leverage a more efficient density peak clustering algorithm, clus-

tering by fast search and find of density peaks (CFSFDP) [20], which clusters data by 

connecting points to the nearest and denser points, and propose an improved DP-

CFSFDP by introducing differential privacy protection to it, aiming at solving privacy 

leakage problem. We add Laplacian noise depending on the differential privacy 

mechanism when the Gaussian kernel function is called during the density calcula-

tion. Due to the poor performance of CFSFDP on data with uniform distribution, an 

improved algorithm with reachable-centers (DP-rcCFSFDP) is proposed to optimize 

the clustering process. We allow the lower-density center points to cluster with the 

reachable and higher-density center points, thus DP-rcCFSFDP can improve the ef-

fectiveness of clustering while satisfying the requirement of security. 

 

 

2 Background and Related Work 

2.1 Differential Privacy 

Differential privacy preserving is a technique to protect private data by adding ran-

dom noise to sensitive data while maintaining the data attributes or their statistical 

properties [5]. We suppose the attacker has obtained all data except the target data. 

With differential privacy preserving, he still cannot obtain the target. The definitions 

of differential privacy are as follows. 

Definition 1. Suppose D and D' are any pair of neighboring datasets that differ by at 

most one piece of data, M is a randomized algorithm, Pr[X] is the disclosure risk of 

event X, and S ⊆ Range(M) is the output of algorithm M. If the algorithm M satisfies:  

 [ ( ) ] [ ( ) ]Pr M D S e Pr M D S
      (1) 

Then the algorithm M is said to be ε-differentially private [5]. ε denotes the privacy 

protection parameter, also known as the privacy budget. The smaller the ε is, the more 

noise is added, and the more privacy protection is provided. 

Definition 2. For the query function f : D→Dd, its sensitivity [6] Δf  is defined as: 

 
1

,  

( ) ( )
D D

f max f D f D


    (2) 

where ‖∙‖1 denotes the first-order norm distance. 

Differential privacy works by adding noise perturbations. There are two common 

noise addition mechanisms: Laplace mechanism [7] for numerical data and Exponen-

tial mechanism [15] for non-numeric data. The amount of noise depends on sensitivity 
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and privacy budget. In this paper, we implement differential privacy with Laplace 

mechanism. 

Definition 3. Given a dataset D, a function f with sensitivity Δf, and privacy budget ε, 

thus the randomized algorithm M (D): 

 ( ) ( )
f

M D f D Lap



 

 
 
 

 (3) 

provides ε-differential privacy preserving [7]. The Lap (Δf / ε) is a random noise of 

Laplace distribution. 

Let b denote the scale parameter Δf / ε, the probability density function of the La-

place distribution is: 

  
1 

2

x
p x exp

b b
 

 
 
 

 (4) 

2.2 CFSFDP Algorithm 

The main idea of CFSFDP is that each class has a maximum density point as the cen-

ter point which attracts and connects the lower density points around it, while differ-

ent class centers are far away from each other. The algorithm defines two quantities: 

local density ρi and distance δi. 

Definition 4. ρi denotes the local density, and there are two calculation methods: 

based on the cutoff kernel and based on the Gaussian kernel. The local density of xi 

calculated by cutoff kernel is defined as: 

ρ
i
= ∑ χ(dij - dc)

j

(5) 

where dij denotes the Euclidean distance between xi and xj, dc denotes the cutoff dis-

tance, and ρi denotes the number of all remaining points contained in the circle with 

point xi as the center and dc as the radius. 

When the data distribution of the dataset is uniform, Eq. (5) may make different 

points with the same local density, which affects the subsequent cluster calculation. 

For this reason, another method is proposed for calculating the local density ρi with 

Gaussian kernel function: 

 

ρ
i
= ∑ e

- ( 
dij

dc
 )

2

j

(6) 

In this paper, Gauss kernel function is used to calculate local density. 
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Definition 5. Distance δi denotes the minimum distance between point xi and other 

points with higher density, and the equation is as follows: 

δi= {

min
j:ρj>ρi

{dij}                    

max 
j

{dij}, otherwise
(7) 

When point xi has the maximum local density, δi denotes the distance between xi 

and the point with the maximum distance from xi. 

The CFSFDP selects cluster centers by the decision graph. The decision graph 

takes ρ as the abscissa and δ as the ordinate. When the point has both larger values of 

ρ and δ, it is considered as the cluster center. An instructive measurement for choos-

ing the number of centers is provided by the plot of γi = ρi · δi sorted in decreasing 

order [20]. The remaining points are connected to the nearest point corresponding to 

their δi for clustering. 

 

 

3 CFSFDP Algorithm Based on Differential Privacy 

3.1 DP-CFSFDP 

CFSFDP algorithm selects k cluster centers according to the decision graph. The rest 

points are arranged in descending order of local density and gradually connected to 

the nearest point with higher density until to a center point. The algorithm performs 

well on datasets with different shapes or uneven density distribution. However, the 

density of points may expose the distribution of dataset. The density peak clustering 

algorithm based on differential privacy preserving (DP-CFSFDP) introduces Laplaci-

an noise to the function of local density calculation, in order to accord with the ε-

differentially private and avoid the risk of privacy leakage caused by local density. 

The steps of DP-CFSFDP are as follows: 

First, initialize the quantities of each point - ρi' and δi. Calculate the Euclidean dis-

tance between points and local density ρi. Based on sensitivity and privacy budget, we 

generate random noise corresponding to Laplace distribution and add it to the density 

ρi. The new densities ρi' are arranged in descending order. Thus, we calculate δi which 

indicates the distance from point i to its nearest point with a larger local density. 

Second, generate the decision graph based on density ρi' and distance δi, thereby 

determine the class centers. 

Finally, cluster non-central points. We traverse the rest points in descending order 

of density, and classify each point and its nearest point with distance δi into a class. 

The pseudo code of the DP-CFSFDP algorithm is presented in the Algorithm 1. 
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Algorithm 1 DP-CFSFDP 

Input: data set D, cutoff distance dc, privacy budget ε 
Output: clustering results with differential privacy 

1: Calculate ρi from Eq.(6) on D,  

   and generate its descending-order subscript qi 

2: b = Δf / ε, Generate random noise Lap (b) 

3: ρi’= ρi + Lap (b) 

4: Calculate δi from Eq.(7), and generate 

   its corresponding subscript ni 

5: Draw the decision graph based on ρi' and δi 

6: Select the appropriate class centers mj, 

   initialize the clustering label Ci=-1 

7: for i = 1:j do 

8:     Cmj = i 
9: end for 

10:for i = 1:N do 

11:    if point qi is not classified 

12:       Cqi = Cnqi 

13:    end if 

14:end for 

 

 

3.2 DP-CFSFDP with reachable-centers 

DP-CFSFDP algorithm protects data privacy by introducing noise into local density. 

However, the arrangement order of local density may change due to the added Lapla-

cian noise, and then interfere with the calculation of the distance δ resulting in the 

change in the distribution of the decision graph. Since the center points is generated 

from the decision graph, the parameters with noise may lead to the deviation between 

the new center point and the correct one. Besides, points are likely to be misclassified 

under the influence of noise during the clustering. 

In addition, CFSFDP algorithm supposes that each class must be a maximum den-

sity point as the class center. If the density distribution of a class is uniform, or there 

are multiple distant points with high density, an entire class will be divided into sev-

eral subclasses. CFSFDP algorithm selects k centers based on the decision graph. 

However, the inappropriate number of centers may have a great impact on the cluster-

ing results. 

In this paper, DP-CFSFDP algorithm with reachable-centers (DP-rcCFSFDP) is 

proposed to reduce the influence of Laplacian noise on clustering results, optimize the 

selection of centers and make up for the inapplicability of CFSFDP algorithm to uni-

formly distributed data. The improved algorithm refers to some ideas of DBSCAN 

[21] and defines reachable, and applies it to the classification of the center points. 

The definitions used in DP-rcCFSFDP are as follows: 
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Neighbors. The neighbors of xi are all points in the neighborhood with xi as the center 

and eps as the radius. In our algorithm, the cutoff distance dc is used as eps to repre-

sent the radius of neighborhood. 

Reachable. There is a series of points p1, p2, p3... pm, pm is said to be reachable from pi 

if each pi+1 lies in the neighborhood of pi. 

The specific steps of DP-rcCFSFDP are as follows: 

First, initialize the quantities ρi' and δi, and generate the decision graph. This pro-

cess is the same as the beginning of DP-CFSFDPs. 

Second, we select k_init points as the initial centers according to the decision 

graph. We then calculate the delta-density value of gamma by γi = ρi' · δi, and arrange 

them in descending order. The k_init points with the largest gamma are selected as 

initial cluster centers points. 

Third, the initial centers are arranged in descending order of density for traversal 

processing. If the center point with higher density is reachable from a point with low-

er density with respect to dc, the lower one will be classified into the cluster of the 

higher one. We will obtain the accurate number of centers k after the traversal. 

Finally, the remaining points are traversed in descending order of density, and clas-

sified to the cluster of the nearest point with higher density until each of them is con-

nected to a class center. The clustering results will be printed at last. 

The cluster process of DP-rcCFSFDP algorithm is presented in the Algorithm 2. 
 

Algorithm 2 DP-rcCFSFDP 

Input: data set D, cutoff distance dc, privacy budget ε 

Output: clustering results with differential privacy 

1: Calculate ρi from Eq.(6) on D,  

   and generate its descending-order subscript qi 

2: b = Δf / ε, Generate random noise Lap (b) 

3: ρi’= ρi + Lap (b) 

4: Calculate δi from Eq.(7), and generate 

   its corresponding subscript ni 

5: Draw the decision graph based on ρi' and δi,  

   and calculate γi = ρi' · δi in descending order 

6: Calculate the neighbors of each point based on dc 

7: Select k_init points with the largest γ  
   as the initial cluster centers 

8: Initialize class count nc=1 
9: The initial centers are sorted in descending order  

   of density Clistm, and Clist1 is the nc class 

10:for i = 1:m do 

11:    for j = 1:i do 

12:        if Clistj is reachable from Clisti w.r.t. dc 

13:           Clisti is classified to Clistj  

14:           break 

15:        end if 

16:    end for 
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17:    if Clisti is not classified 

18:       nc=nc+1 

19:       Clisti is the nc class 
20:    end if 

21:end for 

22:Non-central points are arranged according to qi, 

   and classified to the class of ni 

DP-CFSFDP algorithm is sensitive to the selection of centers. Though the number 

of center points meets the actual clustering requirements, the selection of centers will 

still be interfered with Laplacian noise, resulting in biased centers or even multiple 

centers in one class. While DP-rcCFSFDP selects k_init points as initial centers 

(k_init is greater than or equal to the number of actual centers number), it classifies 

the reachable centers into one class, which finally corrects the biased center points 

generated by noise to connect to the right one. The algorithm reduces the dependence 

on the number of centers, reduces the interference of noise on clustering, and im-

proves the stability. 
 

3.3 Privacy Analysis 

According to Eq. (6) of local density and Definition 2 of sensitivity, the sensitivity of 

the local density function is 1 when a point is added or deleted in the normalized 

space [0, 1]d. 

Suppose that two datasets D1 and D2 differ by at most one record, M (D1) and     

M (D2) denote the output of CFSFDP algorithm with Laplacian noise on D1 and D2, 

S denotes the arbitrary output, f (D1) and f (D2) denote the true clustering results on 

these datasets, and s (x) denotes a certain clustering result. According to Eq. (2) and 

Eq. (4), the security proof of DP-CFSFDP and DP-rcCFSFDP is as follows: 
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The first inequality follows from the triangle inequality which indicates the differ-

ence between any two sides is less than the third. According to Definition 1, it is 

proved that DP-CFSFDP and DP-rcCFSFDP are ε-differentially private. 

 

 

4 Experiments 

4.1 Experiment Setup  

The proposed algorithms are implemented in the Python language. The experiments 

are conducted on a computer with win10 x64 system, Intel i7-6700HQ @2.60GHz 

CPU and 8GB RAM. The datasets used are from the artificial datasets [22] and UCI 

Knowledge Discovery Archive database [23]. 

The specific information of the datasets is shown in Table 1. 

Table 1. datasets information 

Datasets Instances Dimensions Clusters 

Jain 373 2 2 

Wine 178 13 2 

Aggregation 788 2 7 

Iris 150 4 3 

 

4.2 Evaluation Criteria  

F-measure [24] and adjusted Rand index (ARI) [25] are used to compare the similari-

ty between the clustering results of proposed algorithms and the ground truth class 

assignment to evaluate the clustering effectiveness. F-measure is the harmonic aver-

age of the precision and recall. ARI is to measure the similarity of the two assign-

ments. 

Suppose that Tj is the class in the real clustering results, and Di the clustering re-

sults output from the algorithm proposed in the paper. N is the total number of points 

in the dataset. |Tj| and |Di| denote the number of points in the class. The rate of preci-

sion, recall and the value of F-measure of Tj and Di are defined as follows: 

P(Tj, Di) =
|Tj ∩ Di|

|Di|
(8) 

R(Tj, Di) =
|Tj ∩ Di|

|Tj|
(9) 
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F(Tj, Di) =
2∙P(Tj, Di) ∙ R(Tj, Di)

P(Tj, Di) + R(Tj, Di)
(10) 

 F-measure of the clustering results is the weighted average of F-measure for all 

clusters: 

F-measure = ∑
|Tj|

N
j

max
i

F(Tj, Di) (11) 

ARI is the improvement of Rand index (RI). Variations of the ARI account for dif-

ferent models of random clustering [26]. Suppose that T is the actual clustering re-

sults, D is the clustering results obtained by the improved algorithm, a is the number 

of pairs of elements that are in the same set in T and D, and b be the number of pairs 

of elements that are in different sets in T and D. E[RI] denotes the expectation of RI, 

then RI and ARI are defined: 

RI =
a + b

CN
2

(12) 

ARI =
RI - E[RI]

max(RI) - E[RI]
(13) 

The range of F-measure is [0,1] and ARI is [-1,1]. The higher the value is, the more 

similar the outputs of clustering algorithm are to the real clustering results and the less 

the impact of Laplacian noise on clustering effectiveness. 

 

4.3 Results and Discussion 

In the experiment, the datasets are normalized so that each attribute value is limited to 

[0, 1]. To achieve the best clustering effect, appropriate parameters should be selected 

before we add the noise. DP-CFSFDP and DP-rcCFSFDP are applied on four da-

tasets. For each privacy budget and each metric, we apply the algorithms on each 

dataset for 30 times and compute their average performances. When the privacy 

budget ε changes, the F-measure and ARI values of the clustering results are shown in 

the figure. 
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(a) F-measure on Jain dataset       (b) ARI on Jain dataset 

Fig. 1. F-measure and ARI comparison of algorithms on Jain dataset 

 

 
(a) F-measure on Wine dataset       (b) ARI on Wine dataset 

Fig. 2. F-measure and ARI comparison of algorithms on Wine dataset 

 

 
(a) F-measure on Aggregation dataset     (b) ARI on Aggregation dataset 

Fig. 3. F-measure and ARI comparison of algorithms on Aggregation dataset 
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(a) F-measure on Iris dataset       (b) ARI on Iris dataset 

Fig. 4. F-measure and ARI comparison of algorithms on Iris dataset 

The left side of the figures (Figures. 1(a) - 4(a)) depicts F-measure of the cluster-

ing results. As is shown, with the growth of privacy budget, F-measure gradually 

increases and tends to be stable. Since the privacy budget is inversely proportional to 

the size of the Laplacian noise, the higher the privacy budget, the less the noise and 

the better the clustering results. 

When we compare the performance of DP-CFSFDP and DP-rcCFSFDP under the 

same privacy budget, it is easy to find that in Fig. 1(a) and Fig. 2(a), DP-rcCFSFDP 

always has a higher F-measure value than DP-CFSFDP, and that the clustering result 

is closer to the real result. However, in Fig. 3(a) and Fig. 4(a), when the privacy 

budget takes a small value, the F-measure value of DP-CFSFDP becomes higher but 

seems more unstable. The reason is that when the privacy budget is small, too much 

noise leads to the increasing randomness of the centers selection by DP-CFSFDP 

algorithm and coincidentally generates even better centers than the original algorithm. 

When the privacy budget takes a larger value, the clustering of DP-rcCFSFDP is of 

higher accuracy and more stable, resulting from the optimization of center points 

classification with the reachable centers. 

The right side of the figures (Figures. 1(b) - 4(b)) depicts ARI of the clustering re-

sults. As we can see, ARI gradually increases and then flattens with the increase of 

privacy budget. Under the same privacy budget, the ARI value of DP-rcCFSFDP is 

generally superior than DP-CFSFDP, since the calculation of ARI ignores permuta-

tions. Thus, under the same level of privacy protection, the similarity between cluster-

ing results of DP-rcCFSFDP and real ones is higher, indicating that DP-rcCFSFDP 

algorithm clusters with higher effectiveness. 

In general, DP-rcCFSFDP reduces the impact of Laplacian noise on clustering 

compared with DP-CFSFDP and achieves a better balance between clustering effec-

tiveness and privacy preserving. 
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5 Conclusion 

In this paper, a density peak clustering algorithm based on differential privacy pre-

serving (DP-CFSFDP) is proposed to protect private data. Meanwhile, an improved 

DP-CFSFDP algorithm with reachable-centers (DP-rcCFSFDP) is proposed for the 

poor performance on data with uniform distribution and the bad clustering with La-

placian noise by CFSFDP. The experiments show that the improved algorithm can 

meet the requirement of privacy preserving while ensuring the effectiveness of clus-

tering. In the future, we are going to optimize the allocation of input parameters and 

privacy budget in DP-rcCFSFDP, and further improve the clustering performance. 
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