
EasyChair Preprint
№ 12901

iContinuum: an Emulation Toolkit for
Intent-Based Computing Across the
Edge-to-Cloud Continuum

Negin Akbari, Adel N.Toosi, John Grundy, Hourieh Khalajzadeh,
Mohammad Sadegh Aslanpour and Shashikant Ilager

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 4, 2024

iContinuum: An Emulation Toolkit for Intent-Based
Computing Across the Edge-to-Cloud Continuum

Abstract—The Internet of Things (IoT) has led to a surge
in smart devices, generating vast data volumes. Cloud com-
puting offers scalability but does not suffice for many real-
time and privacy-sensitive IoT applications, prompting the rise
of edge computing. However, many IoT applications require
a blend of both edge and cloud resources, creating the need
for seamless integration, known as the “compute continuum”.
Testing applications within this continuum is vital but can be
very complex. Simulation and emulation are preferred methods,
with emulation providing more accurate representations of real-
world environments. In this paper, we introduce iContinuum, a
novel emulation toolkit facilitating an intent-based platform for
edge-to-cloud testing and experimentation. Leveraging Software-
Defined Networking (SDN) and containerization, iContinuum en-
ables experimentation and performance evaluation while aligning
application requirements with actual performance. We present
our detailed architecture, implementation, and evaluation of
iContinuum, showcasing how our proposed toolkit bridges the
gap between simulation and real-world deployment within the
compute continuum environments. We also present a use case
demonstrating the effectiveness of Intent-Based Scheduling. We
further validate our emulation toolkit by comparing its perfor-
mance against a real-world setup.

I. INTRODUCTION

The rise of the Internet of Things (IoT) has led to an
explosion of smart devices, generating massive amounts of
data. As the number of IoT applications continues to grow,
network-connected devices are collecting and exchanging vast
amounts of data with each other [1]. Cloud computing provides
scalable storage, processing power, and analytical toolkits,
enabling seamless integration and processing of this data
from interconnected devices. However, cloud computing may
not be the optimal choice for supporting certain types of
applications, especially those requiring real-time analysis or
those with privacy concerns [2]. To meet the demand for low-
response time and on-device data processing, a new computing
paradigm, such as edge computing, has emerged. Edge com-
puting provides computations and communication resources
at the network edge. It promises to surpass the limitations
of traditional cloud computing models by bringing computing
closer to the data source [3].

While edge computing offers advantages such as low la-
tency, reduced bandwidth usage, and data processing closer
to the source, cloud computing provides proven scalability,
flexibility, and extensive shared computational resources [4].
However, many emerging IoT-based applications are not suited
to the use of either cloud-only or edge-only setups. They often
require a combination of edge and cloud resources to meet
their needs effectively. This necessity for hybrid deployment
models has led to the emergence of the “compute continuum”

concept [5], which emphasizes the seamless integration of
edge and cloud resources. Spanning from the edge to the cloud,
this continuum enables applications to seamlessly operate
across a diverse spectrum of resources [5].

A thorough testing of applications leveraging the compute
continuum is essential before deployment in a production en-
vironment. This ensures seamless integration with the unique
features of both edge computing and cloud infrastructure,
preempting potential issues and optimizing real-world per-
formance. However, testing applications within the compute
continuum presents significant challenges. These are due to its
complex network setups, resource heterogeneity, widespread
distribution of resources, and diverse environmental factors
[6]. Additionally, it demands specialized tools and personnel
expertise with a deep understanding of the infrastructure and
application configurations. Limited access to real-world testing
and experimentation environments further complicates these
evaluation processes. Experimentation in a real environment is
also costly due to the substantial resources and time required
for deployment and execution under varying loads. Moreover,
the unpredictability of external variables renders experimental
results non-repeatable.

Simulation and emulation are used to test and evaluate the
performance of large-scale cloud and edge applications. While
simulation relies on abstract models to represent software
and hardware entities for performance assessment, emulation
employs the actual software deployed on testbed hardware to
emulate real-world infrastructure configurations during evalu-
ation [7].

Popular simulation toolkits such as iFogSim [8], Cloudsim
[9], and EdgeCloudSim [10] have become widespread for test-
ing and developing application management strategies in edge-
to-cloud environments. However, simulation using these tools
presents numerous challenges, from constraints on authenticity
to concerns regarding accuracy. Authenticity challenges stem
from the complexity of continuum, which may necessitate
oversimplification or overlook certain aspects of real-world
environments, potentially leading to unrealistic outcomes or
disregarding critical factors [10]. Accuracy concerns arise due
to various factors, including model assumptions, data quality,
parameter settings, and human errors [11]. Additionally, many
cloud and edge simulation toolkits lack detailed network
simulation capabilities, failing to adequately capture dynamic
interactions and the impact of communications among various
components of the system [10].

Emulation, on the other hand, resembles real-world envi-
ronments [12], providing a more accurate representation of

edge-to-cloud settings. Thus, this approach leads to more
dependable testing outcomes, and applications can be more
accurately tested for real-world deployment scenarios. More-
over, it provides a practical testing environment compared
to simulation and minimizes deployment risks. However,
conventional emulation toolkits often focus solely on testing
computing or networking functionalities, or on monitoring and
testing low-level metrics. In contrast, intent-based approaches
enable both joint testing and the assessment of high-level
objectives derived from them. With intent-based emulation,
the emphasis shifts from merely replicating the behavior of
individual components or systems to achieving specific high-
level objectives or intents.

In this paper, we propose an emulation toolkit for build-
ing intent-based edge-to-cloud computing testing and exper-
imentation platforms called iContinuum. iContinuum allows
developers or end-users to set up an emulated testbed for their
applications and perform experimentation and performance
evaluation. The proposed emulation toolkit comprises multiple
distinct layers with a set of components to build all the layers
from infrastructure to applications. We employ an advanced
approach to emulate our network environment by leveraging
Software-Defined Networking (SDN) that decouples the data
plane and control plane in IoT, enabling controllers to effec-
tively regulate network flow while considering resource usage
conditions of both cloud and edge servers [13]. Additionally,
we utilize containerization and orchestration technologies to
efficiently manage the deployment and operation of applica-
tions across the emulated infrastructure. This ensures compre-
hensive consideration of both networking and computing pa-
rameters within the edge-to-cloud environment. Moreover, the
toolkit supports users in specifying their desired requirements
or intents for their applications, such as target response time
or energy consumption, and maintains continuous alignment
between the desired state of the applications and their actual
performance.

Our evaluation demonstrates that iContinuum accurately
emulates edge-to-cloud environments, capturing application,
networking, and computing-level metrics. Validation confirms
its ability to closely match real-world performance. Addition-
ally, it proves to be valuable for implementing intent-based
methods in these environments.

Section II provides a motivational scenario illustrating the
necessity of an emulated testing toolkit for the edge-to-cloud
environment. In section III, we present our approach along
with the system architecture underlying iContinuum, and then
in Section IV we describe the design and implementation
of iContinuum and discuss the key tools utilized in creating
this emulation framework. Section V presents a performance
evaluation and results analysis of iContinuum as well as
a use case for Intent-based scheduling. Section VI shows
the validation of our emulation toolkit with the real-world
environment, and in section VII we discuss about the limitation
of our toolkit. Section VIII presents key related work, and we
finish with the conclusion in section IX.

II. MOTIVATION

Consider a smart surveillance application in a smart factory
environment. Utilizing IoT devices throughout the factory,
the system captures real-time data on factory operation. Such
an application typically encompasses a range of software
components, including video preprocessing, computer vision
algorithms (e.g., object detection), alerting and notification
systems, user interfaces, and dashboards. These components
can be deployed across diverse computing and storage re-
sources, spanning from edge devices to cloud infrastructure
which presents many challenges due to resource diversity
and environmental conditions. Variability in factory require-
ments and network conditions, including failures and traffic
fluctuations, also adds complexity [14]. Moreover, with some
application tasks processing data at the edge and others in the
cloud, ensuring seamless integration and optimal performance
becomes essential.

This system can leverage IoT devices, such as cameras
across the factory floor, to capture real-time data on various as-
pects of production. These cameras monitor production lines,
packages, products, and worker activities, providing valuable
insights into the manufacturing processes. At the edge of the
network, edge compute nodes process and analyze the data
locally, enabling quick decision-making and reducing latency.
Meanwhile, cloud computing nodes aggregate and store this
data for further analysis, long-term storage, and integration
with other enterprise systems.

Comprehensive testing and experimentation are crucial to
effectively address the complexities associated with deploying
such applications in this environment. Direct deployment onto
factory premises carries risks due to uncertainties surrounding
application performance and potential impacts on the network
and devices. Emulation provides a practical alternative by
replicating real-world conditions within a controlled envi-
ronment. We need to emulate diverse network conditions,
resource capacities, software configurations, IoT devices, and
operational scenarios. This enables developers to gain insights
into application behavior under different circumstances, fine-
tuning performance, and ensuring adaptability to the dynamic
factory ecosystem. Thus, our aim is to provide developers with
a testing toolkit to bridge the gap between controlled testing
environments and complex edge-cloud settings, ensuring the
successful deployment and operation of such smart surveil-
lance applications and, in general, various edge-cloud setups.

III. OUR APPROACH

Figure 1 illustrates the key architectural layers comprising
our proposed emulation toolkit. We mainly emphasize the
middleware layer for developing the iContinuum tool.

Application layer: In this layer, users define their ap-
plication structure and configurations, choosing between a
chain of services, a Directed Acyclic Graph (DAG), or other
application models. Moreover, they can specify their high-level
objectives, like optimizing response time or minimizing energy
consumption. The application structure and objectives can be
defined in the form of intent using formats such as YAML

Middleware Layer- Intent-based Management and
Orchestration (MANO) module

Application Layer- IoT applications

U
se

r
Le

ve
l

Decision Making
Module

Intent Watch
Loop

Infrastructure Layer- Compute and Data Plane

S
ys

te
m

 L
ev

el

Compute Continuum

Cloud Servers Edge Computing Devices

PC

Switch

VM

LaptopPi

Network
Emulator

Control Plane

Cluster Manager /
Orchestrator

Network
Controller

Monitoring
Module

DAG Chain

Fig. 1: An overview of the proposed architecture

or JSON. These intents are monitored through a watch loop
method integrated within the middleware layer.

Middleware layer: This layer encompasses the primary
components responsible for deploying and monitoring the
application in the infrastructure layer. It features an Intent
Watch Loop Module, tasked with detecting any deviations
from predefined intents. In the event of an unsatisfied intent,
the system initiates appropriate actions through the Decision-
Making Module to rectify the issue. Positioned at the heart of
the middleware layer, is a central control plane integrating both
the Network Controller for network management and the Clus-
ter Manager for orchestrating and managing the computing
cluster and its resources. These components work closely with
an integrated Monitoring Module, responsible for overseeing
various computing and networking metrics, including CPU,
memory, bandwidth utilization, latency, etc. While it may be
relatively straightforward to emulate compute nodes or utilize
real-world computing resources within an emulator toolkit,
simulating intricate networks across the continuum presents
a more formidable challenge. This gap is evident in many
simulation tools. Hence, we propose incorporating a Network
Emulator module into our middleware. This component will
be tasked with emulating networks and constructing network
topologies within the infrastructure layer.

Infrastructure layer: This layer hosts a diverse array of
computing and networking resources, including IoT devices,
edge and cloud computing devices, as well as networking
devices such as network switches and routers, building the net-
work infrastructure. Some of these devices serve as network-

ing nodes, others as computational nodes, and certain units
perform the dual role of network and computation nodes. The
network topology within the infrastructure layer is constructed
using the network emulator in the middleware layer. The
network emulator creates virtual switches or network elements
to connect various devices in the infrastructure layer. In this
layer, IoT devices like CCTV cameras are attached to edge
servers, with the data generated by the IoT device undergoing
processing within the compute continuum via microservices or
containers built as part of the application. The compute nodes
in the continuum can range from conventional computers
or physical servers to specialized Single Board Computers
(SBCs) like Raspberry Pi at the edge to Virtual Machines
(VM) in the cloud.

IV. iContinuum TOOLKIT

This section presents a proof of concept emulation toolkit
called iContinuum based on our proposed architecture and
concepts. We describe key design and technology choices we
made and how we realized key elements of the emulation
platform.

A. Network Controller

We leverage SDN controller and orchestrator technologies
in the control plane to replicate a large-scale compute con-
tinuum environment, addressing both networking and com-
puting components. The primary tool we used for network
management purposes is the Open Network Operating Sys-
tem (ONOS),1. We chose this platform as it excels in SDN
for edge computing. ONOS provides centralized control for
managing the network with high scalability and flexibility. Its
open-source and flexible nature enables support for network
programmability. In addition, ONOS features built-in support
for “intent-based networking”, such as ConnectivityIntent,
simplifying network management by allowing administrators
to articulate high-level policies while abstracting away low-
level configurations [15]. ONOS can support QoS require-
ments and has additional recovery protocols to recover from
lost crashes due to controller updates [16], and offers east
and westbound interfaces for distributed controllers, ensuring
network resilience by connecting each data plane element to
multiple controllers, with one as master and others as backups.
These attributes empower efficient management of resources,
seamless integration with diverse network infrastructure, and
the essential low-latency communication required for compute
continuum applications.

B. Network Emulator

We utilize Mininet2 to emulate network and relevant net-
work typologies, such as switches. We chose to use Mininet
as it provides a powerful and flexible network emulator. A
Traffic Control utility (TCLink) allows precise specification
of bandwidth limits, delay, loss, maximum queue length, and
other parameters. It supports the configuration of switches such

1https://opennetworking.org/onos/
2https://mininet.org/

VM1

Mininet Topology

VM2

 OVS
 Switch s1

tap1

Controller

cni0
Bridge

Pod
veth0

P
od

 N
et

w
or

k

GRE

 OVS
 Bridge

ta
p0

tap1

br0

Kubernetes Master

 OVS
 Switch

s1
-e

th
1

s2
-e

th
1

tap1

s2

eth0

VM3

cni0
Bridge

Pod
veth0

P
od

 N
et

w
or

k

GRE

 OVS
 Bridge

ta
p0

tap1

br0

Kubernetes Worker 1

eth0

eth0

Network

S1 S2

Fig. 2: A Kubernetes cluster with two edge nodes connected via a linear network topology and two switches in Mininet.

as Open vSwitch3 (OVS) to support the OpenFlow protocol,
thus ensuring seamless integration and management within
our SDN environment. While Mininet effectively emulates
switches, its capability to emulate hosts is limited due to
its minimalistic shell environment, which prevents the full
execution and deployment of applications. Alternatively, tools
like Containernet,4 a fork of Mininet, address this issue by
supporting containers as hosts within the network topology.
However, they lack compatibility with VMs and physical
hardware. To address this limitation, we implement a different
approach which allows us to seamlessly integrate external
computing nodes such as VMs, Pis, or physical servers as
hosts into the Mininet network topology. These hosts can be
used as the Kubernetes cluster masters and workers nodes.

As shown in Figure 2, our novel approach focuses on
providing connectivity between the external hosts and the
Mininet-created network topology through Generic Routing
Encapsulation (GRE) tunneling.5 To accomplish this, each
external host is configured with an OVS bridge featuring two
virtual interfaces, tap0 and tap1. The first interface acts as
an internal interface (tap0), assigning an IP address within
the range allocated by Mininet to the network hosts. The
second interface (tap1), configured as a GRE interface, is
linked to a tap port on an OVS switch in the Mininet topology
managed by the SDN controllers such as ONOS. Note that
OVS bridges on hosts are not managed by the SDN controller
and solely connects the external hosts to the switches emulated
by Mininet via a GRE tunnels. These external hosts play
the role of Kubernetes Nodes as explained in the following
section. This configuration ensures a bidirectional connection
among the external hosts and network switches in the Mininet

3https://www.openvswitch.org/
4https://containernet.github.io/
5https://www.cloudflare.com/en-gb/learning/network-layer/what-is-gre-

tunneling/

topology.

C. Container Orchestration

We use containerization as the foundation for application
packaging and deployment due to numerous benefits that
align well with the requirements of the compute continuum,
including resource efficiency, portability, flexibility, isolation
and security, as well as orchestration and management capa-
bilities. We integrate Kubernetes as the primary tool for cluster
management and orchestration. In our prototype, we use K3s,6

which is the lightweight version of Kubernetes, suitable for
compute continuum use cases. Kubernetes offers a rich set
of features supporting container deployment and dynamic
resource management [17]. This open-source tool automates
the deployment, scaling, and management of containerized
applications, facilitating rapid deployment without complex
configuration or installation steps [18] which makes it a suit-
able choice for our system. It seamlessly scales applications
to meet changing demands, optimizes resource utilization,
ensures high availability, and enables portability across various
environments.

D. IoT Devices

To simulate IoT devices, such as sensors, CCTV cameras,
and other IoT devices, we utilize Locust7. We chose to use
Locust as it is a robust load generator capable of generating
HTTP or MQTT requests directed towards the application,
effectively replicating real-world traffic scenarios. In our use
case scenario, Locust operates similarly to CCTV cameras
capturing images within the factory at defined intervals and
sending images for processing to the network.

6https://k3s.io/
7https://locust.io/

E. Monitoring Tool

We employ a monitoring tool known as sFlow-RT.8 This
provides a real-time monitoring solution designed to gather
telemetry data from industry-standard sFlow Agents integrated
into network devices or hosts. We utilize the open-source
Host sFlow agent9 for performance monitoring of hosts and
servers. This agent exports performance metrics such as CPU
and memory utilization from both physical and virtual servers
using the sFlow protocol. It offers scalable, multi-vendor, and
multi-OS performance monitoring capabilities, ensuring mini-
mal impact on the systems under observation. We also utilize
standard sFlow agents to monitor Open vSwitches within
the Mininet network topology, enabling efficient network
monitoring. These agents transmit real-time telemetry data
to the sFlow-RT central collector, facilitating comprehensive
analysis. With all these agents in place, we are able to gather
a wide range of metrics including networking data such as
bandwidth and delay, as well as host-level metrics like CPU
and memory usage.

F. Monitoring Microservices

Given the diverse microservices (Pods) that might be avail-
able in the application structure, it is essential to monitor them
individually. To achieve this, we leverage sidecar containers10

with sFlow agents to operate alongside the main application
container within the same Pod. They serve to augment or
extend the functionality of the primary application container
by offering additional services such as logging, monitoring,
security, or data synchronization—without necessitating direct
modifications to the primary application code. We also utilize
the Prometheus Exporter,11 an application integrated into
the sFlow-RT analytics platform. This exporter seamlessly
converts real-time telemetry streams from sFlow agents on
hosts and switches into metrics accessible via a REST API and
a format compatible with Prometheus,12 enabling Prometheus
to retrieve and utilize these metrics. We utilize Prometheus as
a robust time series database and alerting system for persistent
storage of real-time monitoring data collected by sFlow-RT.
Additionally, we leverage Grafana,13 an open-source analyt-
ics and monitoring solution that seamlessly integrates with
Prometheus for enhanced visualization. This integration allows
us to efficiently collect, query, visualize, and alert on metrics
data.

G. Platform Automation

We have automated the entire setup of iContinuum in-
cluding configuration, application deployment and monitoring
described above using the Ansible platform,14 with all asso-
ciated codes accessible in our GitHub repository.15Ansible is

8https://sflow-rt.com/
9https://sflow.net/about.php
10https://kubernetes.io/docs/concepts/workloads/pods/sidecar-containers/
11https://blog.sflow.com/2019/04/prometheus-exporter.html
12https://prometheus.io/
13https://grafana.com/
14https://www.ansible.com/
15Removed for anonymous peer review.

an open-source automation tool for configuring and managing
computers, software applications, and network devices. This
capability empowers users to effortlessly establish an emu-
lation environment for a comprehensive compute continuum,
encompassing the entire spectrum of applications, control
layers, and infrastructure, all with a single click and a few
settings. Ansible is widely used in IT operations, DevOps,
and system administration for its simplicity, scalability, and
extensibility.

V. EVALUATION

In this section, we provide a comprehensive evaluation of
iContinuum through testing and experimentation of sample
applications with mixed cloud and edge components. We
begin by describing a sample scenario setup as an example
target application and experimental testbed. Following this, we
conduct a detailed analysis of our evaluation results to offer
a thorough understanding of iContinuum’s performance and
capabilities, providing valuable insights.

A. Experimental Setup
Our experimental setup consists of five Virtual Machines

(VMs) hosted on the Nectar cloud,16 with detailed configura-
tions provided in Table 1. Four VMs are designated as edge
servers within a Kubernetes cluster, comprising one Master
node for the control plane and three Worker nodes. Addition-
ally, another VM functions as the SDN controller, equipped
with essential monitoring modules including the sFlow-RT
collector, Prometheus, and Grafana, alongside Mininet serving
as the network emulator.

VM OS Architecture RAM vCPU
Edge Servers Ubuntu 20.04 LTS amd64 8GB 4

SDN Controller Ubuntu 20.04 LTS amd64 16GB 8

Table 1: Configuration of VMs

Figure 3(a) illustrates the network topology generated by
Mininet, as visualized in the ONOS Graphical User Interface
(GUI). Each switch-to-switch connection delivers a 200Mbps
bandwidth without any additional delay settings, with such
negligible network latency that it can be disregarded. The edge
nodes connect to the switches via GRE configuration. In Fig-
ure 3(b), we showcase the configuration of OVS bridge, named
br1, on individual edge servers, along with their respective
virtual interfaces (tap interfaces). The first interface (tap0),
functions as the internal interface, featuring IP addresses
within the 10.0.0.0/8 subnet range, seamlessly aligned with
the Mininet hosts range.

Table 2 shows a detailed breakdown of the edge server
IP addresses associated with the tap0 interface. The second
virtual interface (tap1) operates as a GRE type, with its remote
IP address configured to the ONOS controller’s IP address.
Also, switches connected to hosts in Figure 3(a) are equipped
with GRE interface, with the remote IP address set to one
of the edge nodes. This configuration streamlines centralized
cluster management through the ONOS controller.

16https://ardc.edu.au/services/ardc-nectar-research-cloud/

#sudo ovs-vsctl show
5d505666-91cd-424b-b4fe-c1a407d4d8da
Bridge br1
Port tap1
Interface tap1
type: gre
options:{remote_ip="ONOS CONTROLLER IP ADDR"}

Port br1
Interface br1
type: internal
Port tap0
Interface tap0
type: internal
ovs_version: "2.13.8"

10.0.0.100 10.0.0.103

10.0.0.10210.0.0.101

S5

S1 S4

S6

S3S2

Computing Node/host Networking Node/Switch

(a) Network Topology

#sudo ovs-vsctl show
5d505666-91cd-424b-b4fe-c1a407d4d8da
Bridge br1
Port tap1
Interface tap1
type: gre
options:{remote_ip="ONOS CONTROLLER IP ADDR"}

Port br1
Interface br1
type: internal
Port tap0
Interface tap0
type: internal
ovs_version: "2.13.8"

Networking Node/Switch

(b) OVS Configuration

Fig. 3: Experimental Setup

Edge Server/ Kubernetes cluster tap0 IP Address
Master Node 10.0.0.100/8

Worker1 Node 10.0.0.101/8
Worker2 Node 10.0.0.102/8
Worker3 Node 10.0.0.103/8

Table 2: Configuration of edge servers’ virtual interface(tap0)

We utilize Locust to send HTTP requests to our application.
In Figure 4, we showcase our containerized image processing
application built on a chain of services. Docker images for the
application can be found in the following Docker Hub link
at the footnote.17 This application comprises four distinct mi-
croservices (Pods), each with a unique responsibility. Upon re-
ceiving a request, the first pod resizes the image and forwards
it to the second microservice, which converts it to a black-
and-white version. This transformed image then proceeds to
the third microservice, tasked with object detection. Finally,
the output is passed to the fourth microservice, which triggers
an alarm upon detecting special objects of interest and records
their count. This comprehensive setup resembles our factory
operations, discussed earlier, by effectively identifying faulty
or non-standard objects on the production line. Customized
special object definitions further adapt to user requirements or
specific production environment needs, ultimately empowering
management with greater control over the factory operations.

Resize B&W SSD Alarm/Count

DB

http request

Locust User

Result

W2

W3 W2W1W3

Fig. 4: Image Processing Application

Microservices log the reception and completion times of
requests, calculate their processing times, and subsequently
transmit this data to a containerized database. The database
also logs any failures encountered by the microservices. The

17Removed for anonymous peer review.

microservices are deployed within the Kubernetes cluster and
managed by the default scheduler. To prevent overloading, we
designate the Master node as non-deployable, acknowledging
its critical role as the system’s control-plane. Therefore, the
microservices are distributed across the worker nodes in the
cluster, as depicted in Figure 4 with labels attached to each
microservice. In this Figure, ‘W1’ to ‘W3’ corresponds to
Worker1 to Worker3, respectively.

B. Results and Analysis
In this section, we will showcase the experiments conducted

using iContinuum. Given that the proposed platform handles
both networking and computing parameters, we undertake
diverse experiments at the application level, computing level,
and networking level. This approach aims to demonstrate the
flexibility and comprehensiveness of iContinuum.

Application Level: To stress-test the application, Locust
sends synchronous HTTP requests to the application for a
duration of 360 seconds with various numbers of concurrent
users. Each request carries a JPEG image sized at 499.7kB.
Our Locust setup accurately replicates real-world conditions
by simulating various concurrency levels with different num-
bers of threads, resembling multiple CCTV cameras. The
spawn rate, set at 1 user per second, determines the rate
at which users are generated during the testing phase. We
measure the Response Time (RT) of a request, starting from
the initial receipt of a request by Microservice 1 to the final
completion of processing by Microservice 4. Figure 5 illus-
trates the CDF of Response Time across various numbers of
users, demonstrating the accurate functionality of performance
under varying system loads. The smaller variance between the
results obtained from 10 and 20 users, in comparison to other
concurrency levels, indicates that at a concurrency level of 10,
the system is not fully saturated, thereby failing to achieve its
maximum throughput.

Table 3 shows the throughput of the application and the
number of processed requests for the same experiments, pro-
viding insights into performance across varying demand levels.
As the results show, iContinuum exhibits a reasonable variation
in response time and inversely correlated throughput, affirming
the reliability of the system under evaluation.

Fig. 5: CDF of response time for different concurrency levels
at the workload generator

No. Users 10 20 30 40 50
Throughput 4.27 7.23 7.70 7.75 7.66

No. Processed Requests 1537 2712 2783 2814 2790

Table 3: Throughput and number of processed requests for
different concurrency levels at the workload generator

Computing Level: We conduct tests on the system to
demonstrate iContinuum’s capability on measuring computa-
tional parameters, such as CPU and memory utilization. The
CPU and memory utilization diagrams for each node and pod
in the cluster during traffic simulation are depicted in Figure 6.
Throughout the 33-minute experiment, data is collected every
15 seconds. Annotations on the top of the plots mark the
occurrence of various injected events into the system. The
initial phase of the experiment begins before deploying the
application. Then, we deploy the application at e1, initializing
each pod. Following this, at e2, we send requests to the
application through Locust with 50 concurrent users at a spawn
rate of 1 second persisting for a total of 360 seconds up to
e3. Upon the completion of this traffic, all microservices are
terminated at e4.

The Figure clearly illustrates that the Master node displays
higher CPU and memory utilization, serving as the control
plane responsible for task scheduling and application deploy-
ment within the cluster. Additionally, Worker3, which hosts
both Pod1 and Pod2, emerges as the second node with the
highest of resource utilization, with Pod1 acting as the initial
entry point for the application. Moving forward, Worker1
houses Pod3, which requires substantial processing time for
object detection. In contrast, Worker2 demonstrates lower
CPU and memory usage, as it hosts Pod4 and the database
(DB). These microservices demand less processing time, with
Pod4 responsible for generating alarms upon detecting special
objects from the previous Pod and then counting them, while
the DB focuses primarily on data storage.

Networking Level: Utilizing Locust for a duration of 360
seconds, we simulate HTTP traffic through the application
with 50 users and a spawn rate of 1 user per second. The

goal was to show how varying bandwidth and delay settings
impact the application’s performance. Figure 7(a) presents the
application’s response time under various bandwidth configu-
rations. Initially, we measured the application response time
with all links set to a bandwidth of 50Mbps, configured using
the Mininet TCLink utility. Subsequently, we repeated the
experiment with bandwidth reduced to 40, 30, 20 and 10Mbps.
Figure 7(b) shows the throughput of the application during the
experiment with different bandwidth setups. As expected, the
higher the bandwidth the lower the response time.

Figure 7(c) shows how different delays can affect the
application RT with the same configuration of Locust. This
experiment is conducted with a fixed bandwidth set to 50Mbps.
We changed the delay of all links by the Traffic Control (tc)18

utility in Linux to 5ms, 10ms, 15ms, and 20ms, respectively.
Figure 7(d) represents the throughput of the application with
different delays configured on the links. These experiments un-
derscore the adaptability and flexibility of iContinuum across
varied networking conditions. Results demonstrate iContin-
uum’s capability to dynamically adjust network parameters for
more accurate emulation of real-world conditions.

C. A Use Case: Intent-based Scheduling

In this section, we present an intent-based scheduling ap-
proach as a use case for iContinuum emulation as part of our
evaluation. The aim is to consistently maintain application RT
below a predefined threshold. During a 360-second experi-
ment, Locust simulates traffic with 10 users at a spawn rate of
1 user per second, using the same image size as before. We use
the network topology in Figure 3(a). We also set 5ms delay and
50Mbps bandwidth on all switch interconnected links. Each
microservice is configured with a limit of 0.5 CPU core and
512MiB memory. As shown in Figure 8, we considered an
average target RT threshold below 3 seconds as our intent,
denoted as ’Target RT’ on the graph. We introduced several
events into the system to induce intent non-conformance. At
event e1, a downtime incident occurred on the direct link
between switches S2 and S4. This issue was promptly resolved
by rerouting traffic through alternative paths: S4-S3-S2 in one
direction and S2-S1-S4 in the other, thereby preventing any
violation of the intent requirement for response time below
3 seconds. However, this rerouting led to a slight increase
in application response time, which was unavoidable. We
used ‘Reactive Forwarding’ on ONOS controller to promptly
redirects traffic via an alternative route. Subsequently, at event
e2, we intentionally induce syntactic congestion on the newly
selected link (S2-S3) by injecting iperf traffic, resulting in a
breach of the response time requirement. However, the intent
is promptly restored to the desired level by establishing new
flows through the ONOS Controller’s REST API. Then, at
event e3, we increase the concurrent users in Locust from 10
to 20, with a spawn rate of 1 user per second, deliberately
triggering another violation of the intent. This is responded

18https://www.linux.com/training-tutorials/tc-show-manipulate-traffic-
control-settings/

(a) CPU Utilization of Nodes (b) Memory Utilization of Nodes (c) CPU Utilization of Pods (d) Memory Utilization of Pods

Fig. 6: CPU and Memory utilization for Nodes and Pods (e1: Application Deployment- e2: Traffic Generation- e3: Traffic
Completion- e4: Application Termination)

(a) Bandwidth Impact on Application
Response Time

(b) Bandwidth Impact on Application
Throughput

(c) Delay Impact on Application Re-
sponse Time

(d) Delay Impact on Application
Throughput

Fig. 7: Impact of bandwidth and delay on dpplication performance

by scaling up resources, leveraging Kubernetes’ scaling mech-
anism to boost pods for microservice3, which needs more
resources to process, from 1 to 8 replicas, effectively reducing
the average response times to meet the desired thresholds.
The figure clearly illustrates how an intent-based scheduling
algorithms can be effectively emulated by iContinuum.

Fig. 8: Application Response Time over the time when
different events are induced. Response Time (RT)- Average
Response Time (Avg. RT)

VI. VALIDATION

In this section, we validate our proposed emulation tool
by comparing it against a real-world setup. This assessment
goes beyond emulation, ensuring that iContinuum can closely
replicate practical settings found in real-world environments.
To achieve this, we configured a Kubernetes cluster over

multiple edge devices comprising a Master node on an Intel
NUC 8 and three Worker nodes on Raspberry Pis Model 3B, as
detailed in Table 4, acting as edge devices. These devices were
interconnected through a NetGear switch (Model: ProSafe 16
port Gigabit switch GS116 V2). The network topology of
this setup is illustrated in Figure 9(a), reflecting a simple
real-world setup. We replicated a similar topology in our
proposed emulator, as depicted in Figure 9(b), facilitating a
direct comparison between the two environments.

Edge Nodes Role OS Arch RAM CPU Cores
Intel NUC Master Ubuntu 22.04 LTS amd64 8GB 8

Pi 3 Model B Worker1 Pi (Legacy,64-Bit) arm64 1GB 4
Pi 3 Model B Worker2 Pi (Legacy,64-Bit) arm64 1GB 4
Pi 3 Model B Worker3 Pi (Legacy,64-Bit) arm64 1GB 4

Table 4: Configuration-Read-world devices

Figure 9(c) illustrates the placement of microservices across
various nodes in both the real-world setup and the emulated
environment. Microservice 3 and the database are hosted
on the Master node, while the remaining microservices are
deployed across the Worker nodes. Figure 9(d) presents a
comparison of application response times between the real-
world setup and the emulated environment, under varying
loads generated by Locust. The test scenarios involved 10
users with a spawn rate of 1 user per second, followed by
20 users with the same spawn rate, executed for 360 seconds,
with the image size remaining as the same we used in the
previous section. Bandwidth and delays on the links in the
emulated environment were configured to match those of
the real-world setup. However, we introduced CPU limits on
the pods in the emulated environment to simulate the lower
computational capacity of the Raspberry Pis. Analysis of the

#sudo ovs-vsctl show
5d505666-91cd-424b-b4fe-c1a407d4d8da
Bridge br1
Port tap1
Interface tap1
type: gre
options:{remote_ip="ONOS CONTROLLER IP ADDR"}

Port br1
Interface br1
type: internal
Port tap0
Interface tap0
type: internal
ovs_version: "2.13.8"Master Node Worker Nodes (Pi)

Internet
10.0.0.90

10.0.0.80

10.0.0.82

10.0.0.81

(a) Real-world Setup

ONOS Controllertl show
5d505666-91cd-424b-b4fe-c1a407d4d8da

Bridge br1
Port tap1
Interface tap1
type: gre
options:{remote_ip="ONOS CONTROLLER IP ADDR"}

Port br1
Interface br1
type: internal
Port tap0
Interface tap0
type: internal
ovs_version: "2.13.8"Computing Node Networking Node

10.0.0.100

10.0.0.101

10.0.0.103

10.0.0.102

#sudo ovs-vsctl show
5d505666-91cd-424b-b4fe-c1a407d4d8da
Bridge br1
Port tap1
Interface tap1
type: gre
options:{remote_ip="ONOS CONTROLLER IP

ADDR"}
Port br1
Interface br1
type: internal
Port tap0
Interface tap0
type: internal
ovs_version: "2.13.8"

S1

(b) The Emulated Environment in
iContinuum

#sudo ovs-vsctl show
5d505666-91cd-424b-b4fe-c1a407d4d8da
Bridge br1
Port tap1
Interface tap1
type: gre
options:{remote_ip="ONOS CONTROLLER IP ADDR"}

Port br1
Interface br1
type: internal
Port tap0
Interface tap0
type: internal
ovs_version: "2.13.8"

Microservice Node Placement

Microservice1

Microservice2

Microservice3

Microservice4

Worker1

Worker2

Master

Worker3

DB Master

(c) Placement of Pods (d) CDF of Response Time for Emulated
Environment (EE) and Real-world Setup
(RS) with different number of users

Fig. 9: Comparison between the real-world setup and emulated environment

CDF of response times, as depicted in Figure 9(d), shows that
both the real-world setup and the emulated environments yield
nearly identical results, thus validating the effectiveness of our
proposed emulation tool.

VII. DISCUSSION AND LIMITATIONS

Our evaluation demonstrates that iContinuum adeptly em-
ulates intricate edge-to-cloud environments for application
deployment. It offers thorough metrics and detailed infor-
mation essential for testing and experimenting with these
applications. Furthermore, its containerization simplifies the
packaging and deployment of applications, including those
with multiple microservices and dependencies, such as chain
and graph structures. Additionally, it provides all the necessary
features for implementing advanced intent-based computing
and networking within the edge-to-cloud continuum.

Our proposed emulation tool faces several limitations. Its
scalability is constrained by the resource limitation on the
host, we emulated the network topology using Mininet and
other centralized components such Kubernetes Master node
and ONOS controller which are central to the emulation.
Additionally, our tool struggles to accurately simulate wireless
networks. Our future plan is to incorporate tools such as
Mininet-Wifi [19] to address this limitation. While a simplified
version of mobility can be incorporated into our toolkit by
dynamically connecting the host to various switches during
the emulation, the current version does not account for the
mobility of computing nodes. These limitations highlight the
need for ongoing research to enhance the scalability, mobility,
and wireless network emulation of our tool for more accurate
edge-to-cloud testing scenarios.

VIII. RELATED WORK

A. Compute Continuum

Edge computing is a relatively new distributed computing
paradigm that has gained significant attention in recent years.
It is particularly beneficial for applications demanding real-
time data processing [20], such as IoT devices, self-driving
cars, and remote medical diagnostics. This approach enhances
scalability and reduce the strain on cloud-based systems [21],
holding immense potential for industries ranging from health-
care and manufacturing to autonomous vehicles and smart

cities. While edge computing focuses on processing data as
close to its source as feasible, thereby reducing network la-
tency, minimizing bandwidth usage, and improving application
performance [2], cloud computing emphasizes remote data
storage and processing through centralized servers, providing
scalability and accessibility benefits [22]. Despite the sig-
nificant potential of edge computing in reducing the burden
on core networks, its primary limitation lies in its restricted
computational and communication capacities compared to
cloud computing [23]. These applications rely on both cloud
resources and local IoT devices to capture and process data.
They have diverse requirements such as low-latency analytics,
data privacy, time and location sensitivity, and simultaneous
access to distributed sensor arrays. Additionally, they necessi-
tate access to remote, localized, heterogeneous computational
resources, as well as seamless multi-cloud computational
capabilities on demand [24]. This scenario has led to the
development of a new computational paradigm known as the
compute continuum [5].

The compute continuum is characterized by its diversity,
featuring a broad array of capabilities, locations, program-
ming models, and constraints. In this environment, resources
encompass computing power, storage capacity, networking ca-
pabilities, and specialized components like GPUs, AI, FPGAs,
along with services tailored specifically for edge and cloud
environments [25]. Therefore, developers and designers need
to skillfully utilize these resources throughout the network
hierarchy, ensuring smooth migration of applications across
different networks and service providers. [25] and [26] discuss
the main important features of an edge environment emulator
or simulator. These features encompass 1) detailed deployment
models for edge networks, incorporating diverse tiers of edge
and cloud nodes; 2) dynamic modeling of edge network
behavior; 3) mobility of terminals and edge devices; 4) real-
time measurement, visualization, and post-analysis of metrics;
5) modeling of failures and reachability; and 6) scalability and
extendibility.

B. Emulation and Simulation Tools for Compute Continuum

[25] provides an overview of available emulation and simu-
lation tools, organizing them based on their functionalities.
Many solutions focus solely on the IoT sector and may

not readily apply to other areas; We believe that emulation
tools should be adaptable across various application domains.
iFogSim [8], specializing in fog node placement algorithms
within the IoT domain, is an adaptation of CloudSim [9].
However, there is no mobility support in iFogsim [27].
EdgeCloudSim, another adaptation of CloudSim [9], offers
modeling capabilities such as network configuration, mobility,
and traffic patterns. However, accurately simulating the net-
work presents significant challenges. While Yet Another Fog
Simulator (YAFS) [28] does support edge topology simulation,
it primarily targets the IoT domain, and its execution time is
notably high, consequently leading to increased response times
[29].

EmuFog [30] which is an emulation framework for Fog
environments, facilitates the simulation of Docker-based ap-
plications. It also offers customizable features, allowing users
to specify the placement of Fog computing nodes and de-
fine their capabilities and workload expectations; However,
mobility support is not available in EmuFog [25]. While
EmuFog utilizes MaxiNet [31] to track local node events
such as CPU and memory consumption, it lacks a universal
interface for monitoring global metrics such as response time
[27]. Fogify [26] provides a comprehensive fog emulation
framework featuring fog topology modeling, dynamic network
behavior simulation, KPI monitoring, and seamless integration
with edge application workloads. However, its scope is limited
to the IoT/Fog domain and does not incorporate integration
with external edge resources and compute continuum [25].

The existing literature lacks an emulation framework tai-
lored specifically for edge and cloud environment, allowing
users to define their requirements while considering both
networking and computing capabilities. Thus, we proposed
iContinuum to address the needs of the edge-to-cloud environ-
ment emulation. The proposed framework employs two widely
adopted technologies suitable for the compute continuum
environment: SDN and Container Orchestration. With this
framework, users have the flexibility to define their require-
ments, ensuring that the system meets their specific needs.

C. Using SDN in edge-to-cloud environment

The increasing need for next-generation capabilities, as
processing moves to the edge-to-cloud environment, requires
effective solutions. In recent years, Software-Defined Net-
working (SDN) has evolved to offer comprehensive network
programmability. SDN separates the control plane and data
plane functions, optimizing resource use and traffic flow for
reduced latency and improved performance [32]. Its pro-
grammability tailors network policies to diverse applications
in edge-to-cloud environment. The centralized control plane in
SDN simplifies network management and scalability, enabling
administrators to focus on strategic tasks [33].

D. Using Container Orchestration in edge-to-cloud environ-
ment

In the realm of cloud and edge computing, where devices
and nodes constantly change, manual service management is

challenging. Automated orchestration tools like Kubernetes
[34], KubeEdge,19 or ioFog20 provide a solution. Container-
ization technology allows developers to package their ap-
plications and dependencies into lightweight and portable
containers, making it easier to deploy and run applications
across different environments. Container Orchestration offers
unified management, dynamic scaling, and simplified deploy-
ment of microservices-based architectures across diverse edge
environments [35]. Additionally, these platforms enhance se-
curity, reliability, and performance through built-in monitoring,
failover mechanisms, and support for various networking and
storage options.

E. Using IBN in edge-to-cloud environment

While SDN provides flexible network control and intelli-
gence, the discrepancy between business needs and network
capabilities requires the underlying network to consistently
adapt, protect, and inform across all service-oriented areas.
Intent-based networking (IBN) [36] has emerged as a promis-
ing solution for addressing the aforementioned gap by captur-
ing business intent and subsequently activating and ensuring
it throughout the network [37]. Recent studies are focusing on
extending this innovative framework to the computing domain,
including edge and edge-to-cloud domains [38], [39], [40],
[41]. iContinnum provides seamless support for intents to serve
as high-level abstractions, empowering systems administrators
and developers to articulate their desired outcomes without
necessitating explicit instructions on how to achieve them.

IX. CONCLUSIONS AND FUTURE WORK

The rise of edge-to-cloud environment highlights the critical
importance of pre-deployment testing for ensuring seamless
integration of applications across the edge and cloud infras-
tructures. While emulation and simulation are commonly em-
ployed for testing purposes, emulation stands out for its ability
to provide results closely mirroring real-world conditions. In
this paper, we proposed iContinuum—an emulation toolkit
tailored for the edge-to-cloud continuum. Leveraging SDN
controller and container orchestrator, iContinuum offers a flex-
ible solution to support diverse networking and computation
needs, including accommodating user-defined system intents.
We provided a comprehensive overview of iContinuum’s ar-
chitectural framework and components, along with evaluations
demonstrating its efficacy in emulating the varied requirements
of IoT applications in edge-to-cloud environments. We vali-
dated our tool against a real-world setup involving multiple
edge devices and diverse network settings. Additionally, we
presented a use case for Intent-based scheduling using iCon-
tinuum. In our future work, we aim to enhance our emulation
tool by integrating mobility and wireless connectivity support.
Furthermore, we plan to propose novel intent-based scheduling
methods to optimize resource allocation based on high-level
objectives using iContinuum.

19https://kubeedge.io/
20https://iofog.org/

REFERENCES

[1] A. A. Abba Ari, O. K. Ngangmo, C. Titouna, O. Thiare, A. Mohamadou,
and A. M. Gueroui, “Enabling privacy and security in cloud of things:
Architecture, applications, security & privacy challenges,” Applied Com-
puting and Informatics, vol. 20, no. 1/2, pp. 119–141, 2024.

[2] G. Agapito and M. Cannataro, “An overview on the challenges and
limitations using cloud computing in healthcare corporations,” Big Data
and Cognitive Computing, vol. 7, no. 2, p. 68, 2023.

[3] J. Sakhdari, B. Zolfaghari, S. Izadpanah, S. Mahdizadeh Zargar, M. Ra-
hati Quchani, M. Shadi, S. Abrishami, and A. Rasoolzadegan, “Edge
computing: A systematic mapping study,” Concurrency and Computa-
tion: Practice and Experience, vol. 35, no. 22, p. e7741, 2023.

[4] M. Sajid and Z. Raza, “Cloud computing: Issues & challenges,” in
International conference on cloud, big data and trust, vol. 20, no. 13.
sn, 2013, pp. 13–15.

[5] G. R. Russo, V. Cardellini, and F. L. Presti, “Serverless functions
in the cloud-edge continuum: Challenges and opportunities,” in 2023
31st Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). IEEE, 2023, pp. 321–328.

[6] V. Casamayor Pujol, A. Morichetta, I. Murturi, P. Kumar Donta, and
S. Dustdar, “Fundamental research challenges for distributed computing
continuum systems,” Information, vol. 14, no. 3, p. 198, 2023.

[7] J. Gustedt, E. Jeannot, and M. Quinson, “Experimental methodologies
for large-scale systems: a survey,” Parallel Processing Letters, vol. 19,
no. 03, pp. 399–418, 2009.

[8] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[10] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment
for performance evaluation of edge computing systems,” Transactions on
Emerging Telecommunications Technologies, vol. 29, no. 11, p. e3493,
2018.

[11] S. Svorobej, P. Takako Endo, M. Bendechache, C. Filelis-Papadopoulos,
K. M. Giannoutakis, G. A. Gravvanis, D. Tzovaras, J. Byrne, and
T. Lynn, “Simulating fog and edge computing scenarios: An overview
and research challenges,” Future Internet, vol. 11, no. 3, p. 55, 2019.

[12] W. Kiess and M. Mauve, “A survey on real-world implementations of
mobile ad-hoc networks,” Ad Hoc Networks, vol. 5, no. 3, pp. 324–339,
2007.

[13] P. K. Sharma, S. Rathore, Y.-S. Jeong, and J. H. Park, “Softedgenet:
Sdn based energy-efficient distributed network architecture for edge
computing,” IEEE Communications magazine, vol. 56, no. 12, pp. 104–
111, 2018.

[14] S. Trinks and C. Felden, “Edge computing architecture to support
real time analytic applications: A state-of-the-art within the application
area of smart factory and industry 4.0,” in 2018 IEEE International
Conference on Big Data (Big Data). IEEE, 2018, pp. 2930–2939.

[15] S. Jaberi, “Using assl as a method for intent expression to enact
autonomic networking,” Ph.D. dissertation, Concordia University, 2023.

[16] P. A. D. S. N. Wijesekara and S. Gunawardena, “A comprehensive survey
on knowledge-defined networking,” in Telecom, vol. 4, no. 3. MDPI,
2023, pp. 477–596.

[17] Q.-M. Nguyen, L.-A. Phan, and T. Kim, “Load-balancing of kubernetes-
based edge computing infrastructure using resource adaptive proxy,”
Sensors, vol. 22, no. 8, p. 2869, 2022.

[18] S. Pettersson, “Predictive scaling for microservices-based systems,”
p. 52, 2023.

[19] R. R. Fontes, S. Afzal, S. H. Brito, M. A. Santos, and C. E. Rothenberg,
“Mininet-wifi: Emulating software-defined wireless networks,” in 2015
11th International Conference on Network and Service Management
(CNSM). IEEE, 2015, pp. 384–389.

[20] Q. V. Khanh, V.-H. Nguyen, Q. N. Minh, A. D. Van, N. Le Anh,
and A. Chehri, “An efficient edge computing management mechanism
for sustainable smart cities,” Sustainable Computing: Informatics and
Systems, vol. 38, p. 100867, 2023.

[21] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[22] S. Murugesan and I. Bojanova, “Cloud computing: an overview,” Ency-
clopedia of cloud computing, pp. 1–14, 2016.

[23] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, 2019.

[24] A. Ullah, T. Kiss, J. Kovács, F. Tusa, J. Deslauriers, H. Dagdeviren,
R. Arjun, and H. Hamzeh, “Orchestration in the cloud-to-things compute
continuum: taxonomy, survey and future directions,” Journal of Cloud
Computing, vol. 12, no. 1, p. 135, 2023.

[25] R. Gazda, M. Roy, J. Blakley, A. Sakr, and R. Schuster, “Towards open
and cross domain edge emulation–the advantedge platform,” in 2021
IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2021, pp.
339–344.

[26] M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, and M. D.
Dikaiakos, “Fogify: A fog computing emulation framework,” in 2020
IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2020, pp.
42–54.

[27] D. P. Abreu, K. Velasquez, M. Curado, and E. Monteiro, “A comparative
analysis of simulators for the cloud to fog continuum,” Simulation
Modelling Practice and Theory, vol. 101, p. 102029, 2020.

[28] I. Lera, C. Guerrero, and C. Juiz, “Yafs: A simulator for iot scenarios
in fog computing,” IEEE Access, vol. 7, pp. 91 745–91 758, 2019.

[29] E. Del-Pozo-Puñal, F. Garcı́a-Carballeira, and D. Camarmas-Alonso, “A
scalable simulator for cloud, fog and edge computing platforms with
mobility support,” Future Generation Computer Systems, vol. 144, pp.
117–130, 2023.

[30] R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran, “Emu-
fog: Extensible and scalable emulation of large-scale fog computing
infrastructures,” in 2017 IEEE Fog World Congress (FWC). IEEE,
2017, pp. 1–6.

[31] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and
H. Karl, “Maxinet: Distributed emulation of software-defined networks,”
in 2014 IFIP Networking Conference. IEEE, 2014, pp. 1–9.

[32] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn security: A sur-
vey,” in 2013 IEEE SDN For Future Networks and Services (SDN4FNS).
IEEE, 2013, pp. 1–7.

[33] W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. U. Rasool, and W. Dou,
“Complementing iot services through software defined networking and
edge computing: A comprehensive survey,” IEEE Communications Sur-
veys & Tutorials, vol. 22, no. 3, pp. 1761–1804, 2020.

[34] B. Thurgood and R. G. Lennon, “Cloud computing with kubernetes clus-
ter elastic scaling,” in Proceedings of the 3rd International Conference
on Future Networks and Distributed Systems, 2019, pp. 1–7.

[35] N. Gupta, K. Anantharaj, and K. Subramani, “Containerized architecture
for edge computing in smart home: A consistent architecture for model
deployment,” in 2020 International Conference on Computer Commu-
nication and Informatics (ICCCI). IEEE, 2020, pp. 1–8.

[36] A. Clemm, L. Ciavaglia, L. Granville, and J. Tantsura, “Intent-
based networking-concepts and definitions, 2021,” URL: https://tools.
ietf. org/html/draft-irtf-nmrgibn-concepts-definitions-02, last accessed,
vol. 25, 2020.

[37] A. Singh, G. S. Aujla, and R. S. Bali, “Intent-based network for data
dissemination in software-defined vehicular edge computing,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp.
5310–5318, 2020.

[38] T. He, A. N. Toosi, N. Akbari, M. T. Islam, and M. A. Cheema, “An
intent-based framework for vehicular edge computing,” in 2023 IEEE
International Conference on Pervasive Computing and Communications
(PerCom). IEEE, 2023, pp. 121–130.

[39] N. Filinis, I. Tzanettis, D. Spatharakis, E. Fotopoulou, I. Dimolitsas,
A. Zafeiropoulos, C. Vassilakis, and S. Papavassiliou, “Intent-driven
orchestration of serverless applications in the computing continuum,”
Future Generation Computer Systems, vol. 154, pp. 72–86, 2024.

[40] A. Morichetta, N. Spring, P. Raith, and S. Dustdar, “Intent-based
management for the distributed computing continuum,” in 2023 IEEE In-
ternational Conference on Service-Oriented System Engineering (SOSE).
IEEE, 2023, pp. 239–249.

[41] A. Zafeiropoulos, E. Fotopoulou, C. Vassilakis, I. Tzanettis, C. Lom-
bardo, A. Carrega, and R. Bruschi, “Intent-driven distributed applications
management over compute and network resources in the computing
continuum,” in 2023 19th International Conference on Distributed
Computing in Smart Systems and the Internet of Things (DCOSS-IoT).
IEEE, 2023, pp. 429–436.

