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Abstract—In this study, we propose a new technique which
detects the anomalies in skin sympathetic nerve activity (SKNA)
recorded from the chest wall by using the state-of-the-art signal
processing and machine learning methods for the robust detection
of myocardial ischaemia (AMI). For this purpose, a preprocessing
technique that obtains SKNA from the wideband recordings on
STAFF III database, which are non-invasively recorded from the
skin surface of the chest wall by using an equipment that has a
wide frequency bandwidth and high sampling rate, is developed.
By using the data that is obtained as a result of preprocessing, a
novel feature extraction technique which obtains SKNA features
that are critical for the reliable detection of AMI is developed. By
using the critical SKNA features, a supervised learning technique
based on artificial neural networks (ANN) which performs the
robust detection of AMI is developed. The performance results
of the proposed technique obtained from a considerable number
of patients with coronary artery disease on STAFF III database
indicate that the technique provides highly reliable detection of
AMI.
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I. INTRODUCTION

Since the invention of ECG by Einthoven, it has been an
important part of clinical practice for the diagnosis of various
cardiovascular diseases. A primary reason for the popularity
of ECG is that it is non-invasive and can be performed in any
patient by placing the electrodes to the skin to detect electrical
signals from the heart. Present methods of ECG recording
focus on detecting the electrical signals from the heart for
the diagnosis of different cardiovascular diseases. Most of the
diagnostic information in an ECG signal is contained below
150 Hz, therefore American Heart Association (AHA) recom-
mends a bandwidth of 0.5 Hz to 150 Hz for the diagnostic
monitoring of ECG signals [1]. Therefore, in conventional
ECG devices, higher frequency signals that contain activities of
the skeletal muscle (EMG) and nervous system are routinely
eliminated by this filtering, although they are known to be
clinically important [2].

Recent studies in the literature showed that it is possible

to non-invasively and directly record higher frequency signals
from skin surface in humans, called skin sympathetic nerve
activity (SKNA), by using an equipment which has a wider
frequency bandwidth and higher sampling rate [3]. The studies
that investigate the relationship between SKNA and cardiovas-
cular diseases in humans have recently started and there are a
few studies that investigate the relationship between SKNA of
the chest wall and cardiac arrhythmias (CA). A previous study
in which simultaneous non-invasive recordings of SKNA and
ECG were acquired showed that an increase in SKNA of the
chest wall is associated with heart rate acceleration in ECG
during CA [4]. In other words, it is demonstrated that CA
is preceded by elevated SKNA, which indicates that there is
a significant association between SKNA and CA. However,
there are no studies which investigate the relationship between
SKNA of the chest wall and AMI.

II. METHODOLOGY

In this study, we propose that application of ECG can
be expanded to obtain SKNA by using the electrical signals
recorded from the chest wall to perform the robust detection
of AMI in patients with coronary artery disease. The proposed
technique utilizes the state-of-the-art signal processing and
machine learning methods to detect the anomalies in SKNA
of the chest wall and provide additional diagnostic information
to ECG for the reliable diagnosis of AMI.

A. Dataset Construction

The proposed technique is developed by using STAFF III
database, which is a set of data acquired from patients with
coronary artery disease receiving percutaneous transluminal
coronary angiography (PTCA) at Charleston Area Medical
Center, USA [5]. It is constructed as a result of a clinical
research study performed to determine transient ECG changes
during restrained coronary artery occlusion caused by PTCA,
which is a minimally invasive procedure that involves insertion
of a balloon that is inflated to widen blocked coronary arteries
to improve blood flow to myocardium [6]. Coronary artery
occlusion during PTCA induces AMI in the affected myocar-
dial area as a result of reduced blood flow, which produces



temporary chest pains together with significant changes in the
ST segment and T wave of ECG [7].

The database includes high frequency ECG recordings
of 108 patients acquired before and during PTCA and to
date it is the largest database documenting high-frequency
morphological changes in ECG during induced AMI caused
by complete coronary artery occlusion. Since, the database
simulates changes caused by heart attack in a clinical setting,
it serves as an excellent testbed for the development of a wide
range of AMI detection techniques.

Before PTCA, pre-inflation recordings were continuously
acquired from all patients at rest in the catheterization lab-
oratory, prior to catheter insertion to the coronary arteries.
During PTCA, inflation recordings that started before balloon
inflation and ended after balloon deflation in a major coronary
artery were continuously acquired from all patients in the
catheterization laboratory. Inflation recordings were annotated
by medical experts to indicate the time instants for balloon
inflation and deflation during PTCA, occluded coronary artery
in which PTCA is performed, patient’s history of previous my-
ocardial infarction, as well as location of previous myocardial
infarction.

The database was constructed by using a custom-made data
acquisition equipment with an extraordinary dynamic input
amplitude range. The recordings were digitized at a sampling
rate of 1000 Hz and amplitude resolution of 0.6 µV , which
ensured that high-resolution signals could be produced. Only
patients receiving PTCA in one of the major coronary arteries
were included to the database, whereas patients suffering from
ventricular tachycardia or myocardial infarction during data
acquisition were excluded.

B. Preprocessing Technique

In this study, a novel signal processing technique is devel-
oped to obtain SKNA by using the electrical signals that are
recorded from the chest wall by means of an equipment that
has a wide frequency bandwidth and high sampling rate. For
this purpose, high-pass filters which have a cut-off frequency
of fc=150 Hz are designed and implemented to the wideband
recordings of all patients on STAFF III database.

The performance of different high-pass filter cut-off fre-
quency settings up to a maximum cut-off frequency of 500 Hz,
which is the same as the maximum frequency component of
the recordings in the database, are investigated to obtain SKNA
of the chest wall. The efforts made for the optimization of the
filter cut-off frequency to display sympathetic nerve activities
showed that a high-pass filter setting of 150 Hz provides higher
amplitude SKNA and better signal-to-interference ratio, while
suppressing ECG signals. In other words, a high-pass filter
with a cut-off frequency of 150 Hz has sufficient sensitivity
and specificity to obtain SKNA of the chest wall. Further
increases on the cut-off frequency of the filter eliminated EMG
signals to a large extent, but it also resulted in lower amplitude
SKNA and worse signal-to-interference ratio. Therefore, for
higher cut-off frequencies of the filter, specificity of SKNA
recording increased, however some part of the sympathetic
nerve activities are filtered out, which reduced the sensitivity
of SKNA recording.

C. Feature Extraction Technique

In this study, a novel feature extraction technique is de-
veloped for the extraction of the discriminative features from
SKNA of the chest wall to perform the robust detection of AMI
in patients with coronary artery disease. The critical features
that are extracted from the pre-inflation and inflation SKNA
are number of SKNA peaks, average SKNA, absolute SKNA
and maximum SKNA.

Number of SKNA Peaks (numSKNA)

One of the features which is extracted from the pre-inflation
and inflation SKNA is the number of SKNA peaks. In order
to detect SKNA peaks, an adaptive threshold is determined for
SKNA of each patient. By comparing the signal values where
the amplitude of SKNA is higher than the predefined threshold,
the time domain localization of SKNA peaks is performed. Fig.
1 illustrates pre-inflation and inflation SKNA peak detection
of a patient in STAFF III database.

Average SKNA (aSKNA)

The second feature which is extracted from the pre-inflation
and inflation SKNA of all patients is the average SKNA. The
pre-inflation and inflation SKNA are integrated over a time
window (N ) and the total voltage is divided by the number of
samples in the same window to obtain the average voltage of
SKNA per sample, as expressed in (1).

aSKNA[n] =
1

N

N−1∑
m=0

|SKNA[n+m]| (1)

Absolute SKNA (absSKNA)

Another feature which is extracted from the pre-inflation and
inflation SKNA of all patients is the absolute SKNA, which is
obtained by calculating the summation of the absolute values
of signal amplitudes for all samples of SKNA, as in (2).

absSKNA =

M∑
m=1

|SKNA[m]| (2)

Maximum SKNA (maxSKNA):

The last feature which is extracted from the pre-inflation and
inflation SKNA of all patients is the maximum SKNA, which is
obtained by calculating the maximum signal amplitude through
all samples of SKNA, as expressed in (3).

maxSKNA = max
1≤m≤M

(SKNA[m]) (3)

Figure 1: Pre-inflation and inflation SKNA peak detection of
a patient in STAFF III database, respectively.



D. Classification Technique

In the literature, various methods have been proposed for
the detection of AMI by using ECG signal. They are based
on various methodological approaches which include rule-
based techniques [8], artificial neural networks (ANN) [9],
support vector machines (SVM) [10], fuzzy logic methods
[11] and other machine learning techniques [12]. Among these
methods, ANN has been successfully applied to a wide range
of biomedical problems and previous studies have shown that
ANN is able to accurately identify the presence of AMI by
detecting the anomalies in the ST segment and T wave of
ECG in patients with coronary arter disease (CAD) [13].

In this study, a novel supervised learning technique based
on ANN which utilizes the critical SKNA features to perform
the robust detection of AMI is developed. ANN is a nonlinear
statistical algorithm which is shown to be a successful modality
for the recognition of complex patterns with the ability to
maintain accuracy when some data required for the network
function are missing [14]. The advantage of ANN over con-
ventional statistical learning techniques is that it can learn and
model any arbitrarily complex nonlinear relationships between
the independent and dependent variables [15]. If a significant
amount of nonlinearity between the predictor variables and
corresponding outcomes exists in the dataset, then the network
automatically adjusts the connection weights in its structure to
reflect these nonlinearities.

The dataset that is utilized for the development of the
proposed classification technique is constructed by imple-
menting the preprocessing technique to the wideband pre-
inflation and inflation recordings of 108 patients on STAFF
III database. By implementing the feature extraction technique
to the pre-inflation and inflation SKNA of each patient, four
SKNA features which are the most discriminative for the
reliable detection of AMI are obtained. By using the min-max
normalization method, the input variables are normalized to
scale the features of different classes in the same range and
ensure that the technique gives the same importance to data
which belong to different classes.

In order to demonstrate the performance of the proposed
technique on previously unseen data, the whole dataset is
split into the training and test sets by using the k-fold cross-
validation method. For this purpose, the whole dataset is
randomly divided into k=6 equal size subsets, where one
of the subsets formed the test set that is used to show the
generalization capability of the technique and the remaining
subsets are aggregated to form the training set that is used to
train the network and optimize the parameters of the model.
Additionally, the training set is further randomly divided into
the training (80%) and validation (20%) subsets to prevent
the technique from overfitting to the training set. As a result
of repeating this process in each cross-validation fold, 6
independent training, validation and test subsets are randomly
constituted.

The developed feed-forward multi-layer network consists
of three layers, which are an input layer with three input
units, a hidden layer and an output layer with one output unit.
In order to determine the optimum number of hidden layers,
multilayer perceptrons (MLP) with one and multiple number
of hidden layers are developed. The experiments performed

by using MLP with different number of hidden layers showed
that the network with one hidden layer has shorter training
time and higher generalization capability. Moreover, the opti-
mum number of units in the hidden layer is determined by
developing various networks which have different numbers
of hidden units. The experiments performed with different
numbers of hidden units demonstrated that the network which
has 10 hidden units has the best generalization capability. On
the other hand, a further increase on the number of hidden units
didn’t increase the generalization capability of the technique,
however it increased the overall training time of the network.

The network processing is composed of the feed-forward
part and the back-propagation training part, which is a super-
vised learning method. In the course of training, the network
is constantly exposed to the training set consisting of 432 pre-
inflation and inflation SKNA features for a predefined number
of feed-forward and back-propagation iterations. During the
feed-forward part the output of the network is calculated, while
during the back-propagation training part the error in the output
is used to correct the future network calculations in order to
approximate the desired output. In other words, during the
back-propagation training, the weights are gradually adjusted
to optimize the overall computation carried out by the network
in order to minimize the difference between the predicted
output of the network and the known value of the outcome
variable. This difference is known as the cost function of the
network E, which can be expressed as in (4), where L is the
number of samples in the training set, oi is the output vector
of the network and di is the target vector of the network for
each training pair i .

E =
1

L

L∑
i=1

‖di − oi‖2 (4)

The back-propagation algorithm is a gradient-descent method
to minimize the mean squared error E , where w shown in
(5) is the weight vector of the weights between the layers and
η is the learning rate of the network.

∆wi = −η ∂E
∂wi

(5)

w(i+1) = wi − η
∂E

∂wi
(6)

Each unit of the network uses the sigmoid activation function,
which is expressed in (7). The output of the network is a
value in the range of zero and one, which is rounded to one
if higher than a decision threshold or to zero otherwise. Thus,
the resulting network output predicts diagnostic probability of
the presence of AMI.

f(x) =
1

1 + e−x
(7)

The training length of the network is periodically tested
to optimize the performance of the technique and to prevent
the network from overfitting to the training data. For this
purpose, after every predefined number of feed-forward and
backpropagation iterations, the current weights are saved and
the performance of the network is evaluated by using the val-
idation set consisting of 108 pre-inflation and inflation SKNA



features. The training of the network is terminated when the
error on the validation set has reached a minimum. Therefore,
the optimum network which has the highest generalization
capability and the best classification performance is determined
by using an independent validation set.

The performance and generalization capability of the opti-
mum network on a previously unseen dataset is demonstrated
by testing it on an independent test set consisting of 108
pre-inflation and inflation SKNA features of the representa-
tive subset of patients selected from the whole dataset. The
performance of the proposed technique over the test set is
evaluated by calculating the statistical performance measures,
such as accuracy, detection rate, false alarm rate, positive
predictive value, negative predictive value, specificity and
error rate, in each cross-validation fold. The performance
results calculated for each performance measure at different
cross-validation folds are then averaged to produce a single
estimation that represents the classification performance of
the optimum network. Table I demonstrates the performance
results of the proposed technique for the optimum network
and critical joint SKNA features, which are numSKNA,
absSKNA and maxSKNA.

III. RESULTS AND CONCLUSIONS

In patients with AMI, temporary chest pains together with
changes in the ST segment and T wave of ECG may occur
before the onset of myocardial infarction. However, quite large
number of patients in the world suffer from silent myocardial
ischaemia, which means that they don’t demonstrate the com-
mon symptoms of AMI and there are no explicit changes in
the ST segment or T wave of their ECG signal. Therefore, it
is not possible to perform the reliable diagnosis of AMI by
utilizing the diagnostic information of ECG in these patients.

In this study, a new technique which uses the state-of-
the-art signal processing and machine learning methods to
detect the anomalies in SKNA is developed to perform the
robust detection of AMI in patients with coronary artery
disease. The proposed technique demonstrates the first findings
related to the changes in SKNA of the chest wall over the
course of induced AMI caused by complete coronary artery
occlusion. The performance results of the proposed technique

TABLE I: THE PERFORMANCE RESULTS OF THE PROPOSED
TECHNIQUE FOR THE OPTIMUM NETWORK AND CRITICAL
JOINT SKNA FEATURES (%)

Performance Measures Performance Results (%)

Accuracy 80.56

Detection Rate 77.78

False Alarm Rate 16.67

Positive Predictive Value 82.35

Negative Predictive Value 78.95

Specificity 83.33

Error Rate 19.44

which employs the optimum network and critical joint SKNA
features obtained from a considerable number of patients
on STAFF III database indicate that the technique provides
highly reliable detection of AMI. Therefore, in cases where
the diagnostic information of ECG is not sufficient for the
reliable diagnosis of AMI, the proposed technique can be used
to expand the application of ECG to detect the anomalies in
SKNA of the chest wall. The utilization of the anomalies in
SKNA as an additional diagnostic feature to the anomalies
in the ST segment and T wave of ECG can significantly
increase the detection performance of AMI, as well as various
other ischaemic heart diseases. Thus, the contribution of the
proposed technique to the reliable diagnosis of AMI can be
much higher than conventional ECG devices and the utilization
of SKNA for the diagnosis of ischaemic heart diseases can gain
a new perspective.
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