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NENN: Incorporate Node and Edge Features in Graph Neural
Networks

ABSTRACT
Graph neural networks (GNNs) have attracted an increasing atten-
tion in recent years. However, most existing state-of-the-art graph
learning methods only focus on node features and largely ignore
the edge features that contain rich information about graphs. In
this paper, we propose a novel model to incorporate Node and
Edge features in graph Neural Networks (NENN) based on a hi-
erarchical dual-level attention mechanism. Specifically, the node-
level attention layer and edge-level attention layer are alternately
stacked to learn the importance of the node based neighbors and
edge based neighbors for each node and edge. Leveraging the pro-
posed NENN, the node and edge embeddings can be mutually rein-
forced. Extensive experiments on academic citation and molecular
networks have verified the effectiveness of our proposed graph em-
bedding model.

CCS CONCEPTS
• Information systems → Data mining; Data mining; • Com-
putingmethodologies→Knowledge representation and rea-
soning.
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1 INTRODUCTION
Convolutional Neural Networks (CNNs) have become very use-
ful and successful techniques to process various data with regular
grid-like structure [10, 11, 17, 22, 25]. However, the non-Euclidean
graphs containing all kinds of nodes and edges are ubiquitous in
the real world, such as social networks, bioprotein networks and
citation networks, which can not be easily represented due to the
complex and irregular structure.

In recent years, there is a growing interest in graph presentation
learning methods. Inspired by spectral graph theory, [2] general-
izes CNNs to the graph domain based on the feature decomposition
of graph Laplace matrix. In order to reduce the overhead of the de-
composition, ChebNet [5] is proposed to approximate convolution
kernel with Chebyshev polynomials. As a pilot work, [16] proposes
a graph convolutional network (GCN) as the first order approxima-
tion of ChebNet, which greatly simplifies the convolution filters by
limiting the receptive field to the 1-hop neighbors for each node.
Finally, the GCN model is successfully applied to semi-supervised
node classification and achieves state-of-the-art performance. The
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basic idea behind GCN is to map a high-dimensional node rep-
resentation to a low-dimensional vector by transforming, propa-
gating, aggregating and updating node features across edges in a
graph. Nevertheless, GCN model is essentially a spectral approach
working on transductive learning tasks. As a result, GCN can not
run on large and dynamic graphs effectively. To address the lim-
itations of GCN, GraphSAGE [9] extends GCN from a transduc-
tive approach to an inductive one using a spatial-based method to
train node embeddings. GraphSAGE restricts neighborhood sam-
pling to learn how to aggregate node features rather than train
fixed node embeddings. Graph Attention Network (GAT) [26], a
newfangled attention-based graph neural network, trains weight
coefficients associated with neighbors for each node to learn node
embeddings. It has demonstrated the effectiveness in graph embed-
ding and shown the superiority over the previous methods.

Despite the success of existing graph neural networks, there are
two enormous challenges. On the one hand, almost all previous
literatures only leverage the node features and completely ignore
the edge features that are completely likely to contain important
information. For example, in molecule networks, a node represents
an atom while an edge represents a bond connecting two atoms. A
bond usually has some simple edge features (e.g., bond type, atom
pair type, bond order, conjugated, ring status, aromaticity), which
are closely related to atom features. On the other hand, how to
measure the importance of neighborhood as well as the connecting
edges or nodes is not fully considered.

In order to address the aforementioned challenges, we propose
a novel graph neural network, named NENN, which incorporates
node and edge features based on a dual-level attention mechanism,
including node-level and edge-level attentions. Specifically, we aim
to to learn the importance of node based neighbors and edge based
neighbors and aggregate embeddings for each node in the node-
level attention layer. On the contrary, the embedding of each edge
is generated in the edge-level attention layer.

We conduct extensive experiments on node classification, graph
classification and graph regression to verify the effectiveness of
our proposed NENN. For node classification, we use the bench-
mark citation network datasets: Cora, Citeseer [23] and Pubmed [6].
For graph classification and graph regression, we demonstrate the
proposed NENN is able to effectively generatere node and edge
embeddings by incorporating node and edge features on multi-
ple molecular datasets: Tox21 [27], HIV [27], Freesolv [19], and
Lipophilicity [27]. The results show that the proposed NENN out-
performs relevant baselines by a significant margin.

In a nutshell, our main contributions are summarized as follows:
• We propose a novel graph neural network (NENN), which

incorporates both node and edge features simultaneously to
learn node and edge embeddings, where the identity of node
and edge are alternated in each layer.
• To the best of our knowledge, this is the first attempt to

take the influences of neighbors for each node and edge into
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consideration based on a hierarchical dual-level attention
mechanism , including node-level and edge-level attentions.
• Various graph-related tasks, including graph classification,

graph regression, and node classification, are used to verify
the scalability and generality for NENN.
• Weconduct extensive experiments on benchmark data sets.The

citation networks [6, 23] andmultiplemolecular networks [19,
27] are applied to demonstrate the effectiveness of ourmodel.
The results show the superiority of the proposedNENN com-
pared with the state-of-the-art baselines.

2 RELATEDWORK
The real-world data usually appears in the form of non-Euclidea
graphs. On of the most severe challenges in graph representations
is to efficiently exploit the node and topology information. At present,
graph representation learningmethods can be roughly divided into
three parts: matrix factorization, random walks and graph neural
networks.

Factorization-based approaches. The key idea of matrix fac-
torization is that the relation matrix (e.g. adjacency matrix and
Laplace matrix) is decomposed to yield the low-dimentional repre-
sentations. For example, Grarep [3] reduces the dimension of the
relation matrix by SVD decomposition to get the k-step network
vertex representation for weighted graphs. HOPE [20] preserves
high-order proximities and captures the asymmetric transitivity
for directed graphs. However, these methods can not efficiently
process large-scale graphs since they have huge performance over-
heads for matrix factorization.

Random walk. Just as its name implies, a random walk on
a graph starts with a node and recursively connects with a ran-
domly selected neighbor until a threshold. DeepWalk [21] is the
first attempt to learn latent representations leveraging truncated
random walks. node2vec [8] further designs a biased random walk
to efficiently explore diverse neighborhoods based on DFS and BFS
strategies. By recursively compressing the input graph to smaller
but structurally similar graphs, HARP [4] captures the global topo-
logical information about the input graph and generates presenta-
tions on this smaller graph during a random walk. Nevertheless,
random walk methods are not the most successful methods so far.
The shallow embedding methods use unshareable parameters and
functions, which makes it impossible to embed nodes of a large-
scale graphs to a low-dimensional space. Besides, they are only
applied to learn embeddings for fixed graphs in the transductive
setting, consequently, do not naturally generalize to unseen nodes.

Graph neural networks. In order to address the limitations
of the previous methods, in recent years, graph neural networks
are proposed to learn node embeddings. Graph neural network
has many branches so far, but we mainly focus on the methods
based on graph convolution. Inspired by the successes of CNNs
in image recognition, GCN [16] stacks graph convolutional layers
to aggregate local information from neighbors and encodes nodes
into vectors. GraphSAGE [9] is a novel inductive approach that
generates latent embeddings for unseen nodes. Attention mecha-
nisms have been widely applied to many tasks in deep learning.
GAT [26] is introduced to learn the importance coefficients for

nodes and its neighbors rather than treats the neighborhood in-
formation equally. However, the above graph neural networks not
only ignore the essential edge features but also fail to differentiate
the influences of their connecting edges.

Edge-related Work. To address the above issues, some mod-
els are proposed. Message passing neural network (MPNN) [13], a
generalized model, including two phases: multiple message pass-
ing phases and readout phase, is proposed to predict molecular
properties. In MPNN, it is inefficient to learn edge embeddings
according to the similar method of learning node embedding in
message passing phases. Also, the types of data sets and experi-
ments are too scarce to verify the scalability of MPNN. EGNN [7]
introduces attention mechanism to explore edge features, but in
the later layer, the edge feature vectors are converted to attention
coefficients, which leads to the loss of edge information. NENN
adopts a hierarchical dual-level attention mechanism, where the
the role of edge and node are alternated, keeps the feature of an
edge as a vector rather than an attention coefficient. CensNet [12]
embeds both nodes and edges to a latent feature space by using line
graph of the original undirected graph. However, the CensNet uses
approximated spectral graph convolution in the layer-wise propa-
gation, which makes the CensNet can not process large graphs and
directed graphs. On the contrary, the basic idea behind of the pro-
posed NENN is based on spatial domain, which enables various
graphs to be processed.

3 THE PROPOSED METHOD: NENN
3.1 NENN Architecture Overview
In this section, we propose a novel model to incorporate Node
and Edge features in graph Neural Networks (NENN) based on
a hierarchical dual-level attention mechanism. For a graphG(V ,E)
with node features and edge features, where V defines a set of
Nv = |V | nodes, E is a set of Ne = |E | edges. Let X = {xi |i ∈
Nv } ∈ RNv×dv be node feature matrix, where xi ∈ Rdv repre-
sents dv -dimensional feature vector of node i . Let E = {ei |i ∈
Ne } ∈ RNe×de be edge feature matrix, where ei ∈ Rde denotes
de -dimensional feature vector of edge i .

Definition 1 (NodeBasedNeighbors). Given a graphG(V ,E),
the node based neighbors Ni of a node i or an edge i are defined as
the set of nodes which connect with node i or edge i . Specially, the
node based neighbors of node i include itself.

Example 1. As shown in Figure 1, nodes are represented by circles
while edges are represented by squares. In node-level attention layer,
the node based neighbors N1 of the red node whose feature vector is
x1 denote the neighboring node set {2, 3, 5, 6, 7}.

Definition 2 (Edge BasedNeighbors). Given a graphG(V ,E),
the edge based neighbors Ei of a node i or an edge i consist of the
edges connecting with node i or edge i . Similarly, the edge based
neighbors of edge i include itself.

Example 2. As shown in Figure 1, the edge based neighbors of the
brown edge (i.e., e6) denote the neighboring edge set {1, 2, 5, 7}.

Figure 1 shows the overall process of the proposed NENN for
node embeddings generation. The proposed NENN consists of two
types of attention layers, node-level attention layer and edge-level
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Figure 1: The overall framework of the proposed NENN for node embedding generation.

attention layer.The dual-level attention layers are alternately stacked
to learn node and edge embeddings. In the node-level attention
layer, we aim to learn the node based neighbors importance αni j
and edge based neighbors importance αei j for each node. In the
node-level attention layer, we aim to learn the node based neigh-
bors importance βni j and edge based neighbors importance βei j for
each edge. With the learned importance coefficients, we can aggre-
gate and update node and edge embeddings in order.

3.2 Node-level Attention Layer
In the node-level attention layer, we aim to learn node embeddings
with the help of edge features that contain significant information.
It is clear to observe that different neighbors of each node play a
different role and show different importance in generating node
embedding. For this reason, we introduce a node-level attention
to learn the importance coefficients of node based neighbors and
edge based neighbors for node i .

In the l-th layer, suppose the input features consist of node
features, X = {x1,x2, ...,xNv }, xi ∈ Rd

(l)
v , and edge features,

E = {e1, e2, ..., eNe }, ei ∈ Rd
(l)
e . The importance of node j or

edge k (j ∈ Ni ,k ∈ Ei ) to node i can be reformulated as follows:

eni j = Attnnode (Wnxi ,Wnxj )
eeik = Attenode (Wnxi ,Week )

(1)

Here, Attnnode and Attenode denote the deep neural networks,

which perform node-level attention for node i . Wn ∈ Rd
l
v×d l+1

v

andWe ∈ Rd
l
e×d l+1

e are the learnable weight matrices that linearly
transform the input features into high-level features. The impor-
tance coefficient eni j means how important node j is to node i , while
eei j represents the influence of edge j to node i .

Then the structure information is integrated into the proposed
NENN via masked attention, which means the embedding of node
i depends only on neighboring nodes j or edges k. Next, the impor-
tance coefficient of node j to node i is normalized via the softmax
function:

αni j = sof tmax j (eni j ) =
exp

(
σ
(
aTn

[
Wnxi | |Wnxj

] ))
∑
k∈Ni exp

(
σ
(
aTn

[
Wnxi | |Wnxk

] )) (2)

where | | is the concatenation operation, an ∈ R2d
l+1
v is the pa-

rameter vector of a single-layer feed-forward network and σ de-
notes the activation function (e.g. LeakyReLU).

Then, the importance coefficient αeik of node i and edge k can
be derived as :

α eik = sof tmaxk (eeik ) =
exp

(
σ
(
aTe

[
Wnxi | |Week

] ))
∑
j∈Ei exp

(
σ
(
aTe

[
Wnxi | |Weej

] )) (3)

where ae ∈ Rd
l+1
v +d l+1

e is the parameter vector of a single-
layer feed-forward network.

After learning the importance αni j and αeik , the embedding xNi
of node i’s node based neighbors can be aggregated with the cor-
responding importance coefficients:

xNi = σ
(
Wn ·MEAN({αni jxj ,∀j ∈ Ni })

)
(4)

where MEAN is a mean aggregator. Then, the embedding xEi of
node i’s edge based neighbors can be aggregated as follows:

xEi = σ
(
We ·MEAN({αeikek ,∀k ∈ Ei })

)
(5)

Finally, with the edge based neighbors’ embeddingxEi and node
based neighbors’ embedding xNi , the embedding of node i in the
(l + 1)-th layer can be combined:

x(l+1)
i = CONCAT(x(l)Ni ,x

(l)
Ei ) (6)

where CONCAT represents concatenation operation. x(l+1)
i is

the returned embedding for node i in the (l)-th layer.

3.3 Edge-level Attention Layer
We use edge features to enhance the node embeddings in node-
level attention layer while the node features are fused to learn edge
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embeddings in edge-level attention layer. To update the edge em-
beddings, we first learn the importance of node based neighbors
and edge based neighbors for each edge.

The importance coefficient βei j of edge k (k ∈ Ei ) to edge i is
normalized via the softmax function:

βeik =
exp

(
σ
(
qTe

[
Weei | |Week

] ))
∑
j∈Ei exp

(
σ
(
qTe

[
Weei | |Weej

] )) (7)

where qe ∈ R2d
l+1
e is an attention vector. The importance coef-

ficient βni j of node j (j ∈ Ni ) to edge i is normalized via the softmax
function:

βni j =
exp

(
σ
(
qTn

[
Weei | |Wnxj

] ))
∑
k∈Ni exp

(
σ
(
qTn

[
Weei | |Wnxk

] )) (8)

where qn ∈ Rd
l+1
v +d l+1

e is an attention vector.
Then, edge i’s middle node based neighbors embedding eEi and

edge based neighbors eNi can be generated by a mean aggregator:

eEi = σ
(
We ·MEAN({βeikek ,∀k ∈ Ei })

)
eNi = σ

(
Wn ·MEAN({βni jxj ,∀j ∈ Ni })

) (9)

Similarly, the embedding of edge i in the (l + 1) − th layer can
be derived as follows:

e(l+1)
i = CONCAT(e(l)Ni , e

(l)
Ei ) (10)

With the learned importance, the proposed NENN can paymore
attention to some meaningful nodes or edges for the specific task.
Note that the importance coefficients are asymmetric whichmeans
the influence between different roles in a graph can be quite differ-
ent (i.g., αni j , αnji , β

e
i j , βei j ).

The computation of attention can be easily parallelized across
all edges and nodes, which means the hierarchical dual-level at-
tention of the proposed NENN is highly efficient. The overall time
complexity is linear to the number of nodes and edges.

To process large-scale graphs in the real world, we construct
some subgraphs G ′ ∈ G according to [9]. The mini-batch training
process of the proposed NENN for node embedding generation is
shown in Algorithm 1.

3.4 Variants of NENN
In order to verify the validity of the proposed NENN inmore detail,
we implement our model with different settings according to how
to aggregate and update the node and edge features. Specifically,
there are four different variants: NENN-NCEC,NENN-NCEA,NENN-
NAEC and NENN-NAEA (abbreviated as NENN). Specifically, N,
E, C, A represent nodes, edges, convolution operation and atten-
tion mechanism, respectively. For example, NENN-NCEA repre-
sents node features aggregated by convolution operation and edge
features aggregated by attention mechanism.

Algorithm 1: Mini-batch NENN node embeddings gener-
ation algorithm
Input: Subgraph G ′(V ′,E ′);

node features {xi ,∀i ∈ V ′};
edge features {ei ,∀i ∈ E ′};
network depth L;

Output: final node embeddings {x(L)i ,∀i ∈ V ′};
1 x(0)i ← xi ,∀i ∈ V ′(0);
2 for l = 0 · · · L do
3 find the node based neighbors Ni and edge based

neighbors Ei ;
4 if layer l is a node-level attention layer or l = L then
5 for each node i ∈ V ′(l) do
6 Calculate the importance coefficient αni j

(l) and
αeik

(l) ;
7 Calculate the embedding of node based

neighbors x(l)Ni and edge based neighbors x(l)Ei ;

8 x(l+1)
i ← CONCAT(x(l)Ni ,x

(l)
Ei );

9 endfor
10 end
11 if layer l is an edge-level attention layer then
12 for each edge i ∈ E ′(l) do
13 Calculate the importance coefficient βni j

(l) and
βeik

(l) ;
14 Calculate the embedding of node based

neighbors e(l)Ni and edge based neighbors e(l)Ei ;

15 e(l+1)
i ← CONCAT(e(l)Ni , e

(l)
Ei );

16 endfor
17 end
18 endfor
19 x(L)i ← CONCAT(x(L−1)Ni ,x(L−1)Ei );

4 EXPERIMENTS
We evaluate the proposed NENN on three benchmark tasks: (i)
semi-supervised node classification on citation networks Cora, Cite-
seer and Pubmed; (ii) multi-task graph classification on multiple
molecular datasets Tox21 and HIV; (iii) graph regression on molec-
ular datasets Lipophilicity and Freesolv.

4.1 Benchmark datasets
Weconduct extensive experiments on citation networks andmolec-
ular networks to demonstrate the effectiveness of the proposed
NENN. Generally, each citation network corresponds to a graph
where nodes represent documents and edges represent citation re-
lationships between documents. Different from citation networks,
each kind of molecular dataset consists of multiple graphs. Specifi-
cally, compounds, atoms, bonds represent graphs, nodes and edges,
respectively. More detailed dataset statistics are shown in Table 1
and Table 2.
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Cora Citeseer Pubmed

# Nodes 2708 3327 19717
# Edges 5429 4732 44338
# Node Features 1433 3703 500
# Edge Features 2 2 2
# Node Classes 7 6 3

Table 1: Dataset statistics of citation networks for semi-
supervised node classification.

Tox21 HIV Lipophilicity Freesolv

# Graphs 7,831 41127 4,200 642
# Node Features 25 25 25 25
# Edge Features 55 80 34 21
# Graph Classes 12 3 - -

Table 2: Dataset statistics of molecular networks for graph
classification and regression.

Cora, Citeseer, andPubmed. Cora, Citeseer [23] and Pubmed [6],
are citation networks and widely used as benchmark datasets for
semi-supervised node classification inGCN,GraphSAGE, GAT, EGNN,
CensNet, etc.

Tox21 and HIV. Tox21 [27] is a public dataset of toxicity mea-
surements, which comprises 7831 compounds on 12 different quan-
titative toxicity measurements including AR, AhR, AR-LBD, etc.
The HIV [27] dataset originates from the Drug Therapeutics Pro-
gram AIDS Antiviral Screen, which measures the ability of HIV
replication for 41127 compounds. The two datasets are usded to ac-
tivity prediction (i.e. binary graph classification) that labels com-
pounds as either “active” or “inactive”.

Lipophilicity and Freesolv. Lipophilicity [27] is a public dataset
usded to measure the affets both membrane permeability and solu-
bility, which provides experimental results of octanol/water distri-
bution coefficient (logD at pH 7.4) of 4,200 compounds. Also, the
Free Solvation Database (Freesolv) [19] is a common dataset pro-
viding experimental and calculated results of hydration free ener-
gies for 642 small molecules in water. According to the character-
istics of the two datasets, we conduct extensive graph regression
experiments to predict solvation energies or solubility.

4.2 Experimental Setup Parameter Settings
Our experiments are all implemented by TensorFlow [1] and run
on Ubuntu Linux 16.04 with NVIDIA RTX 2080 Ti. We use the
Adam algorithm [15] for training the models with the learning rate
0.0001 and batch size 128, number of epochs 200. The window size
of an early stopping strategy is 200. We implement three layers
NENN (i.e. node-level attention layer-edge-level attention layer -
node-level attention layer). For all baselines, we split exactly the
same training set, validation set and test set to ensure fairness. As
shown in Table 5, we follow the same splitting strategy in [12] and
conduct experiments on citation networks with different label rate.
For all molecular networks, training, validation and test dataset are

split intowith a ratio of 8:1:1.We run ourmodels 5 times and report
mean performance for each experiment.

4.3 Semi-supervised Node Classification
For semi-supervised node classification, we evaluate and report
classification accuracies of the proposed NENN. We compared the
proposed NENN with the representative models of the following
five methods: GCN, GraphSAGE, GAT, CensNet, EGNN.

Table 3 reports classification accuracies of five baselines and the
proposed NENN on citation networks. In all cases, the proposed
NENN performs consistently much better than all baselins in 7 out
of 9 experiments. From t-SNE [18] visualization in Figure 2, we can
find that the proposed NENN can achieve more separated clusters
than GCN, MPNN, EGNN, CensNet. It demonstrates that via incor-
porating node and edge features, the proposed NENN can learn a
more meaningful node embedding.

4.4 Graph Classification
For graph classification, we predict molecular activity on the Tox21
and HIV datasets. We report the Area Under Curve (AUC) scores
and compare with some state-of-art baselines, including Random
Forest (RF), Weave [14], GCN, CensNet, EGNN.

We also compare some variants of our model NENN to vali-
date the effectiveness. Table 4 reports the performance of all base-
lines and our models on four molecular networks. It is clear to ob-
serve that five baselines have rooms to improve on Tox21 and HIV
datasets compared with our NENNmodels. Remarkably, NENN im-
proves upon GCN by a margin of 15.0% for the validation and 7.0%
for the test on HIV dataset.

4.5 Graph Regression
For graph regression, we predict the solvation energies or solubil-
ity on Lipophilicity and Freesolv datasets. Root mean square er-
ror (RMSE) are adopted as the evaluation metric. The baselines of
graph regression are the same as graph classification.

Table 4 shows the experimental results of RMSE. We highlight
the best performance for all molecular networks. It’s obvious that
all of the variants of NENN significantly outperform the compared
methods in RMSE. Figure 3(a) shows that the NENN obtains the
best AUC score in validation set for HIV networks after around 50
epochs compared with other baselines. Figure 3(b) shows that the
NENN greatly reduces RMSE.The remarkable results imply that in-
corporateing node and edge features in the molecule can improve
the quality of node embedding.

5 CONCLUSION
In this paper, we introduce an efficient embedding architecture,
named NENN, which incorporates node and features to enhance
the node and edge embeddings across neural network layer. The
proposed NENN leverages node-level and edge-level attention to
learn the importance of node based neighbors and edge based neigh-
bors. Extensive experiments on semi-supervised node classifica-
tion, graph classification and graph regression demonstrate the ef-
fectiveness of NENN.
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Dataset Cora Citeseer Pubmed
Label rate 0.5% 1% 3% 0.3% 0.5% 1% 0.03% 0.05% 0.1%

GCN 52.9 ± 7.4 61.0 ± 7.2 74.0 ± 2.8 39.2 ± 6.3 47.7 ± 4.4 58.3 ± 4.0 57.9 ± 8.1 64.6 ± 7.5 73.0 ± 5.5
GraphSAGE 37.5 ± 5.4 49.0 ± 5.8 64.2 ± 4.0 25.7 ± 6.1 33.8 ± 7.0 51.0 ± 5.7 45.4 ± 5.5 53.0 ± 9.7 59.6 ± 9.5

GAT 41.4 ± 6.9 48.6 ± 8.0 56.8 ± 7.9 30.9 ± 6.9 38.2 ± 7.1 46.5 ± 9.3 50.9 ± 8.8 50.4 ± 8.0 59.6 ± 9.5
MPNN 47.2 ± 3.4 49.1 ± 6.0 55.8 ± 3.7 32.4 ± 7.3 39.1 ± 6.6 48.6 ± 8.2 49.9 ± 6.7 51.2 ± 4.0 60.4 ± 7.8
CensNet 57.7 ± 3.9 67.1 ± 1.3 79.4 ± 1.0 49.4 ± 3.6 57.6 ± 3.0 62.5 ± 1.5 61.4 ± 2.8 65.7 ± 1.2 69.9 ± 2.1
EGNN 59.2 ± 5.8 67.4 ± 6.9 78.4 ± 5.4 49.6 ± 7.6 55.8 ± 6.3 65.8 ± 6.2 60.2 ± 6.2 62.5 ± 5.9 72.4 ± 7.8

NENN-NAEA 61.4 ± 7.6 67.0 ± 6.4 80.0 ± 6.8 49.4 ± 8.6 59.6 ± 7.8 66.8 ± 8.9 63.2 ± 6.7 67.3 ± 7.9 75.8 ± 8.9
NENN-NCEC 58.3 ± 6.3 66.0 ± 3.5 79.0 ± 4.8 47.3 ± 8.5 57.4 ± 6.7 64.6 ± 7.8 62.2 ± 6.4 65.2 ± 8.4 73.8 ± 5.9
NENN-NCEA 59.2 ± 7.3 67.2 ± 8.6 79.7 ± 7.9 48.4 ± 8.7 57.9 ± 5.8 63.5 ± 6.7 63.4 ± 7.5 66.1 ± 4.6 74.0 ± 5.7
NENN-NAEC 59.4 ± 5.7 65.0 ± 4.5 79.9 ± 7.9 48.7 ± 6.7 58.4 ± 7.5 65.4 ± 5.5 63.1 ± 3.4 65.4 ± 7.9 72.1 ± 6.5

Table 3: Classification accuracies on citation networks.

(a) Raw features (b) GCN (c) MPNN

(d) EGNN (e) CensNet (f) NENN (our)

Figure 2: t-SNE visualization of semi-supervised node classification on Cora dataset.

Evaluation AUC (Classification) RMSE(Regression)
Dataset Tox21 HIV Lipophilicity Freesolv

Data Split Validation Test Validation Test Validation Test Validation Test

RF 0.78 ± 0.01 0.75 ± 0.03 0.83 ± 0.02 0.82 ± 0.02 0.87 ± 0.02 0.86 ± 0.04 1.98 ± 0.07 1.62 ± 0.14
Weave 0.79 ± 0.02 0.80 ± 0.02 0.68 ± 0.03 0.71 ± 0.05 0.88 ± 0.06 0.89 ± 0.04 1.35 ± 0.22 1.37 ± 0.14
GCN 0.82 ± 0.02 0.84 ± 0.01 0.70 ± 0.05 0.77 ± 0.02 0.96 ± 0.05 0.98 ± 0.03 1.30 ± 0.09 1.35 ± 0.26
EGNN 0.82 ± 0.01 0.82 ± 0.01 0.73 ± 0.06 0.71 ± 0.05 0.79 ± 0.02 0.75 ± 0.01 1.07 ± 0.08 1.01 ± 0.12
CensNet 0.78 ± 0.00 0.79 ± 0.00 0.74 ± 0.01 0.73 ± 0.02 0.94 ± 0.02 0.83 ± 0.02 1.22 ± 0.02 1.46 ± 0.01

NENN-NAEA 0.86 ± 0.02 0.85 ± 0.01 0.84 ± 0.05 0.84 ± 0.01 0.67 ± 0.06 0.67 ± 0.03 1.02 ± 0.04 1.01 ± 0.01
NENN-NCEC 0.84 ± 0.02 0.82 ± 0.02 0.83 ± 0.01 0.82 ± 0.01 0.67 ± 0.04 0.73 ± 0.05 1.05 ± 0.14 1.02 ± 0.02
NENN-NCEA 0.85 ± 0.02 0.84 ± 0.01 0.85 ± 0.02 0.83 ± 0.01 0.66 ± 0.02 0.70 ± 0.08 1.03 ± 0.08 1.01 ± 0.04
NENN-NAEC 0.85 ± 0.01 0.86 ± 0.02 0.84 ± 0.01 0.83 ± 0.01 0.69 ± 0.02 0.71 ± 0.01 1.04 ± 0.06 1.01 ± 0.06

Table 4: Prediction results for the four molecular networks.
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Figure 3: AUC in validation set for HIV networks (left) and RMSE in validation set for Lipophilicity networks (right).
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