
EasyChair Preprint
№ 1738

Towards Efficient Solvers for Optimisation
Problems

Huu-Phuc Vo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 21, 2019

Towards Efficient Solvers for Optimisation Problems
Huu-Phuc Vo

Dept. of Information Technology
Uppsala University
Uppsala, Sweden

Email: huu-phuc.vo@it.uu.se

Abstract—Constraint programming is pervasive and widely
used to solve real-time problems which input data could be
scaled up to the huge sizes, and the results are required to
be given efficiently and dynamically. Many technologies such
as constraint programming, hybrid technologies, mixed integer
programming, constraint-based local search, boolean satisfiability
could have different solvers and backends to solve the real-time
problems. Streaming videos problem is the problem that requires
to decide which videos to put in which cache servers in order to
minimise the waiting time for all requests with a description of
cache servers, network endpoints and videos are given. In this
paper, we will model the streaming videos problem in two different
ways. The first model will be implemented using heuristics, and
the global constraints will be used in the second model. The
experiments will be benchmarked using MiniZinc, which is an
open-source constraint modelling language that can be used
to model constraint satisfaction and optimisation problems in
high-level, solver-independent way. The aim of the paper is to
benchmark those technologies to evaluate the execution time and
final scores of the two models using large instances of input data
from Google Hash Code.

Index Terms—optimsation, constraint programming, modelling

I. INTRODUCTION

Nowadays, watching videos online is pervasive, especially
watching videos from Youtube. When streaming videos from
Youtube to a huge amount of people, who could be in the
same city or from different continents, minimising the waiting
time for all requests from clients are critical. In the context of
the Streaming videos problem, the video-serving infrastruc-
ture includes remote data centers locating in thousands of
kilometers away, cache servers which store copies of popular
videos, and endpoints which each of them represents a group
of users connecting to the Internet in the same geographical
area. The expected solution for the Streaming videos problem
is to decide which videos to put in which cache servers. The
specification of the problem could be found in detailed at [1],
and the data could be found at [2]. MiniZinc [3] is a constraint-
based modelling language for satisfaction and optimisation
problems such as Streaming videos problem with independent
solving technologies which supports for diverse technologies’
solvers for instances constraint programming (CP), constraint-
based local search (CBLS) [4], mixed-integer programming
(MIP), boolean satisfiability (SAT), SAT modulo theories
(SMT), and hybrids, such as CP with lazy clause generation
(LCG) [5]. In this paper, the bin-packing approach, which is
modelled in modelling language MiniZinc, will be used to

Figure 1: The video serving network

solve the Streaming videos problem in two different ways:
use the built-in global constraint bin_packing_load, and
model the problem using heuristic.

II. BACKGROUNDS

Given a description of cache servers, network endpoints and
videos, along with predicted requests for individual videos, the
task is to decide which videos to put in which cache servers
in order to minimise the average waiting time for all requests.
In other word, the task is to maximise the average saving time
for all given requests. Figure 1 illustrates the video serving
network, which includes the data center, cache servers, and
endpoints [1]. The data center stores all videos. The sizes
of videos, the maximum capacity of cache servers are in
megabytes (MB). Each video can be put in 0, 1, or more
cache servers. Each cache server has a maximum capacity.
Every endpoint is connected to the data center, however, it may
be connected to 0, 1 or more cache servers. Each endpoint is
characterised by the latency of its connection to the data center,
and by the latencies to each cache server that it is connected
to. The predicted requests provide data on how many times a
particular video is requested from a particular endpoint.

Table I illustrates the input file [1]. The original input data
is given in the format that is not the instance for MiniZinc.
Consequently, pre-processing the original inputs to MiniZinc’s
instances is taken in the first place. The conversion of the
output instances which are compatible with MiniZinc will
be done by Python script together with precomputations [6],

[7]. Table II illustrates the output file. Notice that the output
example is not optimal solution. A better solution is to put
videos 1 and 3 in cache 0 to maximise the saving time since
the latency of cache 0 is minimal.

5 2 4 3 100 5 videos, 2 endpoints, 4 request descriptions, 3 caches 100MB each.
50 50 80 30 110 Videos 0, 1, 2, 3, 4 have sizes 50MB, 50MB, 80MB, 30MB, 110MB.
1000 3 Endpoint 0 has 1000ms datacenter latency and is connected to 3 caches:
0 100 The latency (of endpoint 0) to cache 0 is 100ms.
2 200 The latency (of endpoint 0) to cache 2 is 200ms.
1 300 The latency (of endpoint 0) to cache 1 is 300ms.
500 0 Endpoint 1 has 500ms datacenter latency and is not connected to a cache.
3 0 1500 1500 requests for video 3 coming from endpoint 0.
0 1 1000 1000 requests for video 0 coming from endpoint 1.
4 0 500 500 requests for video 4 coming from endpoint 0.
1 0 1000 1000 requests for video 1 coming from endpoint 0.

Table I: Example of input file.

3 We are using all 3 cache servers.
0 2 Cache server 0 contains only video 2.
1 3 1 Cache server 1 contains videos 3 and 1.
2 0 1 Cache server 2 contains videos 0 and 1.

Table II: Example of output file.

The paper makes the following contributions: microbench-
marks that compare the CP, LCG, MIP, CBLS, and
SAT’s bin_packing_load global constraint versus manual
model.

III. MODELS

a) Manual model: In the model, two 2D-matrix arrays
usedCache and vInDc are defined. The first 2D-matrix
array usedCache[..,..] represents decision variables of
which videos will be put in which corresponding cache. The
domain value of each element of usedCache is {0, 1}.

1 % ci : id of cache server being described
2 % (0 .. C : 1.000), 0 : data center
3 % vi : id of videos stored in this cache server
4 % (0 .. V : 10.000)
5 array[CACHE, VID] of var {0,1} : usedCache;

In order to mark which videos are put in the data cen-
ter because their sizes exceed the capacity of caches con-
necting to corresponding endpoint, another 2D-matrix array
vInDc[..,..] is defined.

1 % ci : id of cache server being described
2 % (0 .. C : 1.000), 0 : data center
3 % vi : id of videos stored in this cache server
4 % (0 .. V : 10.000)
5 array[CACHE, VID] of var {0,1} : usedCache;

There are 6 constraints, 3 functions, and 2 precomputations
are introduced into this model. The decision variable score
is bound to the savingTime to avoid the division / and div.

1 % Decision variable: total time that saved for all requests
2 % nReq is parameter, the division and multiplication
3 % could be performed at the output phase.
4 % score = (savingTime / nReq) * 1000
5 var int: score;

The final score is computed in the output phase by dividing
savingTime by total requests nReq, and then multiplying
by 1000.

1 % ["\nscore: \((score/nReq)*1000)"

The first precomputation (line 65–68) calculates the total
number of used caches in the 2D-matrix usedCache.

While the second precomputation (line 102–103) iterates
over all the requests and gives the total number of all requests.

Three functions are defined in this model. The first function
selectedVideo() (line 105–109) takes two parameters,
which are cache ca and video rv, and checks whether the
video rv already stored in any other caches. It returns 0 if
the video is not stored in caches other than cache ca. The
second function hungryCache (line 111–116) takes two
parameters, cache ca and video vi. Before storing the new
video vi into the cache ca, the spare capacity of the cache is
checked to make sure that the total capacity does not exceed
the given maximum capacity of the cache. The last function
emptyCache (line 118–120) takes one parameter cache ca
and check whether the given cache ca is empty or not.

The constraint C2 (line 79–83) guarantees that the total sizes
of all stored videos in a cache does not exceed its maximum
given capacity. The constraint C3 (line 86–99) computes the
total number saving time of all caches and all requests. With
all the empty cache, the unrequested videos will be stored in
the cache. The constraint C4 (line 122–128). It iterates over the
endpoint ENDPONIT, cache CACHE, and video VID. In this
constraint, the unrequested video vi is stored in the cache
ca under the following conditions: (1) there is connection
between endpoint and cache eConCache[en, ca] >
0, (2) the considered video could be possible to store in the
cache vInDc[en, vi] = 0, (3) the considered cache
is empty emptyCache(ca), (4) the cache doesn’t exceed
its limit when storing the video hungryCache(ca, vi).
The requested videos will be stored in the cache in constraint
C5 (line 131–136) by using function selectedVideo to
check whether there is connection between cache and end-
point eConCache[en, ca] > 0, the video vi is not
stored in any other caches selectedVideo(ca, vi) =
0, and the size of videos does not exceed the capacity of the
cache vInDc[en, vi] = 0. To avoid the duplication
of stored videos, the constraint C6 (line 138–142) is defined.
To all caches connecting to the endpoint, the at_most()
restricts that each requested video could be stored only in one
of those connected caches at_most(1, [usedCache[
ca, vi] | ca in CACHE], 1).

Redundant decision variables vInDc are introduced into the
model to mark which videos are stored in the data center. The
vInDc reduces the search space when iterating over nested
loops such as VID, ENDPOINT, and CACHE. The reified
constraint in the model gives the solution of which videos are
stored in the data center. When the size of a video exceeds
the capacity of a cache or an endpoint does not have any
connected cache server to store requested videos.

1 constraint forall(req in REQUEST)(
2 let { int: rv = request[req, Rv];
3 int: re = request[req, Re];
4 } in ((videoSize[rv] > x \/ endpoint[re, K] = 0)
5 <-> vInDc[re, rv] = 1)
6);

The 2D-matrix usedCache[CACHE, VID], which
represents the final result in the streaming videos problem,
does not introduce the symmetries. Since each cache has
different latency, swapping the cache rows in the usedCache
might produce a non-optimal result. Similarly, swapping any
number of columns which is corresponding to the stored

videos in the usedCache solution might leads to a non-
optimal result also.

b) Global constraint model: The bin_packing_load
constraint could be used as an alternative model.
The bin_packing_load(array[int] of var
int: load, array[int] of var int: bin,
array[int] of int: w) constraint requires that each
item i with weight w[i] be put into bin bin[i] such
that the sum of the weights of items in each bin b is equal
to load[b]. In this problem, with the view point of video
serving network, capacity load[i] must be no greater than
given capacity X of each cache server. The weights of each
item, w[i], corresponds to the videos size reqVid[i].
Each cache server is corresponding to one bin, so C cache
servers corresponds to C bins. While the videos that are not
requested or exceed the capacity of cache servers will be
stored in the data center.

The bin packing load model includes constraints that con-
sider the caches as bins, with maximum capacity and loading
capacity. The videos that are stored in data center are implicitly
captured by parameter reqVid.

In the alternative bin packing load model for Streaming
Videos problem, the ::int_search annotation is used to
compute the final score with array variables, which concat-
enate the bin array and load array. The next argument
first_fail specifies that the variables are chosen in the
order that appear. To those chosen variables, the assignment
annotation indomain_min will assign the largest video
size in the bin and load domain. Ultimately, the strategy
annotation complete is specified.

99 solve :: int_search(
100 bin ++
101 load
102 ,
103 first_fail, indomain_min, complete) maximize savingTime;

IV. EXPERIMENTS

All experiments were run under Linux Ubuntu 16.04 (64 bit)
on an Intel Xeon E5520 of 2.27 GHz, with 4 processors of
4 cores each, with a 24 GB RAM and an 8 MB L2 cache
(a ThinLinc computer of the IT department). The two models
could be found at 1. We have chosen the backends for Gecode,
Chuffed, Gurobi, OscaR.cbls, and Lingeling. Table III gives
the results for various instances IV on the Streaming Videos
model. The time-out was 600000 milliseconds.

The experiment is done using two different version of
MiniZinc, 2.1.7 and 2.2.1 as it is recently released. In the
first experiment, all the instances are conducted using Mini-
Zinc 2.1.7. The test results produced by MiniZinc 2.1.7, and
MiniZinc 2.2.1 are marked by (∗) and (ψ), respectively. In order
to run the test in all backends, the final score computation is
done at the output phase to avoid the division computations
such as / and div which are not executable in Chuffed and
Gecode. Ultimately, the significant difference between two
version is the execution time which is illustrated in Figure 2.
Overall assessment, MiniZinc 2.1.7 produces the result in the

1https://github.com/PhucVH888/streamingVideos

Figure 2: Comparison between MiniZinc 2.1.7 and Mini-
Zinc 2.2.1 with warm up.mzn instance

shorter time than the latest version 2.1.7. For instance, running
warm up instance, MiniZinc 2.2.1 produces the result in 0.457
second while MiniZinc 2.1.7 produces the result in 0.286
second, which means approximately 59% faster. The model
is tested using all five instances IV, with both MiniZinc 2.1.7
and MiniZinc 2.2.1. All the test results are shown in III. To
the instance me at the zoo, the backend Gurobi is the best
one among the others, since it could give the final score
after 56.217 seconds while other backends timed-out. When
testing with much bigger instances such as trending today,
and video worth spreading, all backends couldn’t produce the
final results after 600000 milliseconds. The instance kittens is
the biggest and toughest instance that defeats all the backends,
and ends up with the ERR.

a) Experiment with MiniZinc 2.1.7: The model has been
tested with 5 instances IV. With the warm up instance, our
model gives the total score 562.5, which is better than the
given score 462.5 in the Google specification. It’s because
the caches, which have the minimal latencies, are selected to
store the requested videos in the first place. On the warm up
instance, we observe that all the chosen Chuffed backend
wins overall with the execution time is 0.183 second, while
the second rank is the Picat-sat backend with the execution
time is 0.260 second. Other backends such as Gecode, Gur-
obi, and fzn-oscar-cbls give the results in 0.286, 0.615, and
1.966 seconds, respectively. In the experiment using older
MiniZinc version, there is no time-out backend. In the next
step, given a larger instance such as me at the zoo, the winner
solver is Gurobi, with the objective score is 56217. While all
other solvers such as Gecode, Chuffed, OscaR, and Lingeling
don’t give any results and time-out. Starting from the medium
instances such as trending today, video worth spreading, and
the largest kittens instance , backends are time-out and couldn’t
give any response with the time-out was 600000.

Technology CP LCG MIP CBLS SAT

Solver Gecode Chuffed Gurobi OscaR.cbls Lingeling

Backend Gecode Chuffed Gurobi fzn-oscar-cbls Picat-sat

instance score time score time score time score time score time

warm upψ 562.5 0.457 562.5 0.424 562.5 0.892 562.5 t/o 562.5 1.154
warm up∗ 562.5 0.286 562.5 0.183 562.5 0.615 562.5 1.966 562.5 0.260

me at the zooψ – t/o – t/o 607.33 56.217 – t/o – t/o
trending today∗ ψ – t/o – t/o – t/o – t/o – t/o

video worth spreading∗ ψ – t/o – t/o – t/o – t/o – t/o
kittens∗ ψ – t/o – t/o – t/o – t/o – t/o

Table III: Results for our Streaming Videos model. (∗) : MiniZinc 2.1.7, (ψ) : MiniZinc 2.2.1

b) Experiment with MiniZinc 2.2.1: In the latest Mini-
Zinc version, the winner backend is Chuffed, 0.424 second
which is similarly to the older version of MiniZinc. The
backend Gecode, which gives the result in 0.457 second, is
the second rank. While it takes 0.892 second for Gurobi to
produce the final score. The worst one is Picat-Sat, which
gives the result after 1.154 seconds. The remarkable difference
between the older and the latest MiniZinc version is that in
the latest version, fzn-oscar-cbls is time-out while the result
is given in the older version under the same time-out setting.
Similar to the older version, when starting from the medium
and the large instances, all the backends are time-out and
couldn’t give any results before timing-out.

Name Videos Cache Servers Endpoints Distinct Requests
warm up 5 3 2 4
me at the zoo 100 10 10 81
video worth spreading 10000 100 100 40317
trending today 10000 100 100 95180
kittens 10000 500 1000 197987

Table IV: Instances of Streaming Videos model.

V. RELATED WORK

MiniZinc is a standard modelling language for constraint
programming (CP) problems. The motto is model once, solve
anywhere. Although MiniZinc may contain annotations to
communicate with the underlying solver, its model is solver-
independent. Most common global constraints, which defined
over an arbitrary variables [8], and the separation between
model and data are supported. It means a MiniZinc model
can be instantiated by different data by defining as a generic
template. MiniZinc supports sets, arrays, and user-defined
predicates, overloading, and some automatic coercions. How-
ever, in order to easily map onto many solvers such as
G12fd, lazyfd, and Chuffed, MiniZinc is still low-level enough.
MiniZinc models are translated to FlatZinc, a low-level solver
input language that is the target language for MiniZinc. When
requiring by a CP solver, FlatZinc is translated easily into
the required form. Since 2008, MiniZinc Challenge has been
run every year to compare different solvers on the same
benchmarks and to collect as well as develop new Mini-
Zinc benchmarks.

Streaming videos is one of the problems at the qualification
round in the Hash Code 2017 competition running by Google.
The Hash Code is a coding constests sponsored by Google

LLC. The competition is for the programmers who are living
in Europe, the Middle East, and Africa. Participants must
compete in a group of two to four members as a team [9].
The contest consists of two rounds: the online qualification
round and the final round. The Streaming Video data consists
of four data sets which are in plain text files.

VI. CONCLUSION AND FUTURE WORK

In this project, the disadvantage of those backends is the
division computation such as / and div, which can be avoided
by putting the division computation in the output phase.
The real question here is how can the MiniZinc model be
improved to instantiate and give the result for the biggest
data instance, kittens, whose size is up to 5,4 MB in text
format. The Streaming video problem could be modelled by
other modelling language and benchmarked with the same data
instances to compare the performance and the efficiency with
MiniZinc model.

REFERENCES

[1] Google. Streaming videos, 2017. Available from https://hashcode.
withgoogle.com/2017/tasks/hashcode2017 qualification task.pdf.

[2] Google. Streaming videos data, 2017. Available from https://hashcode.
withgoogle.com/2017/tasks/qualification round 2017.in.zip.

[3] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. Minizinc: Towards a standard
cp modelling language. In Christian Bessière, editor, Principles and
Practice of Constraint Programming – CP 2007, pages 529–543, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[4] Pascal Van Hentenryck and Laurent Michel. Constraint-Based Local
Search. The MIT Press, 2005.

[5] Pierre Flener. Topic 7: Solving technologies, 2018. Available from http:
//user.it.uu.se/∼pierref/courses/COCP/slides/T07-SolvingTechs.pdf.

[6] P.F. Dubois. Python: Batteries included. Computing in Science &
Engineering, 9(May), 2007.

[7] K.J. Milmann and M. Avaizis. Scientific python. Computing in Science
& Engineering, 11(March), 2011.

[8] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit.
Global constraint catalogue: Past, present and future. Constraints,
12(1):21–62, Mar 2007.

[9] Google LLC. Coding competition terms and conditions, 2019. Available
from https://codingcompetitions.withgoogle.com/hashcode/rulesandterms.

https://hashcode.withgoogle.com/2017/tasks/hashcode2017_qualification_task.pdf
https://hashcode.withgoogle.com/2017/tasks/hashcode2017_qualification_task.pdf
https://hashcode.withgoogle.com/2017/tasks/qualification_round_2017.in.zip
https://hashcode.withgoogle.com/2017/tasks/qualification_round_2017.in.zip
http://user.it.uu.se/~pierref/courses/COCP/slides/T07-SolvingTechs.pdf
http://user.it.uu.se/~pierref/courses/COCP/slides/T07-SolvingTechs.pdf
https://codingcompetitions.withgoogle.com/hashcode/rulesandterms

	Introduction
	Backgrounds
	Models
	Experiments
	Related work
	Conclusion and Future Work
	References

