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Abstract. BEV object detection has made significant strides in recent
years. However, infrastructure perception focusing on roadside scenes is
mainly underexplored, and most recent detectors tend to only rely on
monocular camera, which hinder the perception capability under given
scenarios such as rain, high humidity, and uneven light conditions. To
address this problem, we propose an effective 3D object detection frame-
work, dubbed BEVRoad. A lightweight spatial-channel adaptive fusion
module (SCAFM) is designed for the impartial fusion of camera and Li-
DAR BEV features, greatly improving the representation capability of
the model. Furthermore, to alleviate the blockage caused by the relative
movement of objects under the road, we add a simple spatio-temporal
network named TrajNet to perform temporal modeling on the BEV fea-
ture map and predict the target motion position, which achieves excellent
performance improvements only with negligible computation cost com-
pared to the single-frame baseline. Experimental results on DAIR-V2X
demonstrate that BEVRoad achieves wonderful performance, including
+11.09% for vehicle, +16.61% for pedestrian, and +6.64% for cyclist
compared to BEVHeight.

Keywords: BEV Object Detection · Infrastructure Perception · Modal
Fusion · Temporary Modeling.

1 Introduction

3D object detection is one of the core topics in the computer vision field, which
plays a critical role in autonomous driving and intelligent transportation [17].
The application of robust 3D object detection in infrastructure perception helps
improve traffic flow and intelligent transportation construction [31, 33]. Road-
side 3D object detection aims to predict the locations, sizes, rotation, velocity,
and classes of critical roadside objects, e.g., vehicles, pedestrians, and cyclists,
generally taking camera, LiDAR, or 4D mmWave radar data as input.

http://www.springer.com/gp/computer-science/lncs
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Fig. 1. Special Case. (a), (b), and (c) describe the conditions at night, rainy days,
and uneven light. (d), (e), and (f) show the unoccluded and occluded states of the
target during movement in the sequence frames.

Learning powerful representations in bird’s-eye-view (BEV) for 3D percep-
tion is trending and drawing extensive attention, which provides a physics-
interpretable way to capture rich semantic and geometric information for object
detection or map segmentation. BEV perception represents features from differ-
ent senors in a unified perspective to solve occlusion and scale problems, taking
advantage of "God’s View" adequately [9]. Due to the roadside camera mounted
on poles a few meters above the ground, the infrastructure-centric detector
can effectively cover the vehicle-centric perception blind spots. However, cur-
rent camera-only infrastructure perception methods have two main challenges:
1) Detection from images is generally vulnerable to extreme weather and light
conditions [18]. A unimodal detector based on monocular camera at night or on
rainy days is much harder than detection on sunny days, as shown in Figure.
1 (a), (b), and (c). 2) At traffic intersections, a larger number of objects are
expected to be observed in roadside view, as shown in Figure. 1 (d), (e), and (f).
Thus, overlapping and occlusion between objects are very common phenomena,
increasing the density and difficulty of a perceptual system [31].

To address the practical challenges of infrastructure-side perception, we hence
tailor a cross-modal and temporary-recurrent robust 3D object detection method
to the roadside application, dubbed BEVRoad. For effective modal fusion, cam-
eras and LiDAR should be treated equally. No matter when a random sensor fails,
the corresponding branch of the other modality can work independently [12]. To
this end, we propose the spatial-channel adaptive fusion module (SCAFM), a
lightweight network module that enhances the accuracy of the model while in-
curring minimal computational cost. In the timing module TrajNet, the optical
flow motion of the target pixel is learned from the historical frame and the
current frame in an iterative loop.
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To demonstrate the advantages of our proposed BEVRoad, we have con-
ducted extensive experiments on the two public roadside perception benchmarks,
DAIR-V2X-I and DAIR-V2X-Seq [33]. Our model performs better and achieves
great improvement with negligible additional parameters and calculations, in-
cluding +11.09% for vehicle, +16.61% for pedestrian, and +6.64% for cyclist
compared to BEVHeight [29]. BEVRoad runs at 11 FPS with a latency of 90.9
ms on the NVIDIA GeForce RTX 3090 GPU, sacrificing a little bit of speed.

In summary, our contributions are summarized as follows:
(1) To the best of our knowledge, this is the first 3D object detection model

to introduce multi-modality in infrastructure perception, which can effectively
deal with the interference of harsh environments.

(2) We propose a novel temporary-recurrent module that accurately predicts
the speed and position information of the target, effectively alleviating the target
occlusion problem compared to the single-frame baseline.

2 Related Work

Vehicle-side 3D Object Detection. Vehicle-side 3D detection refers to the
process of analyzing multi-view images captured by cameras mounted on a ve-
hicle to predict the 3D locations, dimensions, and orientations of the interest
targets [17]. Since most vehicle-side sensors are mounted atop cars with an al-
most near-zero pitch angle, the optical axis of the sensors is parallel to the
horizontal plane [7, 31, 33]. Popular methods can be divided into transformer-
based and depth-based schemas according to the difference in view transforma-
tion. Transformer-based detectors generally design BEV grid queries or a set
of object queries to perform the view transformation. According to BEV grid
coordinates, BEVFormer [11] defines some learnable BEV queries of the spatial
local cross-attention mechanism to interact with image features in the regions
of interest. PETR [14] encodes the position information of 3D coordinates into
image features based on camera-frustm, producing the 3D position-aware fea-
tures. LSS [19] is a pioneering work on BEV perception that explicitly predicts
the depth distribution per grid on 2D feature, then lifts the 2D feature per grid
via the corresponding depth to voxel space based on pseudo point cloud frus-
tum. BEVDepth [10] leverages depth supervision derived from point clouds to
guide depth learning and encodes camera intrinsics and extrinsics into a depth
learning module, which improves the quality of depth estimation and makes fea-
ture projection more accurate. However, the results of these methods are not
particularly ideal when applied directly to roadside perception, which illustrates
the differences between 3D object detection on the roadside and vehicle-side and
makes them difficult to generalize.

Infrastructure-side 3D Object Detection. Roadside sensors are installed
on the poles with distinct pitch angles of the viewpoint, mounting heights as
well as various roadside environments, which raises questions about the algo-
rithm’s capacity for generalization [7, 31]. Recently, several roadside detection



4 F. Author et al.

methods have been proposed since the release of datasets like DAIR-V2X-I [33]
and Rope3D [31], which significantly promote the development of 3D perception
in infrastructure-side scenarios. CBR [2] is a calibration-free BEV representation
network that achieves BEV detection based on multi-layer perceptron (MLPs)
without calibration parameters and additional depth supervision, but the percep-
tual accuracy is limited. BEVHeight [29] is a pioneering work initially focusing
on roadside detection that predicts the relative height distribution of the scene
image features and projects the features more accurately into 3D space through
a height-based projection module, avoiding the problem of poor depth esti-
mation quality. Unanimously, subsequent CoBEV [21] and BEVHeight++ [27]
chose the same idea to improve BEV representations by seamlessly incorporating
complementary geometry-centric depth and semantic-centric height cues, which
achieved excellent performances. To solve the over-fitting problem of roadside
backgrounds and camera internal and external parameters, SGV3D [30] proposes
a background suppression module (BSM) to attenuate background features and
introduce instances with new scenes and new poses. MonoUNI [7] proposes a nor-
malized depth optimization goal through the derivation of theoretical formulas
and develops 3D normalized cube depth for obstacles by geometric relationships,
which unify vehicle-side and road-side detection and achieve SOTA on DAIR-
V2X.

3 Method

3.1 Problem Definition

In this work, we aim to build a robust roadside 3D detector to detect a three-
dimensional bounding box of given foreground objects of interest. The origin of
the world coordinate system is the projection point of the LiDAR sensor center
point on the ground; the x-axis is parallel to the ground and positive forwards,
the y-axis is positive to the left, and the z-axis is positive upwards, conforming
to the rules of the right-handed coordinate system. It is assumed that all point
cloud coordinates have been converted to the world coordinate system for ease
of expression.

Formally, we are given the image I ∈ RH×W×3 and point cloud P ∈ RN×4

from roadside sensors, whose transformation matrix E ∈ R3×4 and roadside
camera’s intrinsic matrix K ∈ R3×3 via senor calibration and synchronization.
E ∈ R3×4 represents extrinsic parameters from the camera coordinate system
to the world coordinate system. The detector is supposed to output a set of
predicted 3D bounding boxes B̂world = {B̂1, B̂2, ..., B̂n}, and the corresponding
set of GT boxes is Bworld = {B1, B2, ..., Bn}. Each 3D bounding box B̂i is
formulated as a vector with 7 degrees of freedom:

B̂i = (x, y, z, l, h, w, θ) (1)

where (x, y, z) is the center location of each 3D bounding box in the world coordi-
nate system. (l, h, w) denotes the box’s length, height, and width, respectively. θ
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Fig. 2. Overview of the BEVRoad framework. The camera encoder first extracts
high-dimensional features from the roadside image. The Height-based View Transform
module takes camera features as input and transforms them into BEV features. The
point cloud is converted to pillars through the pillar encoder to form LiDAR BEV
features represented in the form of pseudo-images. SCAFM integrates the BEV feature
from two modalities. Then, the BEV feature in the current frame is fused with previous
ones through TrajNet. Finally, a CenterPoint [32] detection head generates object
heatmaps and attributes.

represents the yaw angle of each instance with respect to the z-axis. Specifically,
a Camera-LiDAR 3D object detector FDet can be defined as follows:

B̂world = FDet(I, P,E,K|ω) (2)

where ω is the learned weights of the detector.

3.2 Overview

Overall Architecture of BEVRoad. As shown in Fig. 2, given a monocular
roadside image I ∈ RH×W×3 and point cloud P ∈ RN×4 with corresponding
extrinsic matrix E ∈ R3×4 and intrinsic matrix K ∈ R3×3, H and W represent
the input image’s height and width, and N is the number of points. Formally, a
2D convolutional camera backbone with FPN [13] neck aims to map I to the 2D
high-dimensional mutil-scale image features F 2d ∈CF× H

16×
W
16 , where CF denotes

the channel number. Then {E,K} are fed into the Height-based View Trans-
form module to lift the monocular image features F 2d from the 2D coordinate
system to the 3D by calculating the height distribution Hpred ∈ RCH× H

16×
W
16 and

context feature F context ∈ RCC× H
16×

W
16 , where CH stands for the height bins and

CC denotes the channel of the context feature. The wedge-shaped 3D features
F 3D ∈ RX×Y×Z×Cc are obtained by taking the outer product of Hpred and



6 F. Author et al.

Fig. 3. BEVRoad’s temporary-recurrent pipeline. It shows the process of tempo-
rary modeling at the BEV feature level, enabling the capture of long-term dependencies
in sequential data.

F context and then filling the view frustum. The voxel pooling [20] module com-
presses the 3D features into the camera BEV features, FCam ∈ RX×Y×Z×CCam .
As for the LiDAR stream, the point cloud is converted to pillars through the
LiDAR encoder to form LiDAR BEV features FLiDAR ∈ RX× Y× CLiDAR [8].
Then, FCam and FLiDAR are sent to the BEV encoder consisting of SCAFM
and TrajNet. Finally, the 3D detection utilizes fusion BEV features to predict
the 3D bounding boxes composed of position (x, y, z), dimension (l, w, h), and
orientation θ.

3.3 Spatial-Channel Adaptive Fusion Module.

For effective and impartial modal fusion, our Spatial-Channel Adaptive Fusion
Module (SCAFM) combines spatial and channel attention similar to SENet [5],
emphasizing learning important features along both the channel and spatial di-
mensions, as shown in Fig. 2 (b). Given two BEV features FCam ∈ RX×Y×Z×CCam

and FLiDAR ∈ RX× Y× CLiDAR in the unified space, a simple way is to concate-
nate them and apply channel attention by average pooling and convolution.
SCAFM can be formulated as:

Ffusion = WCA(f
3×3([FCam, FLiDAR])) (3)

where [·, ·] denotes the concatenation operation along the channel dimension
of two features. f3×3 represents a convolution operation with a kernel size of
3×3 to reduce the channel dimension of concatenated features into CCam. WCA

selects channel feature information of F using average pooling and convolution
to obtain attention map, which can be summarized as follows:

WCA(F ) = σ(f1×1(AvgPool(F )) (4)

where σ denotes the sigmoid function, f1×1 represents a convolution operation
with a kernel size of 1× 1, AvgPool denotes average pooling.



Title Suppressed Due to Excessive Length 7

3.4 TrajNet.

Our BEVRoad recycles the system’s memory as an RNN to perform temporal
modeling, which expands the receptive field in BEV space [6, 16], as depicted
in Fig. 3. For motion patterns like rotation and scaling, the local correlation
structure, like [22] , of consecutive frames will be difficult. So, we propose the
use of a TrajGRU [23] to actively learn the targets’ location-variant structure for
recurrent connections. The main formulas of TrajGRU [23] are given as follows:

Ut,Vt = γ(Xt,Ht−1),

Zt = σ(Wxz ∗ Xt +

L∑
l=1

W l
hz ∗ warp(Ht−1,Ut,l,Vt,l)),

Rt = σ(Wxr ∗ Xt +

L∑
l=1

W l
hr ∗ warp(Ht−1,Ut,l,Vt,l)),

H′
t = f(Wxh ∗ Xt +Rt ◦ (

L∑
l=1

W l
hh ∗ warp(Ht−1,Ut,l,Vt,l))),

Ht = (1−Zt) ◦ H′
t + Zt ◦ Ht−1.

(5)

where L is the total number of allowed links. Ut,Vt ∈ RL×H×W denotes the flow
fields that dynamically determine the recurrent connections. γ is a function that
generates connection relationships from present features Xt and saved memory
Ht−1. The wrap(Ht−1,Ut,l,Vt,l) function selects the positions pointed out by
Ut,l,Vt,l from Ht−1 via the bilinear sampling [23].

Specifically, our TrajNet is composed of a 2D convolution block and three
stacked TrajGRU [23], as Fig. 2 (c) illustrates. In each frame, the present input
and the history memory are sent to TrajGRU [23] to obtain the candidate hidden
state h̃(t) and the new memory h(t) at the current moment. A convolution
operation is applied to the new memory to restore the dimension of the channel,
and then it is added to the input as the final output.

4 Experiments

4.1 Datasets

DAIR-V2X-I. DAIR-V2X [33] is a large-scale, multi-modality dataset for
vehicle-infrastructure perception. As the original dataset contains images from
vehicles and roadside units, this benchmark consists of three tracks to simulate
different scenarios. Here, we focus on the roadside subsets, DAIR-V2X-I and
DAIR-V2X-Seq. DAIR-V2X-I contains images and corresponding LiDAR point
clouds, with 5042 frames in the training set and 2016 frames in the validation
set. Additionally, it is worth nothing that testing examples are not yet publicly
disclosed.
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Table 1. Comparison with the state-of-the-art on the DAIR-V2X-I valida-
tion set. We highlight the best results in red and the second ones in bold.

Veh.(IoU=0.5) Ped.(IoU=0.25) Cyc.(IoU=0.25)
Method Modality Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars [8] L 63.07 54.00 54.01 38.53 37.20 37.28 38.46 22.60 22.49
SECOND [26] L 71.47 53.99 54.00 55.16 52.49 52.52 54.68 31.05 31.19
MVXNet [24] C&L 71.04 53.71 53.76 55.83 54.45 54.40 54.05 30.79 31.06
BEVDepth [10] C 75.50 63.58 63.67 34.95 33.42 33.27 55.67 55.47 55.34
MonoGAE [28] C 84.61 75.93 74.17 25.65 24.28 24.44 44.04 47.62 46.75
BEVHeght [29] C 77.78 65.77 65.85 41.22 39.29 39.46 60.23 60.08 60.54
BEVHeght++ [27] C 79.31 68.62 68.68 42.87 40.88 41.06 60.76 60.52 60.01
CoBEV [21] C 81.20 68.86 68.99 44.23 42.31 42.55 61.28 61.00 61.61
SGV3D [30] C 83.44 72.52 72.81 46.12 44.81 44.92 65.84 65.11 65.04

BEVRoad(Ours) C&L 81.67 76.86 76.92 56.63 55.90 55.88 62.94 66.72 67.02
BEVRoad*(Ours) C&L 86.73 88.50 88.52 40.61 39.86 40.12 57.82 57.67 58.40

-Note: * denotes the voxel size of the BEV grid is [0.8m, 0.8m], and the BEV feature
map size is reduced to 176 x 256.

DAIR-V2X-Seq. DAIR-V2X-Seq is the sequential V2X dataset, which in-
cludes data frames, trajectories, vector maps, and traffic lights captured from
natural scenery. V2X-Seq comprises two parts: the sequential perception dataset,
which includes more than 15,000 frames captured from 95 scenarios, and the
trajectory forecasting dataset, which contains about 80,000 infrastructure-view
scenarios, 80,000 vehicle-view scenarios, and 50,000 cooperative-view scenarios
captured from 28 intersections’ areas. Here, we only focus on the roadside sub-
set with temporary information and partition DAIR-V2X-Seq into a training set
(60%), a validation set (40%) to study temporal modeling in the detection task.

4.2 Experiments Details

Our proposed BEVRoad is trained on a RTX 3090 with the AdamW [15] opti-
mizer and an initial learning rate of 2e-4 for 30 epochs. The image input resolu-
tion is set to 864 x 1536. The BEV grid spans [-70.4m, 70.4m] in width and [0.0m,
204.8m] in length, while the voxel size of the BEV grid is [0.4m, 0.4m], result-
ing in a final resolution of 352 x 512. Unless otherwise specified, the BEVRoad
utilizes ResNet50 [4] as its image encoder. In the case of the DAIR-V2X-Seq,
the BEV grid spans across [-70.4m, 70.4m], with a length range of [0m, 140.8m].
The BEV map resolution is 176 x 176. For each sequence in the DAIR-V2X-Seq,
the first 60% of each sequence is used for training, the next 20% is used for
verification, and the last 20% is used for testing. It should be emphasized that
we performed comparative experiments with other methods on DAIR-V2X-I [33]
and performed ablation studies on DAIR-V2X-Seq.
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Table 2. Robustness analysis on the DAIR-V2X-I validation set, including
three disturbed factors of roadside cameras (i.e., the focal length, the roll angle, and
the pitch angle). We highlight the best results in bold.

Veh.(IoU=0.5) Ped.(IoU=0.5) Cyc.(IoU=.5)
Method focal roll pitch Easy Middle Hard Easy Middle Hard Easy Middle Hard

77.78 65.77 65.85 41.22 39.29 39.46 60.23 60.08 60.54
✓ 72.30 60.45 60.47 32.18 30.65 29.65 50.06 55.04 55.14

✓ 77.65 65.57 65.65 38.38 36.60 36.72 56.15 59.11 59.52
✓ 75.37 63.31 63.38 33.13 31.47 31.63 52.88 56.07 56.44

BEVHeight [29]

✓ ✓ ✓ 71.71 59.92 59.92 27.81 26.43 26.36 47.42 51.19 51.26

81.20 68.86 68.99 44.23 42.31 42.55 61.28 61.00 61.61
✓ 78.70 66.36 66.43 36.19 34.36 34.39 55.56 57.11 57.39

✓ 81.03 68.78 68.91 42.47 40.56 40.88 61.38 61.94 62.59
✓ 78.57 66.33 66.45 36.82 35.01 35.51 57.65 58.59 59.28

CoBEV [21]

✓ ✓ ✓ 75.53 63.46 63.55 30.75 30.08 29.17 51.42 54.78 54.97

81.67 76.86 76.92 56.63 55.90 55.88 62.94 66.72 67.02
✓ 75.33 70.42 70.44 51.33 50.77 50.57 56.51 62.02 62.02

✓ 78.30 74.80 72.76 57.33 56.70 56.65 60.89 66.04 66.37
✓ 78.18 75.25 75.30 54.85 55.52 55.59 60.53 65.10 65.48

✓ ✓ ✓ 75.12 70.21 70.20 50.78 50.03 49.93 55.60 60.78 59.24

BEVRoad(Ours)

w.r.t CoBEV -0.41 6.75 6.65 20.03 19.95 20.76 4.18 6.00 4.27

4.3 Comparison with the State-of-the-Arts

In the DAIR-V2X-I setting, we compare our BEVRoad with other methods like
MVXNet [24], BEVDepth [10], MonoAGE [28], BEVHeight [29], BEVHeight++
[27], CoBEV [21], and SGV3D [30]. Following the established detection met-
rics employed in previous benchmark datasets, like KiTTi [3], we evaluate the
40-point average precision (AP3D|R40) of predicted 3D boxes, which is fur-
ther classified into three modes: easy, middle, and hard, depending on the box
attributes [1]. The experimental results of each network on the DAIR-V2X-I
validation set are listed in Table 1.

As can be seen from Table 1, BEVRoad outperforms all other methods
across the board. Specifically, it achieves a performance boost of +4.3%(76.82%
vs. 72.52%)% on the vehicle category, +11.71% (56.52% vs. 44.81%) on the
pedestrain category, and +1.22% (66.33% vs. 65.11%) on the cyclist category,
as compared to the previously best detector.

Notably, we found that voxel size has a significant impact on detection per-
formance. The smaller resolution of the BEV map corresponding to the large
voxel size strengthens the characteristics of big targets such as vehicles, making
the BEVRoad’s detection accuracy (88.50%) in the category of vehicles surpass
MonoUNI [7](87.20%) and achieve state-of-the-art results. The smaller voxel size
corresponds to a larger resolution of the BEV map, which greatly improves the
model’s perception of pedestrians and cyclists.
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Table 3. Ablation Study on different components of our overall framework
on DAIR-V2X-Seq val set.

Veh.(IoU=0.5) Ped.(IoU=0.5) Cyc.(IoU=.5)
Exp Cam Lidar TrajNet GFLOPs Params(M) Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

(a) ✓ 320.0 71.10 73.66 62.14 60.15 19.10 16.20 16.33 34.95 35.40 33.91
(b) ✓ ✓ 341.0 75.40 85.89 83.89 83.90 25.45 27.60 27.79 53.45 58.84 58.90
(c) ✓ ✓ 612.0 80.50 75.06 65.50 65.48 18.39 16.54 16.61 38.98 40.20 38.82
(d) ✓ ✓ ✓ 633.0 84.80 87.40 85.14 85.15 26.43 29.83 28.83 57.83 62.96 63.04

4.4 Results on Noisy Extrinsic Parameters

In real-world scenarios, camera parameters always change for various reasons,
such as wind, vibrations, human adjustments, and other environmental condi-
tions. Following the simulation approach described in [34], we simulate robust-
ness scenarios where the external parameters of the camera change by intro-
ducing offset noise with a N(0, 1.67) distribution to the roll and pitch angles,
with the scaling coefficient following a N(1, 0.2) distribution applied to the cam-
era focal length. BEVRoad maintains the best accuracy in the medium difficulty
category with noisy camera parameters, which reveals BEVRoad’s excellent anti-
interference ability, as detailed in Table 2.

4.5 Ablation Studies

In this section, we conduct a series of ablation experiments to investigate the
effects of each component of BEVRoad on the DAIR-V2X-Seq dataset.

Effectiveness of Different Components. We evaluate the effectiveness
of the SCAFM and the TrajNet through ablations on the DAIR-V2X-Seq val
set. As shown in Table 3, the comparison between Exp (a) and Exp (b) clearly
demonstrates the efficacy of SCAFM, which greatly enhances the detection abil-
ity of the model, making the indicators of vehicle, pedestrian, and cyclist increase
significantly. The comparison between Exp (a) and experiment Exp (c) and the
comparison between Exp (b) and Exp (d) fully reflect the advantages of Tra-
jNet in temporary modeling, improving the accuracy of vehicles and cyclists
observably.

Temporary Fusion Strategy. We also experimented with other traditional
methods based on spatio-temporal sequence prediction. However, TrajNet per-
forms the best. ConvGRU is second, and the impact of other techniques like
self-attention and SwinLSTM [25] on temporary modeling is insignificant. The
results are shown in Table 4.

Impact of Training Sequence Length. We conduct experiments with
varying numbers of training frames and show results in Tab. 5. The performance
of BEVRoad continues to grow when adding more training frames. Expanding
to 12 frames brings limited performance improvement, so we train our models
on 8 frames for experimental efficiency.
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Table 4. Ablation Study of temporary fusion strategy on DAIR-V2X-Seq
val set.

AP3D APBEV

Strategy Easy Mod. Hard Easy Mod. Hard

No Fusion 23.58 23.62 23.67 32.81 33.80 33.42
Self-Attention 24.11 24.16 24.16 33.93 34.96 34.97

SwinLSTM [25] 24.31 24.80 24.34 34.43 35.14 35.17
ConvGRU 26.47 26.25 26.32 35.64 36.87 36.94
TrajNet 27.12 27.14 27.23 36.51 37.78 37.86

Table 5. Training frames for long-term fusion on DAIR-V2X-Seq val set

AP3D APBEV

Training frames Easy Mod. Hard Easy Mod. Hard

1 23.58 23.62 23.67 32.81 33.80 33.42
2 25.30 25.73 24.78 34.47 35.99 36.13
4 25.41 26.60 25.60 34.47 35.99 36.13
8 27.12 27.14 27.23 36.51 37.78 37.86
12 26.91 27.15 27.25 36.23 38.20 37.86

4.6 Visualization Results.

For the DAIR-V2X-Seq dataset, as shown in Fig. 4, we present the visual com-
parison results of BEVHeight [29] baseline and BEVRoad in the image view
and BEV space. We utilize red boxes to denote true positives, and green for
ground truth. Samples (1-3) represent three different newly roadside scenarios
from DAIR-V2X-Seq. We use blue rectangles to highlight instances where our
BEVRoad significantly outperforms BEVHeight [29]. From the samples in (1-3),
we can observe that BEVHeight [29] has significant deviations from the ground
truth of objects at medium and long distances. In contrast, BEVRoad performs
much better, keeping objects in the correct position.

As depicted in Fig. 5, we further demonstrated the powerful detection ca-
pabilities of BEVRoad. The red solid rectangular box on the image represents
the missing label in the DAIR-V2X-Seq GT boxes, and our BEVRoad can still
accurately detect it, corresponding to the red circle and ellipse circled in the
point cloud BEV perspective. The upper left corner of each sample is a visual-
ization of BEV features, which blend point clouds and image modalities. From
the partially enlarged BEV Map, we can clearly observe the target vehicle that is
blocked in the distance, which confirms BEVRoad’s excellent perception capabil-
ities. However, for far-distance and severely truncated obstacles in sample 1 and
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Fig. 4. Visualization Results of BEVHeight and our proposed BEVRoad
on the DAIR-V2X-Seq. Samples (1-3) are sourced from the new scenario in the
DAIR-V2X-Seq validation set. Blue rectangles are used to highlight instances where
BEVRoad significantly outperforms BEVHeight.

Fig. 5. Visualization examples on DAIR-V2X-Seq. Red solid rectangle is used
to highlight instances of missing labels in the DAIR-V2X-Seq GT box. The upper left
corner of each sample is a visualization of BEV features.

sample 2, our model suffers from missed detection objects, which is manifested
in that our model does not detect all targets.
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5 Conclusion

In this paper, we introduce BEVRoad, a cross-modal and temporary-recurrent
3D object detector for roadside perception. BEVRoad achieves state-of-the-art
accuracy on the public roadside 3D detection datasets DAIR-V2X-I and DAIR-
V2X-Seq [33]. Our framework comprises a camera stream based on BEVHeight
[29] and a LiDAR stream that encode raw image and point cloud inputs into
features in the unified BEV space, followed by a lightweight spatial-channel adap-
tive fusion module (SCAFM) to fuse these features across modals. In addition,
TrajNet shows the adequacy of recurrent networks as a means to achieve tem-
porary fusion, which turns out to be a more robust solution to overcome the
problem of target occlusion. Extensive ablation experiments verify the effective-
ness of BEVRoad’s components. In the future, we believe that this approach can
lead to broader research in infrastructure perception and deliver better results
in practical applications.
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