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Abstract— In the era of structural genomics, with a large 

number of protein structures becoming available, identification of 

domains is an important problem in protein function analysis as it 

forms the first step in protein classification. In the proposed 

network-based machine learning approach, NML-DIP, a 

combination of supervised (SVM) and unsupervised (k-means) 

machine learning techniques are used for domain identification in 

proteins. The algorithm proceeds by first representing protein 

structure as a protein contact network and using topological 

properties, viz., length, density, and interaction strength (that 

assesses inter- and intra-domain interactions) as feature vectors in 

the first SVM to distinguish between single and multi-domain 

proteins. A second SVM is used to identify number of domains in 

multi-domain proteins. Thus, it does not require a prior 

information of the number of domains. The domain boundaries 

are identified using k-means algorithm and confirmed with CATH 

annotation. Performance of the proposed algorithm is evaluated 

on four benchmark datasets and compared with four state-of-the-

art domain identification methods. Its performance is comparable 

to other domain identification tools and works well even when the 

domains are non-contiguous. Available at: https://bit.ly/NML-

DIP. 

Keywords— Structural domain identification in proteins, k-
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I. INTRODUCTION  

Proteins are comprised of domains, folds and motifs, 
which form its basic building blocks. Genetic recombinant 
techniques allow reorganization of domains, called domain 
shuffling, resulting in different combinations of domains in 
different proteins. This along with swapping and insertion of 
domains result in complex architectures that are responsible 
for new protein functions in evolution. Hence, efforts to 
understand protein evolution and its function have mainly 
focused on domains as these fold into a stable, semi-
independent 3D structure and perform a unique function 
conserved over evolution. Protein domains are also very 
useful in analyzing mechanisms of protein folding and their 
stability and structural transformations in various conditions. 
Being the basic units of protein folding, function and 
evolution, identification of domains is the first step in 
understanding functional and structural aspects of proteins. 

Although domain boundaries can be determined by visual 
inspection, there definitely exists a need for developing 
accurate methods for automatic domain identification with 
increasing numbers of solved protein structures. The problem 
of dividing a protein structure into domains is challenging due 
to the lack of an unambiguous definition of domain. The most 
common definition of domains based on structural aspects is 
that these are compact stable modules containing a 
hydrophobic core and fold independent of the rest of the 
protein while the evolutionary and functional aspects of the 
definition suggest that these can occur in different 
combinations and perform a specific function [1]. Deviations 

are observed in a number of proteins, such as a domain may 
be very small and may not contain a hydrophobic core, may 
occur as a large single structural unit, or two domains together 
may perform a specific function, instead of each one having 
its own unique function. This makes domain assignment 
computationally a difficult task. Non-contiguous domains 
(occurring because of domain insertion) further adds to the 
difficulty in developing an automated solution. 

Though several methods have been proposed to predict 
domains they all have notable limitations. Some methods fail 
to correctly partition non-contiguous domains or are unable to 
distinguish between single and multi-domain proteins, while 
some require specifying the number of domains the protein 
must be split into. Most domain databases use more than one 
approach along with manual inspection for correct assignment 
of domains, for e.g., CATH [2] uses four domain assignment 
methods, namely, DETECTIVE [3], DOMAK [4], PUU [5] 
and the method by Islam et al [6]. If all the four methods are 
unanimous in their prediction, then the domains are 
automatically assigned, else a manual judgment is made about 
the best definition among the four. While classification of 
domains in CATH is based on structural integrity, SCOP [7] 
focuses on functional and evolutionary aspects, and as a result 
they differ in about 20% of domain assignments. With over 
60% of proteins being single domain, and about 25% of multi-
domain proteins being non-contiguous, there exists a need for 
reliable domain identification methods that can handle simple 
as well as complex domain architectures. An excellent review 
by Holland et al [1] provides comparison of various methods 
for domain assignment. 

II. METHODOLOGY 

The flowchart depicting various steps of the proposed 

Network-based Machine Learning algorithm for Domain 

Identification in Proteins (NML-DIP) is shown in Figure 1. 

Here, protein structure is modeled as a Protein Contact 

Network (PCN), wherein each amino acid residue acts as a 

node and an edge is drawn between two residues if they are 

within 7Å [8]. Next, we employ a combination of supervised 

(SVM) and unsupervised (k-means) machine learning 

approaches using graph properties as feature vectors for the 

SVMs. Various steps in the algorithm are briefly discussed 

below. 

Step-1: Distinguishing single vs multi-domain proteins: 

First step in domain classification problem is to identify 

whether a protein is single or multi-domain protein. For this, 

a support vector machine (SVM) is trained using network 

properties of PCN as feature vectors, defined below. 

Length of Protein: It is defined as the number of nodes in a 

PCN. Here the underlying assumption is that the length of 

protein is expected to increase with increase in the number of 

domains, with notable exceptions. 
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Graph Density: It is defined as ratio of the number of edges, 

E, observed to the number of possible edges, ½ V(V-1), in a 

graph of size V, given by (1). Since domains are compact  

 
Fig. 1: Workflow of the proposed algorithm, NML-DIP.  

 

globular structures and a single domain protein are expected 

to be more compact compared to a multi-domain protein, it is 

a good measure in quantifying the compactness of a protein. 

      𝐷 =
2|𝐸|

|𝑉|(|𝑉|−1)
    (1) 

Interaction Strength: It captures inter-domain interactions 

given by (2), by computing the number of inter- and intra-

domain interactions obtained on splitting a protein 

chain/cluster into two clusters by k-means algorithm.  

    𝐼𝑆 = (
𝑁𝑥𝑦

𝑁𝑥+𝑁𝑦
) × 100   (2) 

Here 𝑁𝑥𝑦 : number of inter-cluster interactions, 𝑁𝑥  and 𝑁𝑦 : 

number of intra-cluster interactions in clusters x and y, 

respectively [9]. Two nodes are said to be interacting if the 

distance between them is ≤ 7Å.  

Step-2: Identifying Number of Domains, k: In this step, a 

second SVM is used for classifying multi-domain proteins 

into 2-, 3- or 4-domains. Using k-means, protein chain is split 

into k-clusters (k = 2 - 4), and interaction strength (IS) is 

computed for every cluster-pair in each k split. Sum of 

pairwise Interaction Strengths, IS-Sum_k = ijIS-DiDj, 

between clusters is computed for each k-split, k = 2, 3 and 4, 

and is expected to increase with increasing k for an incorrect 

split, where IS-DiDj denotes the interaction strength between 

domains i and j.  If a k-domain protein is split into n clusters, 

𝑛 > 𝑘 , IS-Sum_n is expected to be significantly higher than 

IS-Sum_k as in this case one of the true domains would be 

incorrectly split. To capture this information, the second 

SVM is trained on four features: Length of protein and three 

interaction strengths, IS-Sum_2, IS-Sum_3 and IS-Sum_4, 

corresponding to the three splits, k = 2, 3, and 4, respectively. 

 Step-3: Comparison with CATH Annotation: To assess 

the reliability of our predictions, number of domains, k, and 

the domain boundaries are compared with CATH annotation. 

True prediction is reported if fraction of correctly predicted 

residues is ≥ 75% compared to CATH annotation [10]. The 

algorithm also works if the user has prior information about 

the number of domains. In this case k-means algorithm is run 

on the given protein structure for user input k, and the 

program outputs the domain boundaries. 

 

Implementation Details 

 Python scripts were written to parse the PDB files, construct 

protein contact network (PCN), compute feature vectors and 

apply SVM and k-means using Scikit-learn module (0.22.1). 

The algorithm works in two modes: the user may provide a 

file in PDB format (with or without the information about the 

chains) and the domain annotation (number of domains and 

domain boundaries) will be provided for all chains (or the 

specified chain). If the user is interested in identifying only 

the domain boundaries, then the user may provide a PDB file 

with chain ID and number of domains, k, as input. The 

algorithm is computationally very efficient and on an Intel(R) 

Core (TM) i7-8565U CPU@1.80GHz system with 8 GB 

RAM, it takes ~ 2 - 3 seconds to execute and identify domains 

in a protein of size ~ 450 residues. 

 

III. RESULTS & DISCUSSIONS 

Dataset Construction 

A brief description of training and test datasets used in this 

analysis is given below. 

Training dataset: A dataset of 3000 proteins comprising 

1500 chains each of single and 500 chains each of type 2-, 3- 

and 4-domain proteins (1500 multi-domain proteins), is 

constructed for training the two SVMs. Care was taken to 

include at least one representative domain defined by unique 

C, A and T categories in CATH [2], where C represents 

secondary structure class of the domain, A the Architecture 

and T the 3-dimensional Topology. Also, it was ascertained 

that for the selected protein chains, CATH and SCOP agreed 

on the domain assignments. 

Test datasets: Performance of the proposed approach is 

evaluated on four test datasets, summarized in Table I, and 

briefly described below. 

Benchmark_3 dataset [10]: It consists of proteins chains for 

which domain assignment in CATH [2] and SCOP [11] 

databases agree and each protein chain is a representative of 

unique topology group in CATH database. Since only half 

this dataset is made publicly available by the authors, it is 

small (132), with very few 3-and 4- domain proteins. 

ASTRAL SCOP dataset [11]: It is a non-redundant dataset 

at sequence level and consists of proteins having sequence 

similarity < 30%. Though largest with 6290 protein chains, 

it is not truly non-redundant at topological level. 

TABLE I. THREE TEST DATASETS USED FOR PERFORMANCE EVALUATION. 

 

Non-redundant dataset (NR_dataset): To address the 

issues of class imbalance and redundancy, we constructed a 

non-redundant dataset (NR_Dataset), similar to the training 

dataset, in accordance with the approach proposed by 

Holland et al [10]. First, protein chains for which domain 

assignment agreed between CATH and SCOP were selected, 

resulting in 88,986 chains. These chains were grouped into 

1313 topology classes represented by unique Class, 

Test Datasets 1-d 2-d 3-d 4-d Total 

Benchmark_3 55 53 21 3 132 

ASTRAL SCOP 4048 1599 489 154 6290 

NR_Dataset 761 331 139 47 1278 



Architecture and Topology in CATH. From each topology 

group, a k domain protein (k=1-4) was randomly picked.  

Single vs Multi-domain Classification: A step-by-step 

evaluation of our algorithm on the non-redundant NR_dataset 

is summarized in Table II. An overall prediction accuracy of 

~87% is observed in classifying single vs multi-domain 

proteins. We observed that length of the protein is a very 

crucial parameter and majority of incorrectly classified single 

domain proteins are much larger compared to the average 

single domain length. For e.g., the misclassified single 

domain protein 1XIM (A) is of length 394, much larger than 

single-domain average ( ∼ 154 ). We observed that 11 

(Benchmark_3), 183 (ASTRAL SCOP) and 82 (NR_Dataset) 

single-domain proteins wrongly classified as multi-domain 

proteins were larger in size. Similarly, we also observed that 

most wrongly predicted multi-domain proteins were smaller 

in size compared to the average (∼ 434). For e.g., a 2-domain 

protein 1YUA (chain B) is of length 122, much smaller than 

the multi-domain average. We observed 6 (Benchmark_3), 

108 (ASTRAL SCOP) and 34 (NR_Dataset) misclassified as 

single-domain proteins because of their lengths smaller than 

average. Compactness is another important feature in domain 

identification and is captured by the graph properties, density 

and interaction strength. A number of single domain proteins 

wrongly classified in the four test datasets had lower 

Interaction Strength and/or lower density than the average 

value for single-domains. For e.g., apart from being a large 

protein, 1XIM (A) has lower density (= 0.039) and interaction 

strength (=3.973) values compared to the single-domain 

protein average, ∼ 0.08 and ∼ 11.6, respectively.  

 

Additionally, to evaluate the performance of SVM on the 

three datasets, the metrics Precision, Recall, F1 Score and 

Matthews Correlation Coefficient (MCC) were evaluated and 

are summarized in Table III. It may be observed that these 

metrics are high and comparable across the three datasets. For 

the NR_Dataset these values are higher, especially the MCC 

value, clearly indicating the importance of a balanced and no-

redundant dataset performance evaluation. 

 

Identifying Number of Domains: In the second step of the 

algorithm, another SVM is used for de novo detection of 

number of domains in multi-domain proteins. It may be noted 

from Table II that prediction accuracy of the second SVM in 

correctly identifying the number of domains on NR_Dataset 

is ~ 85%, comparable to the first SVM. It is worth noting that 

the performance is equally good for non-contiguous as for 

contiguous proteins, while many algorithms fail to detect 

non-contiguous domains. Performance of the algorithm is 

good in the detection of 2-domain (~97%) and 4-domain 

(~81%) proteins. However, the prediction accuracy dropped 

to ~63% for 3-domain proteins with majority of them 

incorrectly labeled as 2-domain proteins.  

 

Performance metrics of the second SVM are summarized in 

Table IV. As in the previous case, we again observe a better 

performance on NR_Dataset compared to the other three 

datasets, further reinforcing the importance of the dataset in 

testing. Low Recall values for 3-domain proteins indicate that 

a number of these are missed by the algorithm. We observe 

majority of these wrongly classified as 2-domain proteins, 

resulting in lower Precision values for 2-domain proteins. In 

contrast, the Precision value for 3-domain proteins is 

significantly high indicating low False Positives in this case. 

High MCC value for the NR_Dataset indicates the reliability 

of the predictions.  

 
TABLE II: PERCENTAGE OF CORRECTLY CLASSIFIED PROTEINS SHOWN FOR 

VARIOUS STEPS OF THE PROPOSED ALGORITHM ON NR_DATASET. C, NC: 
CONTIGUOUS AND NON-CONTIGUOUS MULTI-DOMAIN PROTEINS. 

 
 
TABLE III: PERFORMANCE EVALUATION OF SVM IN DISTINGUISHING 

BETWEEN SINGLE- AND MULTI-DOMAIN DOMAINS ON FOUR TEST DATASETS. 

Benchmark_3 Precision Recall F1 Score MCC 

Single-Domain 0.88 0.80 0.84 

0.65 Multi-Domain 0.75 0.85 0.80 

Average 0.83 0.82 0.83 

 
ASTRAL SCOP Precision Recall F1 Score MCC 

Single-Domain 0.87 0.84 0.86 

0.63 Multi-Domain 0.74 0.79 0.76 

Average 0.83 0.82 0.83 

 
NR_Dataset Precision Recall F1 Score MCC 

Single-Domain 0.86 0.92 0.89 

0.73 Multi-Domain 0.88 0.78 0.83 

Average 0.87 0.87 0.87 

 
TABLE IV: PERFORMANCE METRICS FOR SVM-II IN DETECTING THE 

NUMBER OF DOMAINS ON FOUR TEST DATASETS. 

Benchmark_3 Precision Recall F1 Score MCC 

2-domain 0.81 1 0.89 

0.64 
3-domain 0.91 0.55 0.68 

4-domain 0.5 0.33 0.4 

Average 0.83 0.82 0.80 

 

ASTRAL SCOP  Precision Recall F1 Score MCC 

2-domain 0.78 0.92 0.84 

0.49 
3-domain 0.68 0.40 0.50 

4-domain 0.76 0.63 0.69 

Average 0.75 0.77 0.75 

 
NR_Dataset Precision Recall F1 Score MCC 

2-domain 0.81 0.96 0.88 

0.72 
3-domain 0.92 0.63 0.75 

4-domain 0.92 0.80 0.86 

Average 0.86 0.85 0.84 

 
Below we discuss the possible reason why SVM failed in 
correctly classifying 3-domain proteins considering few 
representative examples. We observe a common pattern in 
majority of incorrectly classified 3-domain proteins that one 
of the domains is spatially distant from other two. In Figure 2 
(IA), representative example of a 3-domain protein 1IRA (Y) 
is shown, wherein one of the domains, depicted in ‘red is 
spatially distant from the remaining two domains shown in 

 

Protein 
No. of 

Proteins 
SVM-1 

Multi-Domain 

Proteins 
SVM-2 

Domain 

Boundary 

Prediction 
No. of 

Proteins 

No. of 

Domains 

Single 761 92.77 - - - - 

Multi 517 

78.92 

(C: 76.4, 

NC: 82.2) 

331 2 

96.65 

(C: 96.5, 

NC: 96.8) 

87.01 

(C: 87.05, 

NC: 87) 

139 3 

63.11 

(C: 62.9, 

NC: 63.3) 

76.62 

(C: 82,  

NC: 75) 

47 4 

80.85 

(C: 88.2, 

NC: 76.7) 

86.84 

(C: 86.7,  

NC: 87) 

Total 1278 87.17 517 - 

84.80 

(C: 86.5, 
NC: 82.7) 

84.68 

(C: 86,  
NC: 83) 



‘blue’ and ‘green’. In this case, the SVM classified it as a 2-
domain protein, merging blue and green coloured domains 
(shown in green on the right panel, (IB)). Because of their 
spatial proximity, the number of interactions between blue and 
green domains is much higher compared to that between red 
and green domains or red and blue domains. This results in IS-
Sum_2 values comparable to that of average 2-domain 
proteins and the SVM ends up classifying them as 2-domain 
proteins.  Few other examples of similar type of 3-domain 
proteins that are wrongly classified as 2-domain are 3FFK 
(chain A), 1BI3 (chain A), 3C18 (chain A), etc. 

 
Fig. 3: Representative example of a 3-domain proteins in which one domain 
is spatially distant from other two in 1IRA (Y) is shown. On the left (labeled 
‘A’) CATH annotation is depicted with three domains shown in ‘red’, 
‘green’ and ‘blue’, while on the right (labeled ‘B’) the prediction from our 
algorithm is depicted with two domains is close proximity merged and 
represented in ‘green’ colour. 

 
Comparison of Domain Boundaries with CATH: The 
proteins for which number of domains are correctly identified 
in the previous step, domain boundaries are extracted for the 
correct k-split and true prediction is reported if the fraction of 
correctly predicted residues is ≥  75% compared to CATH 
annotation. The results are summarized in the last column of 
Table II. Thus, we see that a simple unsupervised algorithm 
such as k-means is able to capture very well the structural 
features of domains, resulting an overall prediction accuracy 
of ~ 85% on the NR_Dataset. 

Comparison with Other Domain Identification Methods 

Prediction accuracy of NML-DIP is compared with four 

state-of-the-art structure-based domain identification tools, 

namely, CA Algorithm [12], DDomain [13], DomainParser2 

[14] and PDP [15] on two datasets: Benchmark_3 and 

ASTRAL SCOP, shown in Figure 5. It may be noted that the 

performance of NML-DIP is comparable to other four 

approaches and the performance is marginally better for the 

larger ASTRAL SCOP dataset. In Table V the overall 

performance of NML-DIP on the non-redundant NR_Dataset 

is given. We observe that the accuracy in detecting single 

domains on NR_Dataset is significantly higher and the 

overall prediction accuracy of 3-domain proteins is also 

improved on this dataset compared to the other two datasets.  

 

 
Fig. 5: Comparing overall domain prediction accuracy of NML-DIP with 
four state-of-the-art algorithms on three datasets. The results for the four 

algorithms is reproduced from Feldman [12]. 
 

TABLE V: PERFORMANCE OF NML-DIP ON NR_DATASET. 

 1-d 2-d 3-d 4-d Overall 

NML-
DIP 

92.77% 60.73% 42.45% 68.09% 78.09% 

 

IV. CONCLUSION 

It may be noted that the domain identification problem is very 
similar to community detection in a social network in the 
sense that the number of domains or communities is not 
known a priori and also both exhibit large number of 
connections within a community/domain than between 
communities/domains), allowing us to borrow techniques 
from social network theory to address biological problems. 
Further, since numerous definitions have been proposed to 
define a domain, an approach not dependent on the domain 
knowledge is desirable. With this observation we proposed 
here a combination of graph theory (for feature selection) and 
machine learning approach for domain identification. We 
show that using graph properties as feature vectors in SVM 
algorithm provides a reliable approach for domain 
identification. The prediction accuracy of our algorithm on 
ASTRAL SCOP dataset is comparable with other tools. This 
suggests that a combination approach can really help in 
improving the sensitivity of domain detection algorithms. 
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