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AUTONOMOUS CAR : DEPLOYMENT OF 
REINFORCEMENT LEARNING IN VARIOUS 
AUTONOMOUS DRIVING APPLICATIONS 

 

                  POONDRU PRITHVINATH REDDY  

ABSTRACT 

Reinforcement Learning is a type of Machine Learning which allows machines and software agents to automatically determine the 
ideal behavior in order to maximize their performance. The possible applications of Reinforcement Learning are many and in 
particular ranges from controlling vehicle to find the most efficient motor combination, to autonomous car navigation where collision 
avoidance behavior can be learnt by negative feedback from bumping into obstacles. For a vehicle to operate autonomously several 
real-time systems must work together and these include environment mapping and understanding, localization, route planning and 
movement control. An overview of different reinforcement learning applications in Autonomous Driving systems is presented. The 
deep reinforcement learning in single agent setting using convolutional neural networks with Q-Learning and how the single-agent 
model can be used to produce the specific driving behaviour of an autonomous car on a highway is applied. For this, autonomous 
cars are considered as agents learning to drive safely and a traffic simulator is created – including fixed agents and human drivers – 
that serves as the learning environment. Finally, results show that the model using neural networks in a single-agent setting perform 
well when the traffic density is lower. 

INTRODUCTION 

Self-driving car, also known as a robot car, autonomous car, or driverless car, is a vehicle that is capable of sensing its environment 
and moving with little or no human input. Autonomous cars combine a variety of sensors to perceive their surroundings, such as 
radar, Lidar, sonar, GPS, A odometry and inertial measurement units. Advanced control systems interpret sensory information to 
identify appropriate navigation paths, as well as obstacles . 

CONCEPT OF AUTONOMOUS DRIVING 

A car capable of autonomous driving should be able to drive itself without any human input To achieve this, the autonomous car 
needs to sense its environment, navigate and react without human interaction. A wide range of sensors, such as LIDAR, RADAR, 
GPS, wheel odometry sensors and cameras are used by self-driving cars to perceive their surroundings. In addition, the 
autonomous car must have a control system that is able to understand the data received from the sensors and make a difference 
between traffic signs, obstacles, pedestrian and other expected and unexpected things on the road .  

For a vehicle to operate autonomously several real-time systems must work tightly together . These real-time systems, include 
environment mapping and understanding, localisation, route planning and movement control. For these real-time systems to have a 
platform to work on, the self-driving car itself needs to be equipped with the appropriate sensors, computational HW, networking and 
SW infrastructure . 

For a machine to be called a robot, it should satisfy at least three important capabilities: to be able to sense, plan, and act . For a car 
to be called an autonomous car, it should satisfy the same requirements . Self-driving cars are essentially robot cars that can make 
decisions about how to get from point A to point B. The passenger only needs to specify the destination, and the autonomous car 
should be able to take him or her there safely. 

SELF – DRIVING  VEHICLES 

 The following sensors should be present in all self-driving cars:  

Global positioning system (GPS). Global positioning system is used to determine the position of a self-driving car by triangulating 
signals received from GPS satellites . It is often used in combination with data gathered from an IMU and wheel odometry encoder 
for more accurate vehicle positioning and state using sensor fusion algorithms.  

Light detection and ranging (LIDAR). A core sensor of a self-driving car, this measures the distance to an object by sending a laser 
signal and receiving its reflection . It can provide accurate 3D data of the environment, computed from each received laser signal. 
Self-driving vehicles use LIDAR to map the environment and detect and avoid obstacles .  



  

Camera. Camera on board of a self-driving car is used to detect traffic signs, traffic lights, pedestrians, etc. by using image 
processing algorithms .  

RADAR. RADAR is used for the same purposes as LIDAR. The advantages of RADAR over LIDAR are that it is lighter and has the 
capability to operate in different conditions .  

Ultrasound sensors. Ultrasound sensors play an important role in the parking of self-driving vehicles and avoiding and detecting 
obstacles in blind spots, as their range is usually up to 10 metres .  

Wheel odometry encoder. Wheel encoders provide data about the rotation of car’s wheels per second. Odometry makes use of this 
data, calculates the speed, and estimates the car’s position and velocity based on it. Odometry is often used with other sensor’s 
data to determine a car’s position more accurately.  

Inertial measurement unit (IMU). An IMU consists of gyroscopes and accelerometers. These sensors provide data on the rotational 
and linear motion of the car, which is then used to calculate the motion and position of the vehicle regardless of speed . 

On-board computer. This is the core part of any self-driving car. As any computer, it can be of varying power, depending on how 
much sensor data it has to process and how efficient it needs to be. All sensors connect to this computer, which has to make use of 
sensor’s data by understanding it, planning the route and controlling the car’s actuators. The control is performed by sending the 
control commands such as steering angle, throttle and braking to the wheels, motors and servo of the autonomous car .   
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Figure 1 illustrates the SW block diagram of the standard self-driving car.  

Each block seen in Figure 1 can interact with other blocks using inter-process communication (IPC)  and identified the following 
blocks for the SW block diagram of a typical self-driving car:  

Sensor interface modules. All communication between sensors and the car is performed in this block, as it enables data acquired 
from sensors to be shared with other blocks. 
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Perception modules. These modules process perception data from sensors such as LIDAR, RADAR and cameras, then segment 
the processed data to locate different objects that are staying still or moving.  

Navigation modules. Navigation modules determine the behaviour of the self-driving car, as they have route and motion planners, as 
well as a state machine of car’s behaviour . 

Vehicle interface. This interface’s goal is to send control commands such as steering, throttle and braking to the car after the path 
has been plotted in the navigation module.  

Common services. Common services module controls the car’s SW reliability by allowing logging and time-stamping of car’s sensor 
data 

SINGLE-AGENT REINFORCEMENT LEARNING 

Agents 

 An agent: “it is a computer system situated in some environment, and capable of autonomous action in this environment in order to 
meet its design objectives”. First, an agent has to be autonomous; it means that it must be able to act on its own. Second, an agent 
has design objectives, goals that it tries to reach. Indeed, we can distinguish between two key characteristics of an agent: its 
reactivity, its ability to perceive the environment and to respond to changes in it, and its proactivity, its ability to take initiatives and 
act towards its goal.   

Reinforcement Learning 

In machine learning, we distinguish between three types of learning: supervised, unsupervised and reinforcement learning. The 
distinction is usually made by the feedback the agent receives. 

 Supervised learning is the task of learning a function from a labeled data set. By labeled, we mean that the data consists of training 
examples – the inputs – and their wanted output value. The problem can be a classification, if the output is a class, or a regression, 
if the output is one or multiple real values. In both cases, the feedback is the correct output that corresponds to the given input.The 
goal is to be able to label correctly unseen data: examples that were not in the training set. 

 Unsupervised learning is similar to supervised learning, except that the training data is “unlabeled”. In other words, it must learn 
while not receiving any feedback. In this case, an unsupervised learning technique can be applied to identify, for example, different 
groups of types of data (i.e. clustering). 

 In between these two cases stands reinforcement learning where the feedback exists but does not indicate whether the action 
taken was the right one. After acting, the agent gets a feedback, an immediate reward that can be either positive or negative. It is up 
to the agent, and thus the learning algorithm, to use and interpret this reward. Reinforcement learning can be seen as a trial and 
error approach. As the agent is not explicitly told which action to take, it can only evaluate the actions with the rewards it received. 
For this evaluation to be efficient, the agent has to continually interact with the environment and adapt its strategy with regard to the 
rewards it gets.  

Q-Learning  

This value iteration algorithm uses explicitly the state transition probability function T and the reward function R of the MDP( Markov 

Decision Process ) . However, it is usually assumed that the model, which consists of knowledge of T and R, is unknown. In this case, 

we distinguish between two approaches. Model-based algorithms attempt to learn the model and use the estimate of the model to 

compute an optimal policy while model-free methods focus on learning the state value function and use these estimates to get an 

optimal policy. Such methods are generally known as temporal difference methods (Sutton, 1988). 

The Q-learning algorithm (Watkins, 1989) is one of the most popular reinforcement learning techniques. It is a model-free value 

iteration algorithm. 

We define the action-value function, or Q-function, Q
π
 : S × A → R as the expected return of a state-action pair given by the policy π 

. The optimal Q-function is then defined as Q∗(s, a) = max Q
π
(s, a). 

                                                                       π 

Deep Reinforcement Learning 



  

Deep learning is defined as “a class of machine learning techniques that exploit many layers of non-linear information processing for 
supervised or unsupervised feature extraction and transformation, and for pattern analysis and classification” (Deng and Yu, 2014). 
Other definitions are given but we can observe the same two key concepts across all these definitions: deep learning uses multiple 
layers of nonlinear processing units and is based on the supervised or unsupervised learning of feature extractions in each layer, 
with a hierarchy from low-level to high-level features in the layers. As such, complex neural networks fit in this definition. 

Deep Reinforcement Learning refers to the usage of deep learning in a reinforcement learning setting. 

Deep Q-Networks 

The deep reinforcement learning field’s popularity started with the introduction of Deep Q-Networks (DQNs) (Mnih et al., 2015). 
DQNs are deep learning models that combine deep convolutional neural networks with the Q-learning algorithm. Before this, using a 
nonlinear function such as a neural network as a function approximator for the Q-function was known to be unstable. An important 
contribution made by DQNs is the use of experience replay and a target network to stabilize the training of the Q action value 
function approximation with deep neural networks. Q-network thus refers to a neural network function approximator of the Q-
function: Q(s,a;θ) ≈ Q∗(s,a)  

Where θ is the weights of the network. 

Deep Q-Learning 

The deep Q-learning algorithm (Mnih et al., 2013)   uses experience replay. An agent’s experience at a time step t is denoted by et 
and is a tuple (st,at,rt,st+1) consisting of the current state st, the chosen action at, the reward rt and the next state st+1. The 
experiences for all the time steps are stored in a replay memory, over many episodes. We then apply minibatches updates to 
samples of experiences.  

Since the network serves as an approximator for the Q-function, each output neuron of this network corresponds to one valid action, 
and every action is mapped to an output neuron. Thus, after a feedforward pass of that network, the outputs are the estimated Q-
values of the state-action pair defined by the input and the output’s corresponding action. 

Multi-Agent Systems 

A multi-agent system, subsequently referred to as MAS, is a system composed of numerous agents and the environment in which 
they interact (Wooldridge, 2002).  

The main advantage of multi-agent systems is that they can solve problems that single-agent systems cannot when these problems 
are inherently composed of numerous entities. A MAS is essentially a distributed approach and is consequently the most evident 
way of looking at certain systems that are naturally distributed (e.g. robots teams, traffic light networks, electricity grids, etc.). 
Complete surveys of multi-agent systems with a more detailed discussion of their applications and approaches to solve such 
problems can be found in the works of L. Busoniu (Busoniu et al., 2008) and L. Panait (Panait and Luke, 2005). The complexity of 
multi-agent systems often means that we do not always know what action an agent should have taken; supervised learning is 
therefore not applicable often. We can, however, determine when an action was good, whether it led to an optimal situation or just a 
better one. This knowledge should help the learning of the agents and corresponds to the reinforcement learning approach.  

MULTI-AGENT REINFORCEMENT LEARNING 

The multi-agent reinforcement learning (MARL) field is quite recent, but has rapidly grown over the years, with various works 
presenting approaches often based on developments in single-agent reinforcement learning and game theory. MARL techniques 
consider three kinds of tasks: fully cooperative tasks when there is no conflict between the agents’ goals, which is the case when 
they all have the same reward function, fully competitive tasks when the agents have completely conflicting goals (e.g. opposite 
reward functions), and mixed tasks when the setting is neither fully cooperative nor fully competitive: there is no constraint on the 
reward function. The type of tasks can be used to classify the different multi-agent reinforcement learning techniques. We can also 
consider two main categories of MARL techniques depending on whether or not the agents observe one another. If not, they are 
called independent learners and basically ignore each other. This does not change the fact that other agents’ actions could influence 
the environment, but it will be considered as noise. The principal advantage of this approach is that it is then really easy to apply 
single-agent reinforcement learning techniques. Unfortunately, there are some drawbacks as well. Namely, the single-agent RL 
techniques can be used but lose their convergence guarantees and the agents cannot, as they ignore the others, settle for any kind 
of coordination, which would surely be beneficial in most systems. The other approach, where agents actually observe each other, is 
the joint action learners approach. The idea is a disadvantage in itself as observing other agents is costly and the complexity 
increases exponentially with the number of agents in the system.  



  

DRL for Autonomous Driving 

In this section, we present the different modules of the autonomous driving system as shown in Figure 1 and describe how they are 
achieved using classical RL( Reinforcement Learning ) and Deep RL methods.   

Object Detection: Object Detection in an Image Applying DRL and Deep Q-Network. The algorithm can be broadly 

classified into two steps- CNN, and DQN. A pretrained CNN extracts feature from the proposed region. The Deep – Q Network is 
built on top of the CNN that determines the optimal transformation of the bounding box so that the desired object is detected in as 
less number of steps as possible. 

A  drl-RPN, a deep reinforcement learning- based visual recognition model consisting of a sequential region proposal network (RPN) 
and an object detector. Results on the MS COCO and PASCAL VOC challenges show that this approach outperforms  established, 
typical state-of-the-art object detection models. 

 Hierarchical object detection in images guided by a deep reinforcement learning agent where focus is on those parts of the image 
that contain richer information and zoom on them.   This  work compares two different strategies to extract features from a 
convolutional neural network for each region proposal: a first one that computes new feature maps for each region proposal, and a 
second one that computes the feature maps for the whole image to later generate crops for each region proposal. Experiments 
indicate better results for the overlapping candidate proposal strategy and a loss of performance for the cropped image features . 

Vehicle Control: Vehicle control classically has been achieved with predictive control approaches such as Model 

Predictive Control (MPC)(Padenetal.,2016). A recent review on motion planning and control task can be found by authors 
(Schwarting et al., 2018). Classical RL methods are used to perform optimal control in stochastic settings the Linear Quadratic 
Regulator (LQR) in linear regimes and iterative LQR (iLQR) for non-linear regimes are utilized. More recently, random search over 
the parameters for a policy network can perform as well as LQR  

One can note recent work on DQN which is used in (Yu et al., 2016) for simulated autonomous vehicle control where different 
reward functions are examined to produce specific driving behavior. The agent successfully learned the turning actions and 
navigation without crashing. In (Sallab et al., 2016) DRL system for lane keeping assist is introduced for discrete actions (DQN) and 
continuous actions (DDAC),where theTORCS car simulator is used and concluded that, as expected, the continuous actions provide 
smoother trajectories, and the more restricted termination conditions, the slower convergence time to learn. Wayve, a recent startup, 
has recently demonstrated an application of DRL (DDPG) for AD using a full-sized autonomous vehicle (Kendall et al., 2018). The 
system was first trained in simulation, before being trained in real time using onboard computers, and was able to learn to follow a 
lane, successfully completing a real-world trial on a 250 metre section of road. 

DQN for ramp merging: The AD problem of ramp merging is tackled in (Wang and Chan, 2017), where DRL is applied 

to find an optimal driving policy using LSTM for producing an internal state containing historical driving information and DQN for Q-
function approximation. Q-function for lane change: A Reinforcement Learning approach is proposed in (Wang et al., 2018) to train 
the vehicle agent to learn an automated lane change in a smooth and efficient behavior, where the coefficients of the Q-function are 
learned from neural networks. 

IRL for driving styles: Individual perception of comfort from demonstration is proposed in (Kuderer et al., 2015), where 

individual driving styles are modeled in terms of a cost function and use feature based inverse reinforcement learning ( IRL ) to 
compute trajectories in vehicle autonomous mode. Using Deep Q-Networks as the refinement step in IRL is proposed in 
(Sharifzadeh et al., 2016) to extract the rewards. While evaluated in a simulated autonomous driving environment, it is shown that 
the agent performs a human-like lane change behavior. 

Multiple-goal RL for overtaking: In (Ngai and Yung, 2011) a multiple-goal reinforcement learning (MGRL) 

framework is used to solve the vehicle overtaking problem. This work is found to be able to take correct actions for overtaking while 
avoiding collisions and keeping almost steady speed.  

Hierarchical Reinforcement Learning(HRL): Contrary conventional or flat RL, HRL refers to the 

decomposition of complex agent behavior using temporal abstraction, such as the options framework (Barto and Mahadevan, 2003). 
The problem of sequential decision making for autonomous driving with distinct behaviors is tackled in (Chen et al., 2018). A 
hierarchical neural network policy is proposed where the network is trained with the Semi-Markov Decision Process (SMDP) though 
the proposed hierarchical policy gradient method. The method is applied to a traffic light passing scenario, and it is shown that the 
method is able to select correct decisions providing better performance compared to a non-hierarchical reinforcement learning 
approach. An RL-based hierarchical framework for autonomous multi-lane cruising is proposed in (Nosrati et al., 2018) and it is 
shown that the hierarchical design enables significantly better learning performance than a flat design for DQN  method.                                                                         



  

Frameworks A framework for an end-end Deep Reinforcement Learning pipeline for autonomous driving is proposed in 

(Sallab et al., 2017), where the inputs are the states of the environment and their aggregations over time, and the output is the 
driving actions. The framework integrates RNNs and attention glimpse network, and tested for lane keep assist algorithm.   

Object Prediction 

In this section, we present some examples of applications of IOC and IRL to predictive perception tasks. Given a certain instance 
where the autonomous agent is driving in the scene, the goal of predictive perception algorithms are to predict the trajectories or 
intention of movement of other actors in the environment. The authors (Djuric et al., 2018), trained a deep convolutional neural 
network (CNN) to predict short-term vehicle trajectories, while accounting for inherent uncertainty of vehicle motion in road traffic. 
Deep Stochastic IOC (inverse optimal control) RNN Encoder-Decoder (DESIRE) (Lee et al., 2017) is a framework used to estimate 
a distribution and not just a simple prediction of an agent’s future positions. This is based on the context (intersection, relative 
position of other agents). 

Pedestrian Intention: Pedestrian intents to cross the road, board another vehicle, or is the driver in the parked car 

going to open the door (Erran and Scheider, 2017) . Authors in (Ziebart et al., 2009) perform maximum entropy inverse optimal 
control to learn a generic cost function for a robot to avoid pedestrians. Authors (Kitani et al., 2012) used inverse optimal control to 
predict pedestrian paths by considering scene semantics. 

Traffic Negotiation: When in traffic scenarios involving multiple agents, policies learned require agents to negotiate 

movement in densely populated areas and with continuous movement. MobilEye demonstrated the use of the options framework 
(Shalev-Shwartz et al., 2016). 

Incorporating safety in DRL for AD 

Deploying an autonomous vehicle after training directly could be dangerous. We review different approaches to incorporate safety 
into DRL algorithms for Autonomous Driving ( AD ). 

Multi-agent RL for comfort driving and safety: In (Shalev-Shwartz et al., 2016), autonomous driving is 

addressed as a multi-agent setting where the host vehicle applies negotiations in different scenarios; where balancing is maintained 
between unexpected behavior of other drivers and not to be too defensive. The problem is decomposed into a policy for learned 
desires to enable comfort of driving, and trajectory planning with hard constraints for safety of driving. 

DDPG and safety based control: The deep reinforcement learning (DDPG) and safety based control are 

combined in (Xiong et al., 2016), including artificial potential field method that is widely used for robot path planning. Using TORCS 
environment, the DDPG is used first for learning a driving policy in a stable and familiar environment, then policy network and 
safety-based control are combined to avoid collisions. It was found that combination of DRL and safety-based control performs  well 
in most scenarios. 

AUTONOMOUS VEHICLE CONTROL VIA DRL TO PRODUCE 
SPECIFIC HIGHWAY DRIVING BEHAVIOUR 

This ia an application of Deep Reinforcement Learning for autonomous vehicle control to produce specific driving behavior on a 
Highway.           

The first step is to  set the  highway environment; an arbitrary number of straight lanes with exits 

The goal  is to study the behavior of autonomous cars – individual self-learning cars – in traffic,  who make decisions based on their 
current situation on the highway. 

The  key part of our environment is the highway. It is defined by its structure – that is, the lanes, the exits, the size of the lanes, etc – 
and by the cars driving on it  and also the dynamics of cars movement and happening of car crashes. 

The highway can be seen as a group of lanes and a lane can be seen as a group of cells. The position of a car on the highway is 
defined by the lane and the cell of that lane that it is in. To simplify the highway is defined by the lane index as the y coordinate and 
the cell index as the x coordinate. 



  

The right-end lane of the highway is the exit lane. It is a lane where drivers go only to take an exit. As soon as a car reaches an exit, 
it is considered out of the highway and consequently out of the environment. The same goes for cars that reach the end of a lane 
This is an attempt to mimic real life where highway exits are indicated multiple times with the remaining distance to that exit. The 
distance between two consecutive exits is always the same, as well as the distance between the start of the highway and the first 
exit. 

There are four types of cells: car cells where agents drive, exit cells where agents can leave the highway, exit indication cells that 
indicate the current and next exits, and off-road cells, cells on the exit lane that are not exits nor indications. Cars cannot go on 
these cells and movements passing by or going to these cells are never considered by the drivers. 

Each car has two  attributes: its speed and its acceleration that can change at every time step t.  The speed vt and acceleration αt 
are bounded; the speed cannot be negative or greater than the cars’ maximum speed v

max
 and the acceleration cannot be greater, in 

absolute value, than the cars’ maximum acceleration α
max

. These attributes are discrete variables and can only take integer values. 
The speed at some time step t depends on both the speed and the acceleration of the previous time step t − 1. For example, when 
the speed vt = v

max
, the acceleration αt can only be negative or equal to zero. 

Movements 

At each time step, a car c’s x position, denoted by xc,t, is updated according to its speed vc,t and its acceleration αc,t while its y 
position (i.e. the lane), denoted yc,t, depends on their chosen direction, denoted dc,t. 

Regardless of the direction, the length lc,t of the car’s move at the time step t is equal to the car’s updated speed, vc,t+1 of that time 
step and corresponds to the number of cells that it will advance. 

lt = vt+1 = vt + αt  

The x position is then updated as follows: 

Xc,t+1 = xc,t  + lc,t  

When the new speed vt+1 is equal to 0, the destination cell will be the initial position of the car at that time step. 

The y position is updated according to the direction dc,t. The car can only change lane when the movement length lc,t is greater than 
0. Otherwise, the car is still and does not move. 

               yc,t −1 if dc,t = LEFT and lc,t > 0 

                  yc,t+1 =              yc,t + 1 if dc,t = RIGHT and lc,t > 0 

                                             yc,t if dc,t = FORWARD or lc,t = 0       

All directions are not always possible; when a car is in the left-end lane, it can only go forward or to the right, as turning left would 
lead outside the highway. Similarly, when it is on the right-end lane, it can only go forward or turn left unless it is taking an exit when 
going to the right. Finally, we add an attribute to the car, the status of their blinkers, denoted bc,t, that indicates which direction the 
car is taking:                                                  

                     LEFT if dc,t = LEFT and lc,t > 0 

                  bc,t  =          RIGHT if dc,t = RIGHT and lc,t > 0 

                                      null if dc,t = FORWARD or lc,t = 0 

Crashes 

When considering two cars c1 and c2 and their respective initial position (xc1,t, yc1,t) and (xc2,t, yc2,t) and destination (xc1,t+1, yc1,t+1) 



  

and (xc2,t+1, yc2,t+1), we have to determine whether they are crossing paths at the same time step and crashing. 

When a car moves from the position (xt, yt) to the position (xt+1, yt+1) at some time step, it does not disappear from its initial position to 

appear in the destination afterwards. The car passes by intermediary positions or passing cells, denoted PC. For the forward 

direction, these passing cells are easily defined as the cells located between the starting and destination cells of the move:  

 P Ct+1 = 
,

(x, yt) | x ∈  [xt + 1, xt+1 – 1 ] 

For the other directions, when the car changes lanes, we consider that the car effectively crosses the lane lines in the middle of the 
movement; at this moment, the car is considered to be in both lanes. Before that, the car is still in its initial lane, and after that it is in 
the new lane. The passing cells are 

                                                :{. (x,yt) | x ∈ (xt + 1,xt +(lt + 1)/ 2 ) } 

           P Ct+1  =      ᴜ 

                                                 {  (x,yt+1) | x ∈ [xt +(lt / 2),xt+1 −1] } 

Two cars crash when they are in or pass by the same cell during the same time step t. A car c1 and a car c2 will crash when 

 {P Cc1,t+1 ∪  (xc1,t+1, yc1,t+1)} 
 
∩  {P Cc2,t+1 ∪  (xc2,t+1, yc2,t+1)}

 
≠ ∅  

There are  two possible situations where cars cross paths and consequently crash. One situation could be when a car’s destination 
is one of another car’s passing cells.  

Environment’s States  

A state s of the highway is a list of all the cells of this highway, with information about what is in the cell at that moment or about 
what type of cell it is. We denote Hx,y the cell located at the xth position on the yth lane. For off-road and exit cells, the only 
information is the type of the cell. For exit indication cells, the information is the exits indicated: the number of this exit ei and of the 
next one ei+1. Finally, for car cells, the information can be one of three things. If there is a car, the information is the speed, 
acceleration, and blinkers’ status of the car. If there is a crash, the information is simply an indication that there is a crash. If there is 
nothing, the information indicates as much. By unifying everything, we have: 

A highway cell Hx,y is a tuple (o,e,v,α,b,i1,i2) where 

• o indicates if the cell is an off-road cell (1) or not (0); 

• e indicates if the cell is an exit cell (1) or not (0); 

• v indicates the speed of the car currently in the cell, if any; 

• α indicates the acceleration of the car currently in the cell, if any; 

• b is the blinkers’ status of the car currently in the cell, if any; 

• i1 is the number of the indicated exit if the cell is an indication cell; 

• i2 is the number of the next exit, if any, if the cell is an indication cell 

We can now formally define a state s at a time step t:            st ={Ht,x,y | 0 ≤ x < X,0 ≤ y ≤ Y} 



  

Where Ht,x,y is the highway cell at the position x,y  for the time step t, X is the size of the lanes, and Y is the number of lanes. 

Actions 

The car can choose a direction directly as it corresponds to turning the wheel in a certain way. This direction can be left, right or 
forward. However, the car cannot choose the speed they want to have; changing speed means accelerating or decelerating. 

An action is consequently composed of a direction dt and an acceleration αt. This acceleration is bounded. In conclusion, the set of 
possible actions A is: 

                A ={(d,α) | d ∈{LEFT,RIGHT,FORWARD},−αmax ≤ α ≤ αmax }  

 At a given time step t, some actions can be “impossible”. Namely, when an action’s corresponding move is forbidden in our system, 
this action will not be considered.. A forbidden move is a situation where the destination or one of the passing cells of that move is 
outside the highway; this includes the off-road cells of the exit lane. Moreover, actions whose acceleration will make the updated 
speed outside the speed bounds defined  are also considered impossible.   For example, when αmax = 1, the set of actions is:     

                                                (LEFT, −1), 

                                                (LEFT, 0), 

                                                (LEFT, +1),  

                                                (FORWARD, −1),  

                     A  =                     (FORWARD, 0),        

                                                (FORWARD, +1), 

                                                    (RIGHT, −1),  

                                                    (RIGHT, 0), 

                                                    (RIGHT, +1)             

Furthermore, the length of the action set depends on the number of directions, which is always 3, and the number of possible 
accelerations.  |A| = 3 × (2αmax  + 1) . 

Lanes’ Preferred Speed 

To overtake another car, a car must go to the lane on the left and drive faster. This leads to the observation that the average speed 
in a lane should be higher the farther to the left this lane is.The preferred speed of a lane between these two extremes will depend 
on both the number of lanes (excluding the exit lane) and the number of possible speeds (excluding 0). We denote  the i

th
 lane Li 

and its preferred speed v
Li . We want to guarantee a fair and balanced distribution of the preferred speeds across the lanes. The 

simplest case is when the number of lanes Y is a multiple of the number of possible speeds m. In such cases, each speed v
k
 will be 

the preferred speed of nvk = Y/ m lanes, ordered from highest (left-end lane) to lowest (right-end lane). For example, if Y = 6 and m 

= 3, the preferred speeds of the lanes, from left to right, will be 3, 3, 2, 2, 1, 1. When Y is not a multiple of m,   nvk  is not the same 

for all speeds v
k
. Some speeds will be the preferred speeds of more lanes. We decided that these speeds should be the higher 

ones. For example, if Y = 4 and m = 3, the preferred speeds of the lanes will be 3, 3, 2, 1. The number of speeds that appear more 
times as a preferred speed is given by the rest of the division of Y by m.. 

With this construction, the preferred speeds’ distribution will always respect the following conditions 



  

                     nvk   = {  [ Y/m ] if k ≤ (Y mod  m },  [Y/m]+ 1 otherwise    

In conclusion, once we know how many times each speed should appear as a lane’s preferred speed, we just need to distribute 
them correctly, by respecting the first condition. 

Simulator - Generating Traffic 

 A driver arrives actually in Highway refers to when – which time step – and where – which lane – they arrive in the environment. To 
do so, we use a new parameter for the highway, the traffic density, denoted τ, that serves as the probability, at each time step and 
for each lane, that a new driver is arriving in this lane. 

The traffic generation process is summarized as below : 

For all lane do 

                      if lane’s initial position is free then 

                                    if random < τ, with probability τ then 

                                         driver ← randomly initialized driver 

                                          driver enters lane  

                                     end  

                        end  

end 

Simulator - Highway Steps 

The highway is updated sequentially from right to left. To implement this, we divide a highway time step into two “sub-steps”, that we 
call the observation step where the drivers observe the environment and choose an action, and the update step where we update 
the highway’s state by executing the drivers’ actions. The observation step is done sequentially from right to left. During this step, 
the drivers choose their action; if they are going to change lanes, their blinkers are turned on so that drivers behind them can know 
which direction they are going to take. After the observation step, all drivers have chosen their action, and we can now update the 
highway: this is the update step, which is done sequentially from left to right. We update the highway from left to right because we 
want the crashes that can happen in different cells to actually happen in the first possible cell – starting from the left.  

Simulation Parameters 

We can identify the parameters  of the highway  that constitute the simulation parameters: 

• Number of lanes X > 0, L ∈N 

 • Size of the lanes Y > 0, C ∈N 

 • Number of exits E ≥ 0, E ∈N 

 • Size of the exits Se > 0, Se ∈N 

 • Size of the space between two exits Ss > 0, Ss ∈N 

 • Crash duration Tf > 0, Tf ∈N  

 • Traffic density τ ∈ [0,1] 



  

 • Cars’ maximum speed vmax > 0, vmax ∈N 

 • Cars’ maximum acceleration σmax > 0, σmax ∈N 

 Simulator - Highway Performance 

 We have a fully functional traffic simulator and, we would like to see how well it performs and mirrors real-world traffic. First, we 
have to define what a good performance is; we want to maximize the ratio of cars that reach their goal and minimize the number of 
crashes. It is clear that the result of a simulation depends on the chosen parameters . Hence, we focus on what   we consider to be 
the most important ones: the traffic density. We run a series of tests to analyze the percentage of each outcome and. to do that, we 
fixed the other parameters: 

 • Number of lanes = 5 

 • Size of the lanes = 80 

 • Number of exits = 2 

 • Size of the exits = 5 

 • Size of the space between two exits = 7 

 • Crash duration = 10 

 • Cars’ maximum speed = 3 

 • Cars’ maximum acceleration = 2 

The possible outcomes are called goal if the driver reaches their goal, crash if they crash and missed goal if the driver does not 
reach their goal (e.g. misses their exit).  We run the simulation for 3000 time steps and repeat it 20 times to compute the average.  

From the percentage of each outcome – goal, crash or missed goal – for three traffic densities we can see that when the traffic 
density increases,   the simulator behave poorly. With a lower traffic density, there should be more space between the drivers and 
they consequently have more room to make mistakes or, in this case, random actions is done for three different traffic densities: 
0.25, 0.50, and 0.75.  

The simulator has been implemented in Python . 

Autonomous Cars 

Agents – Attributes 

We opt for the agents; they have  the  attributes: the sight and the goal. While the goal is chosen randomly when an agent arrives on 
the highway, the sight is always fixed to the some value. The other noticeable fact is that our learning agents do not have a desired 
speed. We define the autonomous cars as entities whose primary concern is to avoid crashing; they should consequently not exhibit 
any preference for a certain speed as long as they are driving safely. Furthermore, we add an attribute ϵ to these learning agents; 
this is their probability of choosing a random action at each time step. 

Rewards 

We need to define the reward function R; there are three different final states the agents can be in. First, they can reach their goal, 
whether it is taking an exit or not. Second, they can miss their goal; they either took a wrong exit or missed their exit. Finally, they 
can crash. Hence, we define the following rewards:  

•  ρω , the reward received by the agent when it reached its goal 

•  ρω̄ ,  the  reward  received  by  the  agent  when  it  failed  to  reach  its  goal  but  did  not crash 



  

•  ρf , the reward received by the agent when it crashed 

Since reaching the goal and crashing are completely opposite outcomes, we define  ρω = - ρf . Moreover, since missing the goal but 
not crashing is preferable to causing an accident but is a less desirable outcome than reaching the goal, the value of this reward 
should be smaller, such that  ρf  = −ρω < ρω̄ < ρω. The agent gets these final rewards at the time step that effectively ends its run on 
the highway. For all the other previous time steps, it receives a default reward that is always equal to 0. However, the agent receives 
another reward ρ0, a small penalty, when the agent’s speed is 0; our environment is a highway and cars should not be still, unless 
there is congestion. 

Agents as Drivers 

Given that we define learning agents the same way as the human drivers, we can seamlessly add them in the simulator. The only 
difference is how they will choose an action: by using their learning  model, a neural network. We can therefore adapt the highway’s 
time step’s algorithm  to take the learning agent into account for the observation step. To decide what action it should take, the 
reinforcement learning agent uses a neural network to approximate the Q-function . Thus, at every time step t, the agent c observes 
its state sc,t; this state is then processed in some way so that it can be passed to a neural network whose outputs correspond to all 
the possible actions. The values of these outputs are the estimated Q-values, Q(sc,t, a ); as it is using a neural network θ, we denote 
the Q-function approximated with that network by Q(s,t;θ). The agent then uses an ϵ-greedy strategy to choose the action  ac,t. 

The neural network used by the learning agent will be trained with reinforcement learning by using different methods. 

Neural Network Models 

Presently different neural network models are available that we will use to train our autonomous cars. These models define what 
information the learning agents use and how they are encoded as inputs to the neural networks. 

Before we start with our model, we need to define the building structure; how these neural networks are used by the learning 
agents. We use a feedforward neural network  whose outputs correspond to the possible actions. Our models define different ways 
of using information about the agent’s current state. Thus, they either encode different information or encode the same information 
differently to produce the inputs.  

Required Information 

We  start by defining the minimum amount of information that  an autonomous car should have. Consequently, the model that we 
design will possess these pieces of information. They are: 

• The current lane that the agent is in 

• The current speed of the agent 

• The goal of the agent 

• What the agent sees; cars, crashes and exit indications 

Cars Time-Step  Model 

 The  model is based on the idea as the cars presence at different time steps; we use information about the previous time step (the 
cars’ presence represented by the observation matrix O) instead of the current speed of the cars. This time, the observation matrix 
of the previous time step t−1, denoted Ot−1, is not additional inputs, but it forms, along with the current observation matrix, a 3-
dimensional matrix with time as the third dimension. We then pass this matrix through a 3-dimensional convolutional neural network 
. We also keep decreasing the number of inputs by including the learning agent itself in its observation matrix. To differentiate itself 
from the other cars, the value is not 1 but 0.5. This way, the only additional information required are the exits and the agent’s goal. 
Figure 2 illustrates this model that we call cars time-step, as it encodes the cars’ presence at different time steps. 

The learning agent is shown in orange while cars in its field of view are in grey. All the input vectors are concatenated and passed to 
the network. 

 



  

                                                                                    Exits 

                             

CNN Outputs              Exits   Goal      

                                

                      Figure 2 : Cars Time-Step model encoding 

 what we explained only considers a length of 2 (current and previous time steps) for the time dimension. The model can however 
be extended to longer time dimensions. 

In an attempt to decrease the number of inputs, this model also introduces a simplification of the exits’ encoding. We now encode 
the exits in a relative way; instead of having a vector for each exit, we have only one vector, and the value is not binary anymore. If 
the exit indication in the field of view is, for example, the first exit out of 3, the value will be 1/3  = 0.33. Likewise, the encoding of the 
goal of the agent is now a single real-value that is 0 if the goal is to continue on the highway, or the relative number of the exit it 
wants to take. 

Deep Reinforcement Learning 

Single-Agent Setting 

We first train autonomous cars in a single-agent environment; there is only one learning agent on the highway, other cars are our 
simulated human drivers.  The model  was implemented in Python  with the module Keras with TensorFlow as back-end. 

Training 

Now that we have defined  our neural network model and the simulator, it is time to tackle our main problem: making an 
autonomous car learn how to drive. 
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Training Scheme 

The training environment  set up for our learning agent is divided into episodes. One episode consists of a full run, or simulation, of 
the agent on the highway. 

First, as the agent could potentially stay still indefinitely, if it always chooses to stay at the speed zero, we need to guarantee that its 
run on the highway will come to an end. We thus define a maximum number of steps  T 

max 
; if the agent’s run on the highway 

reaches this upper bound, we consider the run over and introduce another reward, denoted ρT  , for this new outcome: the overtime 
outcome. Furthermore, the value of  T 

max
 must be chosen wisely. The bound must not be too low nor too great. As the time required 

for an agent to leave the highway depends on the size of the lane X, we need to define the overtime bound based on this value. We 
could then use twice that value, 2×X, but it means that the agent could potential stay still half of the time and still finish its run. 
Finally, we define arbitrarily    T 

max
 as 2×X −10; we want the agent to actually drive more often than it is not moving. 

Second, we want our learning agent to arrive in a highway after some time, to ensure that it arrives in a situation where it is not the 
only car on the highway. To do that, we perform an arbitrary number of highway time step updates, usually 20, before adding the 
agent in the system. Then, we randomly initialize the attributes – speed v and lane y – of the agent and add it on the highway. Note 
that if it cannot, for some reason, be placed in its lane, we perform other highway time step updates until it is possible. 

Finally, we use experience replay  to train the network in an online fashion; at each time step, we sample a batch of experiences 
from the memory and train the network with it.  

The training of the neural network – that is, the weights updates – is done by the module Keras itself. The model was compiled with 
the stochastic gradient descent optimizer and the mean squared error loss function. 

To train the network, Keras needs inputs for this network as well as the wanted, target outputs of these inputs. Thus, we need to 
define these target outputs according to the chosen action. To do that, we define the target outputs as the outputs that we get from 
the network except for the chosen action. For this particular output, we set its target value to the newly estimated Q-value. That is, if 
the new state is final, the immediate reward rt  received; otherwise, the immediate reward and the discounted best possible future 
reward as estimated by the network. In short, when an agent in state  sk performs action ak  that yields the immediate reward rk and 
arrives in the next state sk+1 , we define the target outputs y as: 

        Q(sk, a; θ)               if a ≠ ak 

     rk + γ max Q(sk+1, a
j; θ) if a = ak 

                                                                                          aj                                         
Where Q(sk+1,a;θ) is equal to 0 for every action a when sk+1 is final. 

This whole process is formalized in below Algorithm. 

Algorithm : Single-agent training algorithm 

Initialize replay memory D of length M 

for episode = 1, ..., N do 

Initialize highway H according to fixed highway parameters 

for t = 1, ..., 20 do 

Perform one time step update of the highway H 

end 

Initialize learning agent c with a fixed sight φc
+ and s 

Choose randomly lane y in which to add the agent, and speed v  of the agent 

while agent cannot enter lane y do 

Perform one time step update of the highway H 

end 

Add the learning agent c on the highway 

for t = 1, ..., T max do 
Perform one time step update of the highway H 

/* Experience replay */ 



  

 

 

Observe the state st, action at and reward rt of the agent for that time step, and the 

next state st+1 

Store experience (st, at, rt, st+1) in D 

if replay memory D is full then 

Sample minibatch of size B from experience memory D 

Initialize batch training buffer of size B   

for experience (sk, ak, rk, sk+1) in minibatch do 
Get network outputs y according to Q(sk, a; θ) 

 
 

       Set yak    
=  

rk    if state sk+1 is final 

                                                              rk + γ max Q(sk+1, a
j; θ)       if state sk+1 is not final                                       

                                                                                                       aj 
Store (sk, y) in batch training buffer 

end 

Train network θ against batch training buffer                   

                                   end 

                               end 
           end 

Training Parameters 

A training experiment is defined by numerous parameters; first, the traffic simulator and all its own parameter, and all the 

parameters regarding the learning agent and the training algorithm. These parameters are: 

• φc
+
 ,   the sight of the learning agent (its backsight φc

−
 = φc

+
 − 1) 

 
           • s, the agent’s probability of choosing a random action 

• R, the reward function; which corresponds to defining the different rewards ρω, 

ρω̄ , ρf , ρ0 and ρT 

• µc, the neural network model used by the agent 

• γ, the discount factor as defined for the MDP 

• α, the learning rate for the neural network training 

• N , the number of training episodes 

• M , the size of the experience memory buffer 

• B, the size of the batches of experiences 

 
Moreover, the hidden structure of the neural network model µc can also be chosen; this includes the number of hidden 

layers, the number of neurons in these layers, their activation function, and the dropout rate δc (0 if we do not want to use 

dropout) to apply to each layer. Finally, if the chosen model is a CNN one, the structure of the convolutional networks can also 

be set: the number of convolutional layers with their stride and the number and size of the filters. 

Learning – sampling batches of experiences to update the network’s weights – starts once the experience memory buffer is 

full: after encountering M experiences. 

Experiments  
For our experiments, we  train  the  model we presented earlier. Moreover, we also repeat the same experiments we trained our 

model with TensorFlow as back-end. We also considered different possible hidden structures for the neural networks. 

Settings 



  

Simulation parameters 

Number of lanes Y 3 

Lane size X 40 

Number of exits E 0 

Exit size Se 5 

Space size Ss 7 

Crash duration D 10 

Traffic density τ 0.25 

Cars’ maximum speed vmax 3 

Cars’ maximum acceleration αmax 2 

 

Learning parameters 

Number of episodes N 50000 

Batch size B 25 

Experience memory size M 50 

Learning rate α 0.01 

Discount factor γ 0.9 

Agent’s sight φc
+ 

 
6 

Agent’s s 0.05 

 

For our experiments, most of the parameters are fixed. We present them in Table 1. The structure of the CNNs for the  cars 

time-step model are also fixed: there are two convolutional layers, the first with a stride of 1 and 16 filters of   size 4 × 4,  and 

the second with a stride of 1 and 32 filters of size 2 × 2. 

Finally, the reward system of our learning agent is fixed, and the values are shown in Table 2. 

 

Results 
The training results are  the evolution of the percentage of outcomes (accumulated) throughout the training process.  

 

  

                                                                                  Table 1: Single-agent training’s fixed parameters 

                                                  

 

 

 

 

 

                                               Table 2: Single-agent training’s reward system 
 
We tested three different configurations for the hidden structures of the networks: 
 
•   2 hidden layers: the first with 60 neurons and a tanh activation function; the second with 30 neurons and a linear activation 
fucntion. No dropout. 
 
•   2 hidden layers: the first with 150 neurons and a tanh activation function; the second with 75 neurons and a linear activation 
fucntion. No dropout. 
 
•   2 hidden layers: the first with 300 neurons and a tanh activation function; the second with 150 neurons and a linear activation 
fucntion. No dropout. 

 
The results

5
 for our CNN based model – the cars time-step model –  either they learn fairly well or they learn before stabilizing at 

an average of 40% of goal reached. The networks that do not use dropout seem to learn well.  The percentage of goal reached for 

the  networks (without dropout) is high and increases with the number of hidden neurons: approximately 70% for the 60/30 hidden 

neurons structure, 85% for the 150/75 hidden neurons structure and 90% for the 300/150 hidden neurons structure. 

 Reward ρ Value 

Goal ρω +1 

Missed goal ρω̄ -0.15 

Crash ρf -1 

No speed penalty ρ0 -0.01 

Overtime ρT -0.4 

 



  

Testing the Trained Model 

 
We now have trained model that we want to test: see how it perform when the agent using the model does not learn any further but 

just exploits what it has learned. Hence, we perform tests which consist of basically the same setting, except for the s value of the 

agent that is now set to 0 so that the agent only exploits. 

We test our newly trained agent in two different situations: 

 

• With a traffic density τ = 0.25 (same as training)  

• With a traffic density τ = 0.75  

 
 The tests for the cars time-step model mostly resemble what can be expected from the training: if the training is good, it 

performs well when the traffic density is the same as the one used to train the model, but it does not adapt well when the traffic 

density increases ; if it does not learn well during training, it performs poorly . The only exception is for the model with 300 and 

150 hidden neurons : even though the training is promising, our tests show a bad performance, this can be caused by the fact that 

this model was trained for fewer episodes. 

CONCLUSION 
Autonomous Driving systems are complex and present a challenging environment. Reinforcement Learning for autonomous 

systems development is very promising where the required behaviours to be learned from simulator and further refined on real 

datasets. An overview of autonomous vehicles components and applications of RL for autonomous driving is provided. Designed 

neural network model with convolutions and Q-learning in order to solve the problem of autonomous driving to produce specific 

driving behaviour on a Highway with deep reinforcement learning. At first trained our model for a single-agent environment and 

results show that the learning agent was able to learn the behaviour and even achieved high performance. However as the 

training is done in one fixed setting of the highway, the models aptitude to adopt to a new setting of the environment – higher 

traffic density, etc is not always good. 

REFERENCES 

1. https://github.com/ 

2. Victor Talpaert, Ibrahim Sobh, B Ravi Kiran, Patrick Mannion, Senthil Yogamani, Ahmad El-Sallab and Patrick Perez: 
“Exploring applications of deep reinforcement learning for real-world autonomous driving systems” 

                                                                          URL- https://arxiv.org/pdf/ 

3. L. MARINA,  A. SANDU : “DEEP REINFORCEMENT LEARNING FOR AUTONOMOUS VEHICLES - STATE OF THE 
ART” URL- https://pdfs.semanticscholar.org/ 

4. Manon Legrand : “Deep Reinforcement Learning for Autonomous Vehicle Control among Human Drivers “. Universitas 

Bruxellensis. 

https://arxiv.org/
https://pdfs.semanticscholar.org/

