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Abstract : Computer simulations are used to test how the branching process model is available 

to discuss the 1 �⁄  problem with the equations described in my previous paper, in which a 

particle may branch into several particles, be absorbed or be observed by a detector.  In this 

work it is assumed that exactly two particles are produced by a branching.  The simulations 

demonstrate that the power spectrum of a series formed by time intervals between successive 

detections of particles is characterized by a 1 �⁄  distribution in a wide range of frequency 

(more than seven decades) when a branching rate of a particle is equal to an absorption rate of 

the particle in the medium.  When the branching rate is less than the absorption rate, the 

power spectrum turns off from a 1 �⁄  distribution in a lower frequency-range. 

 

 

1. Introduction 

  The mathematical expressions for generating time series of events are given in the previous 

work(1) by using the branching process model.  For a medium in which a particle may be subjected 

to absorption and branching reactions, the conditional probability ),( tnP
k

 that n particles are 

found in the medium at time � > 0 after we had k particles at � = 0 in the presence of random 

particles immigration with the rate S is given in Ref. (1) as 

 
� �, �� = � �����������
��� , (1-1) 

where ������
 and ����

 are the contribution of the k particles in the medium at � = 0 and of the 

particle immigrating into the medium during the time interval (0, t), respectively.  They are given 

here again. 

 ������ = � ��, ������������,���
���  (1-2) 

and 

 ���� = ��,�. (1-3) 

When the multiplication rate of a particleμand the parameterαare defined as 

 μ =  !  "⁄  and α =  " −  ! = 1 − %� ", (1-4) 

where  " and  ! are the absorption and branching rates, respectively, of a particle, the function ��, �� for the case of binary branching process in Eq. (1-2) is given as 
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��, �� =
⎩⎪⎨
⎪⎧ *�        � = 0�

+ 1 − %1 − %,�-./0 ,�-.        � = 1�%*� ∙ �� − 1, ��        � ≥ 2�, (1-5) 

in the case of μ ≠ 1 (subcritical case), and 

 

��, �� =
⎩⎪⎨
⎪⎧ *0       � = 0�

+*0 "�/0       � = 1�*0 ∙ �� − 1, ��       � ≥ 2�, (1-6) 

in the case of μ=1 (critical case).  Here, the functions W1 and W2 are defined, respectively, as 

 *� = 1 − ,�-.1 − %,�-., (1-7) 

and 

 *0 =  "� "� + 1. (1-8) 

The contribution of the particle immigration ����
 is obtained as, when μ ≠ 1 

 ���� = 6 exp : ;<=> ln ��<��<ABCDE       F = 0�
GHI>J���� %*� ∙ ������       F ≥ 1�, (1-9) 

and whenμ=1 

 ���� = 6exp :− ;=> ln 1 +  "��E       F = 0�
GI>J���� %*0������       F ≥ 1�. (1-10) 

  The existing particle number in every time interval K� % ≠ 1�  or  "� % = 1�  was generated successively 

using the probability described by Eq. (1-1).  The 

generation of the time series for existing particle 

number was started from the initial particle number 

N0=100.  In order to avoid the possibility of the 

particle number increasing to infinity or dying out, the 

random immigration rate was chosen to be S = KM� 

when μ < 1  (subcritical case), considering the mean 

number of particles at � → ∞ is S/α(2), and S=0 when % = 1 (critical case).  If S > 0 in a critical system, the 

mean particle number will increase with time and 

diverge eventually to infinity.  The power spectral 

density (PSD) in case of % = 1 is shown in Fig. 1, where the series was analyzed using the fast 

Fourier transformation technique (FFT) with the size of series of 67108864 points, and behaves 

clearly like ��0 over seven decades of frequency f.  The PSD seems to deviate from the ��0 line in 

Fig. 1.  The PSD of the time series in case 

of % = 1.  The straight line gives the ��0 

behavior. 
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a low-frequency range lower than about 2x10-3.  Here, time is measured in unit of 1  "⁄  (mean 

lifetime of a particle absorbed in the medium).  

Four examples of the PSD in 

case of μ < 1 are shown in Fig. 

2.  In all these cases the PSD 

converges to a finite value in a 

low-frequency range, while it 

holds the ��0 behavior in the 

high-frequency range.  The 

transition frequency from the ��0  behavior to the 

finite-values is around 0.2 in all 

the cases, i.e. the multiplication 

rateμ has almost no influence 

on the transition frequency.  

The ��0  behavior in the 

high-frequency range reflects 

the fact that the particle 

number at a time t1 may have 

a determinant influence on the 

particle number at a following 

time t2 even when % = 0.1, i.e. 

the correlation between the 

particle numbers at t1 and t2 is 

strong for a short time interval �0 − ��  and weak for a long 

time interval (at frequencies 

lower than the transition 

frequency).  The results in 

Figs. 1 and 2 show that the correlation between the particle numbers 

turns weak after a time interval of only several mean lifetimes by 

absorption (transition frequency : ～0.2) at % < 1 but the particle numbers have strong correlation 

even after several hundreds of the mean lifetime at % = 1 (transition frequency : ～2 x10-3). 

It was noticed in the above analysis that the PSD of time series described by the number of 

particles existing in a medium behaves like  ��0, in a wide range of frequency, due to strong 

correlations between the particle numbers.  It is, however, expected that time intervals between 

successive incidents occurring in the medium have comparatively weak correlations each other and 

Fig. 2.  The PSD of the time series for existing particle number for the 

cases that: (a)  % = 0.99 ; (b) % = 0.9 ; (c) % = 0.8  and (d) % = 0.1 .  The 

straight lines give the ��0 behavior 

Fig. 3.  Chain of the branching processes.  

The boxes, circles and black spots 

represent a particle immigrating 

randomly, absorption and detection of a 

particle, respectively.  The paths (loci) of 

the particles are shown by full lines.  The 

existing particle number at time t1 and t2 

are 7 and 11, respectively. 

a b
c

ｄ

t1 t2 time

(a)

(d)(c)

(b)
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the PDS of a series formed by these intervals behaves like ��T  0 < U < 2� as explained in Fig. 3 

where detections of a particle are considered. 

A detection may correlate with another detection through branching paths as the detections a, b 

and c in Fig. 3.  The detection d has no correlation with a, b and c, because it appears in a 

branching chain originating from a particle immigration different from that for the detections a, b 

and c.  The length of the path between the detections has statistical correlation with the physical 

time interval.  For example, the time interval between a and b is approximately equivalent to that 

between b and c, but, owing to the fact that the path between b and c is longer than that between a 

and b, the correlation between b and c may be far weaker than that between a and b.  These 

considerations motivate an analysis of a series formed by time intervals between two successive 

detections of a particle. 

 

2 Detection probability of a particle 

  It is rather complicated, even in the case of binary branching, to give the general form of the 

probability 
�V, �, �� that m counts have been recorded by a detector placed in the medium during 

the time interval (0, t) and n particles are found in the medium at time � > 0 after we had k 

particles at � = 0 (1).  In the case that V = 0 , however, the probability 
�0, �, ��  for binary 

branching is described closely by a similar form to Eq. (1-1) as(1) 

 
�0, �, �� = � ���,���� ∙ W��,��,�
���  (2-1) 

and, again as in Fig. (1-1), ���,����
 and W��,��

 are the contribution of the k particles in the medium 

at � = 0 and that of the particle immigrating into the medium during the time interval (0, t), 

respectively.  The contribution of particles in the medium at � = 0, ���,����
, is described as 

 ���,��X� = � �0, �, �������,��X�����X
���  

���,X� = �X,�, 

(2-2) 

where 

 �0, �, �� = 6 Y�Z�[       � = 0�\]�^]�_AB`]Da\]�^]AB`]Db_       � = 1�[ ∙ �0, � − 1, ��       � ≥ 2�. (2-3) 

Here 

 [ = 1 − ,�c].Y� − Z�,�c]., (2-4) 

and   

 Y� =  . + d�2 ! ,     Z� =  . − d�2 ! . (2-5) 

The parameters d�, Y� and Z� in Eqs. (2-3), (2-4) and (2-5) are given differently depending to the 

type of the detector of particles.  We take two types of the detector into consideration; one is the 
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detector of absorption type in which a particle is absorbed by detection, and the other of 

non-absorption type in which the particle counting has no influence on the particle number.  We 

define hereλd, which is the detection rate of a particle, andλc, which is the capture rate of a 

particle in the medium in addition to the absorption by the detector, and then the absorption rate  " and total rate  . are given by 

  " = g  h +  i            absorption type� h            non − absorption type�, and  . =  " +  !, (2-6) 

and then the multiplication rateμand the detection rateεof a particle are described, respectively, 

as 

 % = =q=> = r =q=sJ=t absorption type�=q=s non − absorption type�. (2-7) 

and 

 u = =t=> = r =t=sJ=t absorption type�=t=s non − absorption type�. (2-8) 

By using these parameters, d�, Y� and Z� are expressed, respectively, as 

 d� = v  "w1 − %�0 + 4u% absorption type� "w1 + u + %�0 − 4% non − absorption type�, (2-9) 

   

 Y� = ⎩⎨
⎧ 12% y1 + % + w1 − μ�0 + 4εμ{ absorption type�12% y1 + u + % + w1 + u + %�0 − 4%{ non − absorption type�, (2-10) 

and 

 Z� = ⎩⎨
⎧ 12% y1 + % − w1 − μ�0 + 4εμ{ absorption type�12% y1 + u + % − w1 + u + %�0 − 4%{ non − absorption type�. (2-11) 

  The other factor W��,��
 in Eq. (2-1) is given by 

 

W��,�� =
⎩⎪⎨
⎪⎧ exp |Z� − 1�}� + }% " ln Y� − Z�Y� − Z�,�c].~       F = 0�}% " + F − 1F ∙ [ ∙ W��,����                                     F ≥ 1�. (2-12) 

  Using Eqs. (1-1) and (2-1), the probability that the detector counts particles during the time 

interval (0, t) and n particles are found in the medium at � > 0 after we had k particles at � = 0 is 

given by 

 � 
�V, �, ���
!�� = 
��, �� − 
�0, �, ��. (2-13) 

When the probability given by Eq. (2-13) is much smaller than 
�0, �, ��, the probability recording 

more than two counts may be negligible and the following relation holds approximately: 
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�1, �, �� ≑ 
��, �� − 
�0, �, ��. (2-14) 

 

3. Computer simulations 

  Whether a particle detection has occurred or not in 

a very short time interval was decided successively 

by using Monte Carlo method with the probabilities 

described by Eqs. (1-1), (2-1) and (2-14), from which 

another series (count series) formed by the time 

intervals between successive detections was 

obtained.  The random immigration rate S was 

chosen in a similar way to the time series for the 

existing particle number.  A part of the count series 

is shown in Fig. 4 in comparison with the series for 

particle number.  The count series has a much more 

intermittent property than the other. 

 

3.1  Absorption-type detector 

3.1.1  Case of % = 1 ��� u = 1 

  The FFT results for several 

sizes of series are shown in Fig. 5.  

When the series size is shorter 

than 1048576, the PSD behaves 

like ���  over five decades of 

frequency, here the frequency is 

related to detection counts and 

not to time.  The PSD for the 

series size over 2097152 begins 

to deviate from the ��� line in a 

low-frequency range.  This 

deviation becomes more striking 

as the series size is longer and 

the PSD converges to a finite 

value in a low-frequency range.  

In all the case, the PSD 

converges to a finite value in a 

high-frequency range. 

3.1.2  Case of % = 1 ��� u < 1 

  The FFT results for u = 0.5 and 0.1 with % = 1 are shown in Fig. 6.  In case of u = 0.5, the PSD 

(a)

(b)

Fig. 4.  (a) Time series for existing particle 

number for % = 1.  (b) Count series for % = 1 

and ε = 1. 

Fig. 5.  The PSD of the count series with an absorption-type detector for the 

case of % = 1 and u = 1.  The series sizes are (a) 1048576, (b) 2097152 and 

(c) 4194304, respectively.  The straight lines give the ��� behavior. 

(a)

(c)

(b)
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Fig. 6.  The PSD of the count series for 

the cases that % = 1, u = 0.5  and the 

series size of (a)  524288 and (b) 

1048576, and that % = 1, u = 0.1  and 

the series size of (c) 6536 and (d) 131072, 

respectively.  The straight lines give the ��� behavior. 

Fig. 7.  The PSD of the count series with 

an absorption-type detector for the case 

of % = 0.99 and u = 1.   The series sizes 

are (a) 131072, (b) 262144 and (c) 524288, 

respectively.  The straight lines give the ��� behavior. 

Fig. 8.  The PSD of the count series 

for the cases that % = 0.9, u = 1  and 

the series size of (a)  16384 and (b) 

32768, and that % = 0.8, u = 1 and the 

series size of (c) 4096 and (d) 8192, 

respectively.  The straight lines give 

the ��� behavior. 

(a)

(d)(c)

(b)

(a)

(c)

(b)

(a)

(d)(c)

(b)
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with the series size smaller than 524288 behaves like ��� in a low-frequency range, but it begins to 

deviate from the ��� line when the series size is 1048576, and this deviation becomes more 

striking for longer series sizes.  The deviation of the PSD from the ���  behavior in a 

low-frequency range starts at a shorter series size in case of lower detection efficiency ε as shown 

in Fig. 6(c) and (d). 

3.1.3  Case of % < 1 ��� u = 1 

  The FFT results for % = 0.99 with u = 1 are shown in Fig. 7.  When the series size is shorter 

than 131072, the PSD behaves like ��� for more than three decades of frwquency, but the PSD for 

the series size of 262144 begins to deviate from the ��� line in a low-frequency range and it comes 

to light for the series with sizes over 524288.  This deviation from the ��� behavior becomes 

remarkable with decreasing the parameter % as can be seen in Fig. 8 where the FFT results for % = 0.9 and 0.8 with � = 1 are shown. 

  When % = 1, the PSD behaves like ��� for about five decades of frequency as can be seen in Fig. 

5, but this frequency range with the ��� behavior decreases to about three decades in case of % = 0.99 and becomes much more narrower down to only one decade in cases of % = 0.9 and 0.8. 

 

3.2  Non-absorption-type detector 

The PSD of count series with a non-absorption-type detector was estimated in a similar way to 

the cases with an absorption-type detector.  

3.2.1  Case of % = 1 ��� u = 1 

  The FFT results for two 

sizes of series are shown in 

Fig. 9.  The PSD behavior is 

very similar to the case with 

an absorption-type detector 

in Fig. 5, and it deviates 

from the ���  line in a 

low-frequency range when 

the series size is over 

4194304.  The PSD 

behaves like ���  for five 

decades or more of 

frequency which is slightly 

wider than the case with an absorption-type detector. 

3.2.2  Case of % = 1 ��� u < 1, and Case of % < 1 ��� u = 1 

  The PSD’s with a non-absorption-type detector for the cases of % = 1 and u < 1  and of % <1 and u = 1 are shown in Figs. 10, 11 and 12.  These results are also very similar to the cases with 

an absorption-type detector shown in Figs. 6, 7 and 8. 

 

Fig. 9.  The PSD of the count series with a non-absorption-type detector for 

the case of % = 1 and u = 1.   The series sizes are (a) 2097152 and (b) 

4194304, respectively.  The straight lines give the ��� behavior. 

 

(a) (b)
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Fig. 10.  The PSD of the count 

series for the cases that % = 1, u =0.5  with the series sizes of (a) 

524288 and (b) 1048576, 

respectively, and that % = 1, u = 0.1 

with the series sizes of (a) 131072 

and (b) 262144, respectively.  The 

straight lines give the ��� 

behavior. 

Fig. 11.  The PSD of the count series 

with an non-absorption-type detector for 

the case of % = 0.99 and u = 1.   The 

series sizes are (a) 131072, (b) 262144 

and (c) 524288, respectively.  The 

straight lines give the ��� behavior. 

Fig. 12.  The PSD of the count 

series for the cases that % = 0.9,u = 1  with the series sizes of (a) 

16384 and (b) 32768, respectively, 

and that % = 0.8, u = 1  with the 

series sizes of (c) 4096 and (d) 8192, 

respectively.  The straight lines 

give the ��� behavior. 

(a)

(c)

(b)

(a) (b)

(c) (d)

(a)

(d)(c)

(b)
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3.2.3  Case of % = 1 ��� u > 1 

When the detector is of non-absorption type, the parameter u larger than one is possible.  The 

PSD for % = 1 and u = 2 is shown in Fig. 13.  In this case, u = 2, each particle is detected twice, 

on average, before absorbed in the medium.  The spectrum is very similar to the case of u = 1 

shown in Fig. 9. 

 

4.  Results and discussions 

  The above simulations show that, 

up to the series size of 1048576 or 

more, the PSD behaves like ��� for 

about five decades of frequency when % = 1 and u = 1, but this behavior is 

found only for shorter series sizes 

when either % < 1  or u < 1 .  For 

longer series, in all cases, the PSD 

deviates from the ��� behavior and 

converges to a finite value in a low-frequency range.  This deviation is sensitive to decreasing of % 

much more than to that of u.  The ��� behavior is found for the series size of 524288 in case of u = 0.5 and is found for the size of 65538 or more even when u = 0.1.  On the other hand, even in 

case of % = 0.99 the PSD deviates from the ��� behavior at the series size of 262144 and, when 

Fig. 13.  The PSD of the count series with 

a non-absorption-type detector for the 

case of % = 1 and u = 2.  The series sizes 

are (a) 2097152 and (b) 4194304, 

respectively.  The straight lines give the ��� behavior. 

 

Fig. 14.  The PSD of the count series 

with a non-absorption-type detector for 

the case of % = 1 and u = 1.  The 

particle number limits are 200 in (a) 

and (b), 400 in (c) and (d), and 700 in 

(e) and (f), respectively.  The series 

sizes are (a) 32768, (b) 65536, (c) 

131072, (d) 262144, (e) 524288 and (f) 

1048576, respectively.  The straight 

lines give the ��� behavior. 

(a) (b)

(a)

(f)(e)

(d)(c)

(b)
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% = 0.9, it deviates at a much more shorter size of 8192.  This ��� behavior is gone out rapidly 

with decreasing %.  These results mean that a time interval between successive particle detections 

has considerably strong correlation with another time interval for long time when the parameters % = 1 and u = 1, and the correlation becomes weaker with decreasing of these parameters, in 

particular, of the parameter %. 

The detector type has no noticeable influence on the results. 

  As can be seen in Fig. 1, in case of % = 1, the existing particle numbers have very strong 

correlations each other during several hundreds of the mean lifetime of a particle by absorption, 

and so a time interval between successive particle detections may have also considerable strong 

correlation with another time interval for long time.  When % = 1 but u < 1, the correlation 

between time intervals of successive detections becomes weaker compared with the cases of u = 1, 

because the time period between two successive detections is longer for u < 1 compared to that for u = 1, which can be seen in Figs. 5 and 6 or Figs. 9 and 10 where the series sizes behaving like ��� 

are shorter in cases of u < 1 than in case of u = 1.  When % < 1, the correlation between the 

existing particle numbers is strong only for several mean life times which can be seen in Fig. 2, 

which is the reason why the ��� behavior breaks off at a very short series as shown in Figs. 7, 8, 11 

and 12. 

  When u > 1 with a non-absorption-type detector, the PDS behavior is similar to the cases of u = 1 as shown in Fig. 13. 

  There are at least two limitations on performing the computer simulations.  The existing 

particle number should be avoid to be zero, because no branching will arise from no particle.  A 

very large number of particles takes unreasonably long time to process on a computer, and the 

number of particles should be set a limit.  In the present simulations, the maximum number of 

particles was set a limit to 1000.  The effect of a limitation on the particle number to the PDS was 

simulated, the results of which is shown in Fig. 15 where the count series were generated under the 

same conditions of the parameters % and u as in Fig. 9 but the particle number limits were set to 

200, 400 and 700.  As can be seen in Fig.15, the maximum number of particles is so sensitive to the 

frequency range with the ��� behavior of PDS, where the frequency ranges with the ��� behavior 

increase steadily with the maximum particle 

number.  This figure shows clearly that the 

frequency range with the ���  behavior of PDS 

can be extended more when the simulation is 

performed for the maximum number of particles 

larger than 1000.  It is not sure that this trend in 

Fig.15 keeps on and on without limit but, if the 

maximum number of particles is limited up to 2000, 

the PDS may behave like ���  for about eight 

decades of frequency. 

Fig. 15.  Relation of the longest series size with 

the ��� behavior and the maximum number of 

particles. 
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  In order to see the above expectation, 

a count series for the maximum number 

of particle set to 2000 was generated for 

the case of % = 1 and u = 1  with a 

non-absorption-type detector, the 

results of which are shown in Fig. 16.  

It was difficult to generate a fully long 

series because of a limited computing 

time, and so the statistical precision of 

the FFT results in Fig. 16 is insufficient.  

It can be said still that the PSD behaves 

like  ���  over seven decades of 

frequency.  From the discussions of a 

limitation of the particle number, the ��� behavior of the PSD over a much 

more wide frequency range may be 

expected if a higher-speed computer is 

used for simulation. 

  In all of the results of the present 

simulations, the PDS converges to a finite value in a high-frequency range.  The time interval 

between two successive detections is given digitally in the present work, which may causes interval 

fluctuation in one time unit, which can be the reason of the behavior of the PDS in a high-frequency 

range. 

 

5. Conclusion 

  The branching process model has been applied to discuss a  ��� problem, and the ��� behavior 

of the PDF of a series has been demonstrated in a wide range of frequency, as wide as seven decades 

of frequency when the absorption rate is equivalent to the branching rate, i.e., μ=1 (critical case).  

This frequency range may be extended up to eight decades or more by simulating on a higher-speed 

computer. 
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Fig. 16.  The PSD of the count series with a 

non-absorption-type detector for the case of % = 1 and u = 1.  

The maximum number of particles is set to 2000.  The series 

size are (a) 16777216, (b) 33554432 and (c) 67108864.  The 

straight lines give the ��� behavior. 


