
EasyChair Preprint
№ 14003

Optimizing Communication in Byzantine
Agreement Protocols with Slim-HBBFT

Nasit Sony, Xianzhong Ding and Mukesh Singhal

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 16, 2024

Optimizing Communication in Byzantine
Agreement Protocols with Slim-HBBFT

Nasit S Sony1, Xianzhong Ding2, and Mukesh Singhal1

1 University of California, Merced, CA 95340, USA
2 Lawrence Berkeley National Laboratory, CA 94720, USA

{nsony, msinghal}@ucmerced.edu, dingxianzhong@lbl.gov

Abstract. Byzantine agreement protocols in asynchronous networks have
received renewed interest because they do not rely on network behav-
ior to achieve termination. Conventional asynchronous Byzantine agree-
ment protocols require every party to broadcast its requests (e.g., trans-
actions), and at the end of the protocol, parties agree on one party’s
request. If parties agree on one party’s requests while exchanging ev-
ery party’s request, the protocol becomes expensive. These protocols are
used to design an atomic broadcast (ABC) protocol where parties agree
on ⟨n − f⟩ parties’ requests (assuming n = 3f + 1, where n is the total
number of parties, and f is the number of Byzantine parties). Although
the parties agree on a subset of requests in the ABC protocol, if the
requests do not vary (are duplicated), investing in a costly protocol is
not justified. We propose Slim-HBBFT, an atomic broadcast protocol
that considers requests from a fraction of n parties and improves com-
munication complexity by a factor of O(n). At the core of our design is
a prioritized provable-broadcast (P-PB) protocol that generates proof of
broadcast only for selected parties. We use the P-PB protocol to design
the Slim-HBBFT atomic broadcast protocol. Additionally, we conduct a
comprehensive security analysis to demonstrate that Slim-HBBFT sat-
isfies the properties of the Asynchronous Common Subset protocol, en-
suring robust security and reliability.

Keywords: Distributed Systems · Consensus Protocol · Blockchain

1 Introduction

Byzantine agreement (BA) is a fundamental problem in computer systems, first
introduced by Lamport, Pease, and Shostak in their pioneering works [2, 3]. The
problem assumes a system where multiple computers, referred to as machines,
parties, or nodes, try to agree on a value despite some of these computers being
Byzantine (i.e., behaving arbitrarily, unpredictably, or maliciously). Since the
seminal work [3], numerous models with various system assumptions have been
proposed to solve the BA problem.

Bitcoin [5] has refueled interest in Byzantine agreement protocols, partic-
ularly in asynchronous networks where the protocol’s independence from time
parameters is crucial. In asynchronous networks, each party must broadcast its

2 N. Sony et al.

Fig. 1. Slim-HBBFT illustration. Each selected party promotes its request using the
P-PB protocol. After completing the P-PB protocol, a party broadcasts the requests
with proof ts as a proposal. Upon receiving a proposal, each party suggests it and waits
for ⟨n− f⟩ suggestions, then runs the ABA protocol as input.

requests. The atomic broadcast (ABC) protocol is designed to order these re-
quests. In an ABC protocol, parties agree on ⟨n − f⟩ common requests, where
⟨f + 1⟩ of these requests come from honest parties. Although honest parties
may propose varied requests, they might still broadcast the same requests due
to different orderings of client requests and lack of knowledge of other parties’
requests until an agreement is reached. Consequently, agreeing on a subset of
requests does not necessarily improve the total number of accepted requests.

Our main observations are that reducing the number of proposals leads to a
more efficient protocol. We leverage this reduction technique to design an atomic
broadcast protocol. We introduce a slim atomic broadcast protocol where par-
ties agree on q (1 ≤ q ≤ f + 1) requests. This protocol reduces communication
complexity by O(n). We randomly select ⟨f + 1⟩ parties to broadcast their re-
quests/proposals, ensuring at least one honest party is included, with an average
of 2

3 of the selected parties being honest. Consider the following two cases:

1. If parties agree on one party’s request, the communication cost is lower
regardless of request variation among selected parties.

2. If parties agree on q proposals with non-varying requests, the protocol main-
tains low communication cost. If requests vary among the q parties, the
protocol benefits from both reduced communication cost and an increased
number of accepted requests.

2 Slim-HBBFT

High-Level overview. Slim-HBBFT is an atomic broadcast protocol where
honest parties agree on q (1 ≤ q ≤ f + 1) parties’ requests.

Committee Selection We select κ = f + 1 parties using a standard commit-
tee selection protocol. These selected parties propose their requests (value v)
using the P-PB protocol. The communication complexity of n P-PB instances
is O(n2v), where v < Kn2 log n and K is the security parameter. In contrast,
the communication complexity of n RBC instances is O(n3v). HoneyBadgerBFT

Title Suppressed Due to Excessive Length 3

[4] uses erasure coding to broadcast requests, reducing the communication com-
plexity to O(n2|v| +Kn3 log n). By using the P-PB protocol, we eliminate the
O(Kn3 log n) term. However, the P-PB protocol does not guarantee the totality
property, which ensures that all parties receive a selected party’s broadcast. To
address this, we introduce two additional steps: propose and suggest.

Propose and Suggest Steps After completing the P-PB protocol, a selected
party broadcasts the proof as a proposal (propose step). Upon receiving a pro-
posal, each party suggests the proposal (suggest step) and waits for ⟨n − f⟩
suggestions. If a party receives ⟨n− f⟩ suggestions, it implies receiving multiple
suggestions for at least one proposal (total proposals are ⟨f + 1⟩, and a party
receives ⟨2f + 1⟩ proposals). If a proposal is suggested by multiple parties, it
reaches more parties. This increases the likelihood more honest parties receive
the proposal. An ABA instance outputs 1 if an honest party inputs 1. Each party
invokes the ABA protocol for each selected party and inputs 1 if it receives a pro-
posal or suggestion. After receiving ⟨n− f⟩ suggestions, an honest party inputs
0 to an ABA instance if there are no suggestions for the selected ABA instance.

Threshold Encryption To prevent adversaries from censoring broadcasts, we
use a threshold encryption scheme. A party encrypts its requests using the
threshold encryption scheme and then broadcasts the encrypted request. De-
crypting the message requires ⟨f + 1⟩ parties’ decryption shares, and an honest
party reveals its decryption share after reaching an agreement. This ensures
adversaries cannot decrypt an honest party’s proposal until an agreement is
reached. Although the encryption scheme adds O(Kn2) communication bits,
this is negligible compared to the protocol’s overall complexity. We ensure each
proposal comes from a selected party that completes the P-PB protocol before
parties input to the ABA instance. The P-PB protocol ensures the request is
sent among ⟨f +1⟩ honest parties, who then add their sign-share to the request.
Figure 1 provides an illustration of the Slim-HBBFT protocol.

3 Security Analysis

Slim-HBBFT provides an atomic broadcast protocol for a subset of parties’
requests by utilizing the Asynchronous Common Subset (ACS) protocol and
a threshold encryption scheme. To analyze the security of the Slim-HBBFT
protocol, we demonstrate that it satisfies all the properties of the ACS protocol.
A key requirement of the ACS protocol is that at least one of the provable-
broadcasts (threshold-signature) reaches 2f + 1 parties. The following lemmas
support this requirement.

Lemma 1. In the propose step, at least one proposal reaches multiple parties.

Proof. We know that ⟨f +1⟩ parties propose their requests, and ⟨3f +1⟩ parties
receive at least one proposal. Therefore, due to the fraction 3f+1

f+1 , at least one
proposal is common to more than one party.

4 N. Sony et al.

Lemma 2. In the suggestion step, at least one proposal reaches ⟨2f+1⟩ parties.
Proof. We know that ⟨2f + 1⟩ honest parties suggest their received proposals.
From Lemma 1, at least one proposal is suggested by more than one party.
Assume no proposal is common to more than 2f parties. However, every party
waits for ⟨2f+1⟩ suggestions, and there must be ⟨2f+1⟩×⟨2f+1⟩ suggestions. If
no proposal is suggested to more than 2f parties, the total number of suggestions
would be ⟨2f + 1⟩ × ⟨2f⟩ < ⟨2f + 1⟩ × ⟨2f + 1⟩. Since honest parties must send
enough suggestions to ensure protocol progress, at least one party’s proposal
must be received by ⟨2f + 1⟩ parties.
Theorem 1. With negligible probability of failure, the Slim-HBBFT protocol
satisfies the Agreement, Validity, and Totality properties of the ACS protocol,
given the security of the underlying Prioritized Provable Broadcast, Committee
Selection, and ABA protocols.

4 Conclusion

This work introduces Slim-HBBFT, a novel atomic broadcast protocol designed
to enhance the efficiency of Byzantine agreement in asynchronous networks.
The key challenge addressed is the high communication complexity of tradi-
tional Byzantine agreement protocols, especially when dealing with duplicate
requests from different parties. By leveraging a committee-based approach and
the Prioritized Provable-Broadcast protocol, Slim-HBBFT significantly reduces
the number of proposals needed for agreement, thus lowering communication
costs. Our analytical performance analysis demonstrates that Slim-HBBFT can
efficiently manage communication complexity while ensuring at least one honest
party’s proposal is included in the agreement. The protocol’s design also prevents
adversarial censorship through the use of threshold encryption, ensuring security
and reliability. Future work will involve simulating the Slim-HBBFT protocol to
explore optimal parameter ranges and develop a dynamic switching mechanism
for selecting efficient committee sizes based on application needs, urgency of re-
quests, and node patterns. Additionally, we will conduct comprehensive security
and efficiency analyses to validate the protocol’s robustness and performance.

References

1. Abraham, I., Malkhi, D., Spiegelman, A.: Asymptotically Optimal Validated Asyn-
chronous Byzantine Agreement. In PODC, pp. 337-346, 2019.

2. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. In ACM
Transactions on Programming Languages and Systems (TOPLAS), 1982.

3. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
In ACM, pp. 228–234, 1980.

4. Miller, A., Xia, Y., Croman. K., Shi, E., Song D.: The honey badger of BFT pro-
tocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communication Security. 2016.

5. Nakamoto, S.: A peer-to-peer electronic cash system. In
http://bitcon.org/bitcoin.pdf, 2008.

