
EasyChair Preprint

№ 388

Effective Machine Learning Based Format

Selection and Performance Modeling for SpMV on

GPUs

Israt Nisa, Charles Siegel, Aravind Sukumaran Rajam,
Abhinav Vishnu and P Sadayappan

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 1, 2018

Effective Machine Learning Based Format Selection and Performance Modeling for
SpMV on GPUs

Israt Nisa∗, Charles Siegel†, Aravind Sukumaran Rajam∗, Abhinav Vishnu†, P. Sadayappan∗
∗Dept. of Computer Science and Engineering

The Ohio State University
Columbus, OH, USA

{nisa.1, sukumaranrajam.1, sadayappan.1}@osu.edu
†Pacific Northwest National Laboratory

Richland, WA, USA
{charles.siegel, Abhinav.Vishnu}@pnnl.gov

Abstract—Sparse Matrix-Vector multiplication (SpMV)
is a key kernel for many applications in computational
science and data analytics. Several efforts have addressed
the optimization of SpMV on GPUs, and a number of
compact sparse-matrix representations have been considered
for it. It has been observed that the sparsity pattern of
non-zero elements in a sparse matrix has a significant
impact on achieving SpMV performance. Further, no single
sparse-matrix format is consistently the best across the range
of sparse matrices encountered in practice. In this paper,
we perform a comprehensive study that explores the use of
Machine Learning to answer two questions:
1) Given an unseen sparse matrix, can we effectively predict
the best format for SpMV on GPUs? 2) Can SpMV execution
time for that matrix be predicted, for different matrix formats?

By identifying a small set of sparse matrix features to use
in training the ML models, we demonstrate that efficient
prediction of the best format with ≈ 88% accuracy can
be achieved when selecting between six well known sparse-
matrix formats on two GPU architectures (NVIDIA Pascal and
Kepler), and ≈ 10% relative mean error (RME) with execution
time prediction.

Keywords-Sparse matrix-vector multiplication (SpMV);
GPU; Sparse Matrix format selection; XGBoost, Support Vec-
tor Machine (SVM); Multilayer Perceptron (MLP), Decision
tree.

I. INTRODUCTION

Sparse Matrix-Vector multiplication (SpMV) is a widely
used kernel in scientific applications, graph analytics, and
machine learning. The development of efficient SpMV im-
plementations for a variety of architectures has been widely
addressed, including multi-core systems, many-core sys-
tems and distributed memory systems comprising of multi-
core/many-core architectures. In this paper, we focus on
GPU implementations of SpMV. Over the last few years,
significant research has been conducted on specialized for-
mats, including but not limited to CSR, COO, ELL [1],
HYB [2] and the recently proposed merge-based CSR [3],
CSR5 [4], and yaSpMV [5]. A number of compact sparse-
matrix representations have been evaluated for SpMV and it

has been found that no single format is uniformly superior
– the best performing format for one sparse matrix could
achieve much lower performance than another format for a
different sparse matrix. This variability leads to the format-
selection problem: Can an effective model be devised to
quickly predict the best-performing format for a previously
unseen sparse matrix?

Since SpMV performance for different sparse matrices
can vary considerably across various formats, a question of
interest is: Can the SpMV execution time for a previously
unseen sparse matrix be effectively predicted for various
representation formats? Several prior efforts have considered
performance modeling for the SpMV kernel [6], [7]. Usu-
ally, analytical model-based approaches are leveraged for
performance modeling. However, analytical models assume
linear independence among features – an assumption that is
problematic for general performance modeling.

An alternative approach to analytical models is leveraging
non-parametric approaches such as Machine Learning (ML).
These approaches typically require a dataset with ground
truth. For example, in format selection the ground truth is
the best format for a given matrix; in performance modeling,
it is the actual achieved FLOPS for each format under
consideration. An advantage of ML algorithms is their
ability to handle non-linearity in features – which becomes
prevalent as the number of features describing the model
increase.

Recently, format selection and performance modeling
using ML techniques have generated significant interest.
Simple ML algorithms such as decision tree and multi-
class Support Vector Machine (SVM) classifier have been
shown to achieve very good accuracy for format selection
[8], [9], and [10]. Deep neural networks (DNNs) such as
convolutional neural networks (CNNs) are also starting to
be used for the classification problem [11], [12]. Zhao et al.
[12] compress the sparse matrix as an image – and use CNN
to solve the format selection problem.

Our objective in this paper is to assess the effectiveness

of a number of alternative ML-based approaches to format
selection for SpMV, as well as performance modeling of
SpMV for different formats. We also study the utility of
different sparse matrix features for the format selection
problem.

A. Contributions

We make the following contributions in this paper:

• We explore a set of base and ensemble ML algorithms
and achieve a classification accuracy of 91% across
basic storage formats like ELL, CSR, and HYB using
XGBoost ensemble algorithm.

• For recently proposed advanced formats such as
merged-based CSR and CSR5, we achieve a classifi-
cation accuracy of 88% by using XGBoost algorithm.

• We achieve a low relative mean error (RME) in perfor-
mance prediction over a large collection of over 2300
sparse matrices from the SuiteSparse sparse matrix
collection.

We provide an in-depth analysis of results including
metrics while using ensemble techniques; provide feature
importance for performance modeling/classification; and
performance penalty of mis-prediction.

The rest of the paper is organized as follows: Sec. II
presents background information on sparse matrix formats
and pertinent machine learning algorithms. Sec. III presents
an analysis of properties of sparse matrices from the SuiteS-
parse collection. Details on feature selection for sparse
matrices are described in Sec. IV. Sec. V reports the exper-
imental evaluation to compare the effectiveness of several
of ML techniques on the classification problem for effective
format selection. Sec. VI presents experimental results for
performance modeling of SpMV with the different formats.
Section VII discusses related work on format classification
and performance modeling and we conclude in section VIII.

II. BACKGROUND

A. Sparse matrix storage formats:

Sparse Matrix-Vector multiplication (SpMV) is a key
primitive for computational science and data science. Hence
there has been substantial literature on numerous opti-
mization techniques to enhance SpMV performance. The
underlying structure of the sparse matrices can be highly
irregular and has a direct impact on performance. SpMV
performance on two matrices with similar size and number
of non-zeros can be differ significantly, depending on the
storage format and efficiency of implementation. Various
machine learning techniques can be applied to select the
best storage format for a sparse matrix. In this section,
we describe various storage formats and machine learning
algorithms.

1) COO format: The COO (coordinate) format is the
simplest storage format. The sparse matrix is represented
using three dense arrays corresponding to row indices,
column indices, and the non-zero element values. The size of
each array is equal to the number of non-zero elements in the
matrix. Figure 1(a) shows the layout of the COO format. Bell
and Garland [2] describe a GPU implementation of SpMV
- first all product contributions are computed for the non-
zero elements, followed by a segmented reduction across
threads. Along with a simple representation, COO also has
the advantage of very stable performance across matrices
with very different sparsity.

2) CSR format: The compressed sparse row format
(CSR) is the most commonly used format to represent sparse
matrices. Like COO, CSR also uses 3 arrays to represent the
sparse matrix. While the column indices and values arrays
of CSR are identical to COO, the third array (row-pointer)
stores the starting index of each row, with all non-zero
elements in each row being stored contiguously. Fig. 1(b)
illustrated the CSR format. With the CSR format, SpMV can
be parallelized by assigning a thread to process each row –
the scalar CSR kernel [2]. However, this approach has the
disadvantage of non-coalesced access to the column-index
and value arrays, which can be expensive for GPUs. Another
approach to parallelization is to assign a WARP to process
a row. With such a work distribution, the access to column
indices and nonzero values do not suffer from uncoalesced
access, but result in significant thread-divergence for rows
with few non-zeros.

3) ELLPACK format: In ELLPACK format, the rows with
fewer non-zero elements than max nnz are left shifted and
padded with zeroes. One matrix presents the column indices
and the other presents the values of nonzero elements. As
shown in Fig. 1(c), ELL stores the matrix in a column-major
format and each row is processed by a single thread [2].
Good load balance across threads and avoidance of thread
divergence are achieved, but the memory access pattern to
the input vector x might not be contiguous.

4) HYB format: The HYB format combines the benefits
of COO and ELL. ELL performs well when the standard
deviation of non-zero elements per row is low. On the
other hand, the COO format is insensitive to the underlying
structure. The HYB format uses a combination of COO
and ELL, storing some matrix rows in COO format and
the others in ELL format. A threshold parameter is used
to decide whether a row should be represented in COO or
ELL. If the number of non-zero values in a row is greater
than the threshold, then an ELL format is used; otherwise
the COO format is used. The threshold is often computed as
max(4096, number of rows/3) [2]. The average number of
non-zeros per row (nnz mu) can also be used as a threshold
metric, which we use in this paper.

5) CSR5 format: Liu et al. [4] proposed CSR5 – which
is an extension of the CSR format. It uses five arrays to

Figure 1: Sparse matrix representation using COO, ELL,
CSR and CSR5 formats

store the matrix, adding two more arrays to the three arrays
used with CSR. A sparse matrix is partitioned into equally
sized small 2D tiles to achieve good load balancing. The
two additional arrays are used to store a tile transposition
order (tile ptr) and information about the tiles (tile desc).
Figure 1(d) illustrates the CSR5 format.

6) Merge-based CSR format: The merge-based CSR
SpMV algorithm for GPUs [3] also focuses on enhancing
load balancing among threads despite the irregularity of the
underlying sparse matrix structure. It works with the stan-
dard CSR sparse matrix representation. The standard SpMV
implementations using CSR suffer from load imbalance for
matrices with high variance in the number of non-zeros
in different rows of the matrix. Merge-based CSR aims to
alleviate this load balancing problem. It logically partitions
the work of processing a group of contiguous rows into equal
sized sub-problems that are distributed across threads.

B. Machine Learning Algorithms

1) Decision Trees: A popular machine learning approach
to classification is the use of Decision Trees (DT). Its
popularity is in part due to easy interpretability. The output
after training is a binary tree, with each node incorporating
a rule to decide whether to proceed to its left or right child.
The leaves of the tree encode the final predictions of the
model.

2) Support Vector Machines: A Support Vector Machine
(SVM) is a model that constructs a hyperplane (or set of
hyperplanes) in a high dimensional space containing data.
It does so by determining support vectors from the data
set which are closest to the boundary between classes of
samples. It then places a hyperplane such that the distance
between it and support vectors on either side is equal. SVMs
suffer from being harder to interpret than decision trees,
having a higher computational complexity, and only being
directly applicable to binary classification. However, SVMs
can often achieve higher accuracy than decision trees.

3) Multi-Layer Perceptrons: The multi-layer perceptron
(MLP) is a class of neural network models. MLPs model
functions by building iterated compositions that approximate
them. Each layer of an MLP consists of several neurons,
which each take input from all neurons in the previous
layer, multiply them by weights and then return the output
from a nonlinear function at this value. Often, several MLP
models are combined by averaging their predictions into an
ensemble to improve accuracy. It is known that MLPs can
approximate any function arbitrarily closely, and do so more
efficiently when utilizing the hierarchical structure [13].

4) XGBoost: XGBoost (for Extreme Gradient Boosting)
is an ensemble ML technique for transforming a collection
of weak models into a strong model. Usually applied to
decision trees, XGBoost trains a sequence of trees in such
a way that each one is most effective on those samples
that are poorly classified by all previous trees. This can
be interpreted as performing gradient descent in function
space [14] rather than on the parameters of a static func-
tion. Along with ensembles of neural networks, XGBoost
has been extremely successful in competitive data science,
winning several Kaggle competitions [15].

III. SPARSE MATRIX CHARACTERISTICS

To motivate the need for classification and performance
modeling, we tabulate a few important characteristics of the
matrices in the SuiteSparse collection. These are shown in
Table I. The columns associated with avg. rows and avg.
cols present the average number of rows and columns of the
matrices corresponding to the same nnz range. Similarly,
avg. density, avg. nnz mu and avg. nnz sigma show the
average density of the matrix, average nnz per row and
average standard deviation of nnz per row, respectively. In
this dataset, the nnz range is between 3 to 96M elements. A
significant fraction (greater than 50%) of the matrices have

nnz range no of matrices avg. rows avg. cols avg. density avg. nnz mu avg. nnz sigma
0∼10,000 747 639 759 4.62 7 4.5

10K ∼ 50K 508 3,590 4,248 1.29 15 18
50K ∼ 100K 209 8,881 10,974 1.03 34 31
100K ∼ 500K 362 24,695 30,714 .69 69 50
500K ∼ 1M 147 70,669 92,925 .75 155 128
1M ∼ 5M 208 173,473 205,277 .61 214 72
5M ∼ 50M 109 1,290,926 1,302,773 .43 852 42

>50M 9 8,101,908 8,101,908 .002 29 5

Table I: Feature analysis of the SuiteSparse repository

non-zero elements less than 50K. We also observe that the
average density decreases with increasing number of rows,
columns and nnz. However, no clear pattern is observed in
standard deviation of average nnz per row.

A few storage formats are less sensitive to the irreg-
ular matrix structure. For example, in COO format the
parallelism is achieved by computing over each non zero
element – resulting in excellent load balancing. However, the
replication of row entries adversely affects the performance
of the COO format. The ELL uses zero padding to fill up
the rows that have lesser than maximum number of non zero
elements in a row. Therefore, matrices with high variance
in the row length are adversely affected due to work load
imbalance by each thread. A similar trend is also observed
for the CSR format. Since CSR conducts parallelism over
rows of a matrix, similar workload at each row shows
better performance using CSR format. Recent studies such
as CSR5 [4], merged-based CSR [3], yaspmv [5] aim to
achieve a stable performance despite the irregularity in the
underlying structure of a matrix. Especially, merged-based
CSR shows consistent performance as a function of non-
zeros on a large number of matrices.

Yet, there are a substantial number of matrices where
performance is far lower than the matrices of similar nnz.
Two such matrices, rgg n 2 19 sO and auto are shown
in Figure 2. Both matrices have ≈ 6.5M non-zero ele-
ments and are square matrices of dimensions 524K and
450K, respectively. However, the achieved GFLOPS by
using CSR5 on rgg n 2 19 sO and auto are 22 and 18,
respectively. Similarly, merged-based CSR provides 21 and
15 GFLOPS for these two matrices. Figure 2 provides an
indication of the complexity associated with performance
modeling and format selection problem, since these matrices
are similar in macro structure, but significantly different in
actual performance.

The performance of SpMV is sensitive to both architec-
tural configuration as well as sparsity structure of the matrix.
GPU specialized formats focus on higher parallelism as well
as reduced data movement and lower thread divergence. The
trade-off between the reduction across the non-zeros is often
compromised with atomic operations. In Figure 3, we show
the achieved GFLOPS for various matrices with different
formats. We conclude from the figure that no single format

Figure 2: Matrices with similar number of rows, columns
and non-zero elements but with different GFLOPS for CSR5
and merged-based CSR formats

is a consistent winner across all the matrices. We observe
that for the same matrix, the performance difference across
formats can be significant. Hence, format determination
problem requires effective feature extraction (such that the
sparsity structure can be captured) and modeling techniques
such as machine learning that can handle the non-linearity
between extracted features.

0

5

10

15

20

25

GF
LO

PS

COO ELL CSR HYB merged- based	CSR	 CSR5_time

Figure 3: GFLOPS comparisons across different matrix
storage format using Tesla k80c GPU and single precision
data type

In this paper, we extract a total of seventeen (simple and
advanced combined) features to capture the structure of the
matrices. This is followed by leveraging state of the art

set feature description

1

rows, cols number of rows and columns
nnz number of non zero elements

nnz mu average nnz per row
density density of the matrix

2

nnz max maximum number of nnz in a row
nnz sigma standard dev. of nnz per row

row block count * avg. and std. deviation of the number
of continuous nnz chunk per row

row block size * avg. and std. deviation of the size
of continuous nnz chunks in a row

3
block count total number of the continuous

nnz chunks

row block count * min and max of the number of
continuous nnz chunks in a row

row block size * min and max of the size
of continuous nnz chunks in a row

Table II: Description of features used in this paper. Feature
set ”1” is considered basic and sets ”2” and ”3” are advanced
feature sets.

machine learning techniques on the features to select the
best storage format for a given matrix. We also demonstrate
that the similar set of features can be used for performance
modeling of execution time of a given sparse matrix.

IV. SPARSE MATRIX FEATURES FOR MACHINE LEARNING

In this section, we present our design and evaluation
methodology for sparse matrix format selection and per-
formance modeling. We present design choices for feature
selection, methodology for label collection, the datasets
which are used in this paper, and the machine learning
models which are used for format selection and performance
modeling. We begin with a brief description of the feature
selection metholodology.

A. Feature selection

Table II shows the complete list of extracted features used
in this paper. The feature set 1 (shown as multi-row with
”1” in the table) consists of features that can be computed
in O(1) time. This includes features such as the number
of rows, columns, non-zero elements, average non-zero per
row. However, this feature set is not sufficient in capturing
the spatial patterns associated with sparse matrices. As an
example, previous studies [8], [9] have addressed this issue
by introducing additional features that are shown in feature
set 2. The feature set 2 and 3 requires a scan on the entire
matrix resulting in a time complexity of O(nnz) .

One of the bottlenecks of SpMV operation is the non-
uniform memory access pattern of the vector. The access
pattern is determined by the sparsity structure of the matrix.
For an unstructured sparse matrix, it is highly likely that
the accesses to the vector are uncoalesced, which increases
the cost of accessing the vector elements. In addition to the
uncoalesced accesses, the probability of cache hits is also
reduced. On the other hand, for certain sparsity structures
– such as banded diagonal matrix – the vector accesses are

Resource Details

GPU 1
Tesla K40c: 13 Kepler SMs, 192 cores/MP,
12 GB Global Memory, 824 MHz, 1.5MB L2
cache

GPU 2 Tesla P100: 56 Pascal SMs, 64 cores/MP, 16
GB Global Memory, 1328 MHz, 4MB L2cache

Table III: Description of testbeds used in this paper

more coalesced (less cost) and the probability of the cache
hits are higher.

Hence, we collect additional features (feature set ”3”) that
capture this pattern. As an example, we count the number of
blocks that have continuous non-zeros in a row (tot blocks).
Although prior efforts [9] have mentioned the use of similar
features, they were unable to demonstrate the importance of
these features in their ML based model.

B. Methodology for label collection

We use the execution time of a matrix as the label for
the matrix. The execution time is collected by executing
each matrix multiple (50) times and then averaging the
execution time. We label the format with minimum exe-
cution time (maximum GFLOPS) as the best format for
the format selection problem. For the classification problem,
the input features and the best format is used as the input.
For performance prediction, the input features and average
execution time is used as the input. For both classification
and performance modeling, we use 5-fold cross validation
and 80-20 splits of the train-test dataset.

C. Dataset and architectures explored

The SuiteSparse collection contains ≈ 2700 matrices from
real applications in various domains. It covers a wide variety
of regularity, from structural engineering and computational
fluid dynamics to networks and graphs. In this work, we
evaluate 2300 matrices out of 2700 matrices. We were
unable to use the remaining 400 matrices since they either
did not fit in the GPU memory or failed to execute for one
or more storage formats.

We used two machines to evaluate the performance of
the dataset. The first machine contains an NVIDIA k80c
(Kepler) GPU and is coupled with Intel Xeon(R) CPU E5-
2680(28 core). The second machine consists of an NVIDIA
P100 GPU with similar CPU configuration. Table III shows
the details of these machines.

D. Machine learning models

We use a wide set of ML algorithms for both format
selection and performance modeling. We use SVM and
decision-tree based models, as suggested by Benatia et
al. [8], and Sedaghati et al. [9]. We supplement these
ML models with multi-layer perceptrons, gradient boosting
based models (XGBoost) and ensembles of MLP.

The ML models have have their own set of hyper-
parameters and the performance of each scheme is sensitive

to the tuning of the hyperparameters. For XGBoost, we
explore parameters like n estimators: number of trees used,
max depth: maximum tree depth and learning rate [16].
We tune these parameters using GridSearchCV , which
performs an exhaustive search over a range of supplied
parameters and finds the best parameter set. In our set of
experiments, the range of n estimator is {50, 100, 200,
500} , max depth is {32, 64, 128} and learning rate is
{.1, .01}. In SVM, like XGBoost using GridSearchCV
the best parameter set is chosen over the range of C {100,
1000, 10000} and gamma of {.1, .01, .001}. C keeps a
balance of correctness of training examples and simplicity
of the decision surface and gamma defines the importance
of training examples [17]. The MLP model we use in this
work consists of 3 hidden layer of 96, 48 and 16 neurons
respectively with a mini-batch size of 16.

V. RESULTS: SPMV FORMAT SELECTION

In this section, we present an evaluation of machine
learning on the format selection problem. We begin with a
discussion of format selection, especially the COO format.

A. Discussion on COO format

We observed that the COO format outperforms other
formats (ELL, CSR, and HYB) in ≈ 10% cases. Similarly,
when using 6 formats together, we observe that the COO for-
mat rarely outperforms other formats. For double precision
in both K80c and P100 machine, there are no such cases
and for single precision, there is one such case. We also
observed that when COO format is the best, the performance
of at least one of the other formats is similar. Hence, the
performance loss by excluding the COO format is minimal.
Hence, we remove the cases where COO format is the best
format. Similar observation is made by Benatia et al. [8],
where they avoid the COO format in their study.

B. Comparison of ML models on ELL, CSR and HYB
formats

To begin with, we compare the results using basic storage
formats like ELL, CSR, and HYB. Tables IV, V and VI
present the classification accuracy on 3 basic formats over
2300 matrices from the SuiteSparse repository. We observe
that XGBoost consistently outperforms decision tree, MLP
and SVM on K80c and P100 for both single and double
precision data types. By using 11 and 17 features, the
XGBoost achieves up to 91% classification accuracy. We
also observe that by reducing the number of features – such
as shown in Table IV – MLP outperforms SVM in all cases,
whereas with higher number of features like in Table V and
VI, for single precision cases, SVM achieves equal or better
accuracy than MLP across both machines. Table VI shows
that using extra features to capture the detailed vector access
pattern does not provide additional benefits.

Machine precision decs. tree SVM MLP XGBST
K80c single 69% 62% 68% 69%
k80c double 69% 62% 68% 70%
P100 single 72% 72% 75% 75%
P100 double 72% 69% 73% 74%

Table IV: Classification accuracy on basic 3 formats: ELL,
CSR, HYB using feature set 1 consisting of 5 features which
are computed in O(1) time. The best format(s) is shown in
bold.

Machine precision decs. tree SVM MLP XGBST
K80c single 89% 88% 88% 91%
k80c double 86% 87% 88% 89%
P100 single 85% 89% 87% 88%
P100 double 86% 87% 88% 89%

Table V: Classification accuracy on basic 3 formats: ELL,
CSR, HYB using feature sets 1 and 2 consisting of 11
features used in Sedaghati et el. [9]

Machine precision decs. tree SVM MLP XGBST
K80c single 87% 88% 87% 91%
k80c double 84% 87% 86% 89%
P100 single 86% 88% 86% 88%
P100 double 87% 87% 89% 89%

Table VI: Classification accuracy on basic 3 formats: ELL,
CSR, HYB using feature sets 1, 2 and 3 consisting of 17
features

Machine precision decs. tree SVM MLP XGBST
K80c single 60% 62% 62% 67%
k80c double 64% 63% 64% 68%
P100 single 65% 65% 67% 69%
P100 double 63% 65% 67% 69%

Table VII: Classification accuracy on 6 formats: COO, ELL,
CSR, HYB, CSR5 and merged-based CSR using feature set
1 consisting of 5 features which are computed in O(1) time

Machine precision decs. tree SVM MLP XGBST
K80c single 81% 83% 83% 85%
k80c double 81% 85% 85% 88%
P100 single 79% 83% 82% 84%
P100 double 81% 83% 84% 86%

Table VIII: Classification accuracy on 6 formats: COO, ELL,
CSR, HYB, CSR5 and merged-based CSR using feature sets
1 and 2 consisting of 11 features used in Sedaghati et el. [9]

Machine precision decs. tree SVM MLP XGBST
K80c single 78% 83% 83% 85%
k80c double 82% 85% 85% 88%
P100 single 79% 83% 82% 84%
P100 double 79% 83% 83% 85%

Table IX: Classification accuracy on 6 formats: COO, ELL,
CSR, HYB, CSR5 and merged-based CSR using feature sets
1, 2 and 3 consisting of 17 features

Machine precision decs. tree SVM MLP XGBST
K80c single 79% 85% 83% 85%
k80c double 83% 87% 86% 88%
P100 single 77% 83% 83% 84%
P100 double 79% 84% 85% 86%

Table X: Classification accuracy on 6 formats: COO, ELL,
CSR, HYB, CSR5 and merged-based CSR using the top 7
(imp.) features according to XGBoost feature importance

C. Comparison of results on combined basic and advanced
formats

In table VII, VIII, and IX, we present classification results
by using six formats including advanced formats like CSR5
and merged-based CSR. We also add the COO format to
give a comprehensive view of the consistency of our models.
We observe that XGBoost consistently provides the best
(or similar to one or more ML algorithms) classification
accuracy across both machines and both data types. We also
observe that by using additional 6 features, no improvement
in accuracy is observed as shown in Table IX.

D. Insight

Figures 4 and 5 show the importance of each 17 features
from the combined feature set 1, 2 and 3. This data is
collected for the XGBoost classifier. We observe that on
both machines and for both precisions (single and double),
although the order of feature importance is different, the top
7 important features are same. We refer to these features
as imp. features for rest of the paper. More surprisingly,
an advanced feature like nnzb tot is one of them which is
crucial for the vector access pattern by a matrix and belongs
to feature set 3.

We use these imp. features to examine the accuracy of
our models. In Table X, we notice the accuracy achieved
by using imp. features is equal or better than the previously
best reported accuracy. This observation holds for XGBoost
and other ML models. An exception is a single case for
decision tree on P100 for single precision data type. In both
11 features and 7 features cases, the best achievable accuracy
is 88% across all formats.

An important metric of a classification model is the aver-
age performance slowdown caused by mispredicted formats.
An ideal model delivers a low number of cases with large
slowdown as well as high classification accuracy. Tables
XII, XI, XIII present the slowdown caused by mispredicted
formats by using SVM, MLP and XGBoost, respectively.
We observe that XGBoost outperforms all other formats in
this case too.

VI. RESULTS: SPMV PERFORMANCE MODELING

In this section, we present an evaluation of ML based
performance modeling for SpMV. Recent studies such as
[18] have explored the concept of using ML techniques
such as multi-layer perceptron (MLP) and support vector

regression (SVR) to model SpMV performance. We draw
inspiration from these studies and extend them by using an
ensemble of MLP for the performance modeling task. We
use an MLP ensemble to predict the performance of all 6
formats: COO, ELL, CSR, HYB, CSR5 and merge-based
CSR and compare with base MLP based prediction. We
use relative mean error (RME) to compare the performance
different performance models. The RME metric can be
defined as an average of relative error between predicted
and measured performance:

RME = 1/n

n∑
i=1

|predi −measuredi|
measuredi

A. RME of combined models

In Figure 6, we show the RME of different ML methods
using double precision on Tesla K80c and P100 GPU. We
observe that the MLP ensemble is able to achieve an RME
of 7% for CSR5 and merge based CSR. The result of using
different ML methods using double precision on Tesla K80c
and P100 GPU is shown in Figure 6.

We further tune the MLP and MLP ensemble regressor
and achieve an average RME as low as 12% and 10% on
P100 and K80c over 2300 matrices, respectively. A similar
pattern is observed for the single precision evaluation. The
MLP ensemble regressor achieves 5.4% improvement over
regular MLP regressor on P100 for the double precision data
type. On average across both machines and datatype, the
MLP ensemble achieves an improvement of 3.5% in the
overall RME.

B. RME of individual models

We previously used an MLP and an MLP ensemble for
performance prediction on all 6 formats together. In this
section, we evaluate the models when the individual formats
are trained separately. We notice that the RME obtained
by each format – including the advanced format like CSR5
and merge-based CSR – is low for both cases. This can be
explained as both formats are insensitive to the irregularity
of the matrix structure. CSR5 has a RME ranging from 11
- 13% for a double precision data type for Tesla K80c and
P100 machine, respectively. For merge-based CSR the range
is from 9 - 11%, respectively. The most widely used format
in real applications, CSR, achieves an RME of 8% and 11%
on Tesla P100 and K80c machine by using MLP ensemble
regressor for double precision data type. Figure 7 shows the
average RME of each format for double precision data type
on Tesla K80c and P100 by using MLP ensemble regressor.
We observe that the MLP ensemble regressor outperforms
MLP in all the cases.

C. Indirect classification using regression

Previously, we observed that ensemble MLP technique
achieves good performance prediction accuracy. This has an
important implication on the possibility of using regression

0 1000 2000 3000 4000 5000 6000 7000 8000
F score

snzb_min
nnzb_min

snzb_sigma
nnz_min
snzb_mu

snzb_max
nnzb_mu

nnzb_sigma
nnzb_max

n_cols
nnz_mu

nnzb_tot
nnz_frac

nnz_sigma
nnz_tot

nnz_max
n_rows

Fe
at

ur
es

822
927

1469
1923
1946

2784
2810

3003
3057
3080

3324
3339

4794
5101

5815
7143

7685

Feature importance

0 500 1000 1500 2000 2500
F score

snzb_min
nnzb_min
nnz_min

snzb_sigma
snzb_mu

snzb_max
nnzb_max

nnzb_sigma
n_cols

nnzb_mu
nnz_sigma

nnzb_tot
nnz_mu
nnz_frac
nnz_max

nnz_tot
n_rows

Fe
at

ur
es

217
380

456
617
657

770
893

986
1078
1098

1275
1445

1518
1662

1937
1964

2283

Feature importance

Figure 4: Importance of features using XGBoost on Tesla K80c and Tesla P100 machine with single precision

0 2000 4000 6000 8000 10000 12000 14000 16000
F score

snzb_min
nnzb_min
nnz_min

snzb_sigma
snzb_max
snzb_mu

nnzb_max
nnzb_sigma

nnzb_mu
n_cols

nnzb_tot
nnz_mu

nnz_sigma
nnz_frac
nnz_tot
n_rows

nnz_max

Fe
at

ur
es

1519
2555

2969
3851

4195
4469
4495

5933
7004
7089

7507
8980

9856
10781

11259
13099

15290

Feature importance

0 1000 2000 3000 4000
F score

snzb_min
nnzb_min
nnz_min
snzb_mu

snzb_sigma
nnzb_sigma

snzb_max
nnzb_max
nnzb_mu
nnz_mu

nnz_sigma
n_cols

nnzb_tot
nnz_max
nnz_frac

n_rows
nnz_tot

Fe
at

ur
es

356
439

835
1344

1466
1721

1841
1902

2031
2435

2687
3064

3300
3819

3943
4132

4246

Feature importance

Figure 5: Importance of features using XGBoost on Tesla K80c and Tesla P100 machine with double precision

0

5

10

15

20

25

30

feature	set	1 feature	set	2 feature	set	3 Imp.	Features

RM
E

MLP	regressor MLP	Ensemble	Regressor

0

5

10

15

20

25

feature	set	1 feature	set	2 feature	set	3 Imp.	Features

RM
E

MLP	regressor MLP	Ensemble	Regressor

Figure 6: Average relative mean error (RME) of 6 formats using MLP and MLP ensemble regressor on Tesla K80c and
Tesla P100 GPU using double precision data type

for format selection. Specifically, the format with the best predicted performance format can be selected as the best

feature set no slowdown >1x slowdown
(cumulative) >=1.2x Slowdown >=1.5x Slowdown >=2.0x Slowdown

1 285 175 89 61 25
2 444 16 12 3 1
3 447 13 10 2 1

Imp. Features 440 20 14 4 2

Table XI: Number of slowdown cases by using SVM on Tesla P100 machine for double precision data

feature set no slowdown >1x slowdown
(cumulative) >=1.2x Slowdown >=1.5x Slowdown >=2.0x Slowdown

1 293 167 84 58 25
2 441 19 14 4 1
3 439 21 15 5 1

Imp. Features 446 14 10 3 1

Table XII: Number of slowdown cases by using MLP ensemble on Tesla P100 machine for double precision data

feature set no slowdown >1x slowdown
(cumulative) >=1.2x Slowdown >=1.5x Slowdown >=2.0x Slowdown

1 274 186 92 65 29
2 446 14 10 3 1
3 446 14 10 3 1

Imp. Features 445 15 11 3 1

Table XIII: Number of slowdown cases by using XGBoost on Tesla P100 machine for double precision data

0

5

10

15

20

25

30

35

40

45

COO ELL CSR HYB CSR5 mergedCSR

RM
E

feature	set	1 feature	set	2 feature	set	3 Imp.	features

0

5

10

15

20

25

30

35

40

45

COO ELL CSR HYB CSR5 mergedCSR

RM
E

feature	set	1 feature	set	2 feature	set	3 Imp.	features

Figure 7: Relative mean error (RME) achieved by each 6 formats using MLP ensemble regressor on Tesla K80c and Tesla
P100 GPU using double precision data type

storage format. The predicted format can then be compared
with the actual best format (label) according to actual
performance. We implement this approach and refer to it
as the indirect classification method. Table XIV shows the
result of using best direct classification technique – XGBoost
– and indirect classification method.

For indirect classification, we define a tolerance parame-
ter. Specifically, the regression predicts the SpMV execution
time, which is a continuous variable. The tolerance param-
eter allows flexibility in selecting the best (or second/third
best formats) as long as the prediction time of the other
formats is within the tolerance. For example, under 5%
tolerance, any format that has the performance within 5% of
the best format would be considered as correctly classified.
Naturally, a 0% tolerance is an extreme case.

In our evaluation, using 0% tolerance, we achieve a classi-

fication accuracy loss of 2% on K80c using double precision
in comparison to the XGBoost based model. However, for
single precision the classification accuracy decreases by
7%. On P100 machine, we observe a loss of 7% and 8%
for single precision and double precision data, respectively.
Using a tolerance of 5%, we can obtain a classification
model equal or better than the direct classification method.
In Table XIV, we see for K80c machine, we achieve the
accuracy as 92% by using indirect classification.

VII. RELATED WORK

Several researchers have proposed compression formats
and associated algorithms with the compression formats. Our
objective is to provide a brief overview of related research
in selection of these formats and performance prediction of
sparse matrices for these formats.

Machine precision XGBST MLP ens. MLP ens.
5% tol.

K80c single 85% 78% 90%
k80c double 88% 86% 92%
P100 single 84% 77% 89%
P100 double 86% 78% 87%

Table XIV: Classification accuracy achieved by XGBoost,
MLP ensemble regressor and MLP ensemble regressor with
5% tolerance using 6 formats: COO, ELL, CSR, HYB, CSR
and mergedCSR

Several storage formats like [4], [3], [19], [5], [20] have
been proposed by the researchers. Benatia et al. [8] have
proposed a classification technique using multi-class Support
Vector Machine (SVM) classifier on manually extracted
features. It achieves up to 88% classification accuracy on
the four basic formats (COO, CSR, ELL, and HYB) with a
dataset of 555 matrices from SuiteSparse [21] on NVIDIA
Fermi and Maxwell GPUs. A popular machine learning
techniques for classification - Decision Tree has been used
in several recent studies [9], [10] etc. Like SVM classifier,
Decision Tree also works on manually extracted features.

[9] used a dataset of 700 matrices and explored 5 storage
formats including 4 basic formats and HYB mu on NVIDIA
Tesla k20c and k40c. It achieves 81% format classification
accuracy. On the other hand, [10] uses more than 2000
matrices from the same ufl repository. On over 330 test
matrices it achieves 85% and 82% classification accuracy
respectively for single precision and double precision data
with 1% accuracy gap. The model maintains a confidence
value for each test sample. If the confidence factor is more
than a threshold value, it executes the potential best formats
and takes the final decision. Recently, Zhao et al. [12]
and Cui et al. [11] proposed techniques using deep neural
networks (DNNs) to solve the classification problem.

Zhao et al. [12] used a dataset of 9200 matrices (400GB)
combined with real-world matrices collected from SuiteS-
parse repository and synthetic matrices. The matrices are
first converted to fixed size (128x128) image-like represen-
tation and then used as an input into a convolutional neural
network (CNN) model. It provides so far the best accurate
model with 93% classification accuracy on CPU platform
and 90% on GPU platform. On CPU it uses 4 formats:
COO, ELL, CSR, and DIA. On GPU, the model can handle
more formats like CSR5, HYB, and BSR. While SVM
and DT require identifying manual feature extraction, CNN
infers the features automatically. However, when compared
to SVM and DT, CNN incurs a high inference time.

Similar approaches using ML techniques have been ex-
plored in the area of performance modeling. Benatia et
al. [18] proposed to use multi-layer perceptron (MLP) and
support vector regression (SVR) to predict the performance
number of a SpMV operation. On average, it achieves low
prediction error of 7% to 14% on a dataset of 1800 matrices.

However, they de-activate the texture memory, which is
critical to GPU performance. In addition, they use NVIDIA
CUSP [22] library which is known to be sub-optimal,
as better libraries such as cuSPARSE [23] have become
prevalent. A unique analytical model based on probability
mass function (PMF) is proposed by [6] to calculate the non
zero distribution pattern of the sparse matrix. Using basic
formats like COO, ELL, CSR and HYB, an average relative
mean error (RME) of less than 20% is achieved for over
80% cases.

Zhang et al. [7] proposed a microbenchmark-based perfor-
mance model by rigorous analysis of the underlying archi-
tecture of the GPU. By using a model based on the GPU’s
native instruction set, it predicts the performance within 5%-
15% error range for blocked ELLPACK format. Zardoshti et
al. [24] developed an adaptive run-time approach to identify
the best format among four basic formats. It executes a small
portion of the input matrix and tune it with GPU archi-
tectural parameters and chooses the best performing matrix
based on the portion. Guo et al. [25] developed a inter-
architecture analytical performance modeling tool using 4
generation of GPUs. On a set of 14 matrices, the model
can predict time within 3% to 7% error range on average.
Several auto-tuning framework use performance model like
[26] to guide the tuner for optimized performance.

VIII. CONCLUSIONS

In this paper, we have proposed Machine Learning (ML)
based approaches for format selection and performance
modeling of SpMV kernel. We have used SuiteSparse dataset
for our evaluation and analyzed it under the metrics of
classification accuracy, relative mean error (RME), aver-
age slowdown and provided insight on results and criti-
cal feature selection. We have used ML models such as
SVM, decision tree, multi-layer perceptron and ensembles
(XGBoost) for evaluating the classification and regression
problems. We observe that: 1) ensembles provide upwards
of 88% classification accuracy on state-of-the-art formats,
2) prediction RME is ≈ 10% which is highly attractive
for capacity planning purposes, 3) only seven features are
sufficient for performance modeling and classification, 4)
the same ML based model is the best for format selection
independent of GPU architecture and precision used, and 5)
indirect classification (using regression for format selection)
while providing a maximum of 5% slowdown provides 92%
classification accuracy – similar to the accuracy reported by
using a CNN based model. We conclude that using a small
set of features and relatively inexpensive ML algorithms, it is
possible to achieve state-of-the-art format selection accuracy,
making our solution attractive for compute-constrained (such
as edge devices) practical deployments in general.

ACKNOWLEDGMENT

This work was supported in part by the U.S. National
Science Foundation (NSF) through awards 1629548 and
1513120,

REFERENCES

[1] R. G. Grimes, D. R. Kincaid, and D. M. Young, ITPACK 2.0
user’s guide. Center for Numerical Analysis, Univ., 1979.

[2] N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” ser. SC
’09.

[3] D. Merrill and M. Garland, “Merge-based sparse matrix-
vector multiplication (SpMV) using the CSR storage format,”
in PP0PP, 2016.

[4] W. Liu and B. Vinter, “CSR5: An efficient storage format for
cross-platform sparse matrix-vector multiplication,” in ICS,
2015.

[5] S. Yan, C. Li, Y. Zhang, and H. Zhou, “yaSpMV: Yet another
SpMV framework on GPUs,” in PPoPP, 2014.

[6] K. Li, W. Yang, and K. Li, “Performance analysis and op-
timization for SpMV on GPU using probabilistic modeling,”
TPDS, 2015.

[7] Y. Zhang and J. D. Owens, “A quantitative performance
analysis model for GPU architectures,” in HPCA, 2011.

[8] A. Benatia, W. Ji, Y. Wang, and F. Shi, “Sparse matrix format
selection with multiclass SVM for SpMV on GPU,” in ICPP,
2016.

[9] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and
P. Sadayappan, “Automatic selection of sparse matrix repre-
sentation on GPUs,” in ICS, 2015.

[10] J. Li, G. Tan, M. Chen, and N. Sun, “SMAT: an input adaptive
auto-tuner for sparse matrix-vector multiplication,” in ACM
SIGPLAN Notices, 2013.

[11] H. Cui, S. Hirasawa, H. Takizawa, and H. Kobayashi, “A code
selection mechanism using deep learning,” in MCSoC, 2016.

[12] Y. Zhao, C. Liao, J. Li, and X. Shen, “Bridging the gap
between deep learning and sparse matrix format selection,”
in PPoPP, 2018.

[13] M. Bianchini and F. Scarselli, “On the complexity of neural
network classifiers: A comparison between shallow and deep
architectures,” IEEE TNNLS, 2014.

[14] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting
algorithms as gradient descent in function space.” NIPS,
1999.

[15] T. Chen and C. Guestrin, “Xgboost: A scalable tree
boosting system,” CoRR, 2016. [Online]. Available: http:
//arxiv.org/abs/1603.02754

[16] (2016) XGBoost documentation. http://xgboost.readthedocs.
io/en/latest/python. Accessed: 2018-02-15.

[17] “SVM documentation,” http://scikit-learn.org/stable/modules/
svm.html, 2017, accessed: 2018-02-15.

[18] A. Benatia, W. Ji, Y. Wang, and F. Shi, “Machine learning
approach for the predicting performance of SpMV on GPU,”
in ICPADS, 2016.

[19] M. Steinberger, R. Zayer, and H.-P. Seidel, “Globally homo-
geneous, locally adaptive sparse matrix-vector multiplication
on the GPU,” in ICS, 2017.

[20] B.-Y. Su and K. Keutzer, “clspmv: A cross-platform OpenCL
SpMV framework on GPUs,” in ICS, 2012.

[21] T. A. Davis and Y. Hu, “The University of Florida sparse
matrix collection,” TOMS, 2011.

[22] S. Dalton, N. Bell, L. Olson, and M. Garland, “CUSP:
Generic parallel algorithms for sparse matrix and graph
computations,” 2014, version 0.5.0. [Online]. Available:
http://cusplibrary.github.io/

[23] C. NVIDIA, “Cusparse library,” NVIDIA Corporation, Santa
Clara, California, 2014.

[24] P. Zardoshti, F. Khunjush, and H. Sarbazi-Azad, “Adaptive
sparse matrix representation for efficient matrix–vector mul-
tiplication,” JoS, 2016.

[25] P. Guo and L. Wang, “Accurate cross–architecture per-
formance modeling for sparse matrix–vector multiplication
(SpMV) on GPUs,” CCPE, 2015.

[26] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven
autotuning of sparse matrix-vector multiply on GPUs,” in
ACM sigplan notices, 2010.

