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THE RIEMANN HYPOTHESIS

FRANK VEGA

Abstract. In mathematics, the Riemann Hypothesis is a con-
jecture that the Riemann zeta function has its zeros only at the
negative even integers and complex numbers with real part 1

2 . In
2002, Lagarias proved that if the inequality σ(n) ≤ Hn+exp(Hn)×
logHn holds for all n ≥ 1, then the Riemann Hypothesis is true,
where σ(n) is the sum-of-divisors function and Hn is the nth har-
monic number. We prove this inequality holds for all n ≥ 1 and
therefore, the Riemann Hypothesis must be true.

1. Introduction

As usual σ(n) is the sum-of-divisors function of n [Cho+07]:∑
d|n

d.

such that d | n means the integer d divides to n while d - n means the

integer d does not divide to n. Define f(n) to be σ(n)
n

. Say Robins(n)
holds provided

f(n) < eγ × log log n.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, and log
is the natural logarithm. Let Hn be

∑n
j=1

1
j
. Say Lagarias(n) holds

provided

σ(n) ≤ Hn + exp(Hn)× logHn.

The importance of these properties is:

Theorem 1.1. [RH] If Robins(n) holds for all n > 5040, then the
Riemann Hypothesis is true [Rob84]. If Lagarias(n) holds for all n ≥ 1,
then the Riemann Hypothesis is true [Lag02].

It is known that Robins(n) and Lagarias(n) hold for many classes of
numbers n. We know this:

2010 Mathematics Subject Classification. Primary 11M26; Secondary 11A41.
Key words and phrases. number theory, inequality, sum-of-divisors function, har-

monic number, prime.
1



THE RIEMANN HYPOTHESIS 2

Lemma 1.2. [condition] If Robins(n) holds for some n > 5040, then
Lagarias(n) holds [Lag02].

Here, there are some basic results that we use:

Lemma 1.3. [basic-results] Robins(n) holds for every n > 5040 that
is not divisible by 2 [Cho+07]. In general, we know that if a positive
integer n > 5040 satisfies either ν2(n) ≤ 19, ν3(n) ≤ 12 or ν7(n) ≤ 6,
then Robins(n) holds, where νp(n) is the p-adic order of n [Her18]: In
basic number theory, for a given prime number p, the p-adic order of
a positive integer n is the highest exponent νp such that pνp divides
n. We recall that an integer n is said to be square free if for every
prime divisor q of n we have q2 - n [Cho+07]. Robins(n) holds for
all n > 5040 that are square free [Cho+07]. Let core(n) denotes the
square free kernel of a natural number n [Cho+07]. The function σ
is submultiplicative [Cho+07]: A function Φ is submultiplicative when
Φ(u× v) ≤ Φ(u)× Φ(v) for all u, v ≥ 0.

We show that Lagarias(n) holds for all n ≥ 1 and therefore, the
Riemann Hypothesis is true as a consequence of theorem 1.1 [RH].

2. Known Results

Lemma 2.1. [sigma-bound] From the reference [Cho+07], we know
that:

f(n) <
∏
q|n

q

q − 1
. (2.1)

Lemma 2.2. [zeta] From the reference [Edw01], we know that:
∞∏
k=1

1

1− 1
q2k

= ζ(2) =
π2

6
. (2.2)

Lemma 2.3. [harmonic-bound] From the reference [Lag02], we know
that:

log(eγ × (n+ 1)) ≥ Hn ≥ log(eγ × n). (2.3)

Lemma 2.4. [lower-bound] From the reference [Cho+07], we have if
0 < a < b, then:

log b− log a

b− a
=

1

(b− a)

∫ b

a

dt

t
>

1

b
. (2.4)

Lemma 2.5. [upper-bound] From the reference [Cho+07], we have if
q > 0, then:

log(q + 1)− log q =

∫ q+1

q

dt

t
<

1

q
. (2.5)
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3. A Central Lemma

The following is a key lemma. It gives an upper bound on f(n) that
holds for all n. The bound is too weak to prove Robins(n) directly, but
is critical because it holds for all n. Further the bound only uses the
primes that divide n and not how many times they divide n. This is a
key insight.

Lemma 3.1. [pro] Let n > 1 and let all its prime divisors be q1 <
· · · < qm. Then,

f(n) <
π2

6
×

m∏
i=1

qi + 1

qi
.

Proof. We use that lemma 2.1 [sigma-bound]:

f(n) <
m∏
i=1

qi
qi − 1

.

Now for q > 1,

1

1− 1
q2

=
q2

q2 − 1
.

So

1

1− 1
q2

× q + 1

q
=

q2

q2 − 1
× q + 1

q

=
q

q − 1
.

Then by lemma 2.2 [zeta],

m∏
i=1

1

1− 1
q2i

< ζ(2) =
π2

6
.

Putting this together yields the proof:

f(n) <
m∏
i=1

qi
qi − 1

≤
m∏
i=1

1

1− 1
q2i

× qi + 1

qi

<
π2

6
×

m∏
i=1

qi + 1

qi
.

�
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4. A Particular Case

We prove the Robin’s inequality for this specific case:

Lemma 4.1. [case] Given a natural number

n = 2a1 × 3a2 × 5a3 × 7a4 > 5040

such that a1, a2, a3, a4 ≥ 0 are integers, then Robins(n) holds for n >
5040.

Proof. Given a natural number n = qa11 × qa22 × · · · × qamm > 5040 such
that q1, q2, · · · , qm are distinct prime numbers and a1, a2, · · · , am are
natural numbers, we need to prove

f(n) < eγ × log log n

that is true when
m∏
i=1

qi
qi − 1

≤ eγ × log log n

according to the lemma 2.1 [sigma-bound]. Given a natural number
n = 2a1×3a2×5a3 > 5040 such that a1, a2, a3 ≥ 0 are integers, we have

m∏
i=1

qi
qi − 1

≤ 2× 3× 5

1× 2× 4
= 3.75 < eγ × log log(5040) ≈ 3.81.

However, we know for n > 5040

eγ × log log(5040) < eγ × log log n

and therefore, the proof is completed for that case. Hence, we only
need to prove the Robin’s inequality is true for every natural number
n = 2a1 × 3a2 × 5a3 × 7a4 > 5040 such that a1, a2, a3 ≥ 0 and a4 ≥ 1
are integers. In addition, we know the Robin’s inequality is true for
every natural number n > 5040 such that ν7(n) ≤ 6 according to the
lemma 1.3 [basic-results] [Her18]. Therefore, we need to prove this case
for those natural numbers n > 5040 such that 77 | n. In this way, we
have

m∏
i=1

qi
qi − 1

≤ 2× 3× 5× 7

1× 2× 4× 6
= 4.375 < eγ × log log(77) ≈ 4.65.

However, for n > 5040 and 77 | n, we know that

eγ × log log(77) ≤ eγ × log log n

and as a consequence, the proof is completed. �
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5. A Better Bound

Lemma 5.1. [bound] For x ≥ 11, we have∑
q≤x

1

q
< log log x+ γ − 0.12

where q ≤ x means all the primes lesser than or equal to x.

Proof. For x > 1, we have∑
q≤x

1

q
< log log x+B +

1

log2 x

where

B = 0.2614972128 · · ·
is the (Meissel-)Mertens constant, since this is a proven result from the
article reference [RS62]. This is the same as∑

q≤x

1

q
< log log x+ γ − (C − 1

log2 x
)

where γ −B = C > 0.31, because of γ > B. If we analyze (C − 1
log2 x

),

then this complies with

(C − 1

log2 x
) > (0.31− 1

log2 11
) > 0.12

for x ≥ 11 and thus, we finally prove∑
q≤x

1

q
< log log x+ γ − (C − 1

log2 x
) < log log x+ γ − 0.12.

�

6. On a Square Free Number

Lemma 6.1. [strict] Given a square free number

n = q1 × · · · × qm
such that q1, q2, · · · , qm are odd prime numbers, the greatest prime di-
visor of n is greater than 7 and 3 - n, then we obtain the following
inequality

π2

6
× 3

2
× σ(n) ≤ eγ × n× log log(219 × n).
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Proof. This proof is very similar with the demonstration in theorem
1.1 from the article reference [Cho+07]. By induction with respect to
ω(n), that is the number of distinct prime factors of n [Cho+07]. Put
ω(n) = m [Cho+07]. We need to prove the assertion for those integers
with m = 1. From a square free number n, we obtain

σ(n) = (q1 + 1)× (q2 + 1)× · · · × (qm + 1) (6.1)

when n = q1 × q2 × · · · × qm [Cho+07]. In this way, for every prime
number qi ≥ 11, then we need to prove

π2

6
× 3

2
× (1 +

1

qi
) ≤ eγ × log log(219 × qi). (6.2)

For qi = 11, we have

π2

6
× 3

2
× (1 +

1

11
) ≤ eγ × log log(219 × 11)

is actually true. For another prime number qi > 11, we have

(1 +
1

qi
) < (1 +

1

11
)

and
log log(219 × 11) < log log(219 × qi)

which clearly implies that the inequality (6.2) is true for every prime
number qi ≥ 11. Now, suppose it is true for m − 1, with m ≥ 2 and
let us consider the assertion for those square free n with ω(n) = m
[Cho+07]. So let n = q1×· · ·×qm be a square free number and assume
that q1 < · · · < qm for qm ≥ 11.

Case 1: qm ≥ log(219 × q1 × · · · × qm−1 × qm) = log(219 × n).
By the induction hypothesis we have

π2

6
×3

2
×(q1+1)×· · ·×(qm−1+1) ≤ eγ×q1×· · ·×qm−1×log log(219×q1×· · ·×qm−1)

and hence

π2

6
× 3

2
× (q1 + 1)× · · · × (qm−1 + 1)× (qm + 1) ≤

eγ × q1 × · · · × qm−1 × (qm + 1)× log log(219 × q1 × · · · × qm−1)
when we multiply the both sides of the inequality by (qm+1). We want
to show

eγ × q1 × · · · × qm−1 × (qm + 1)× log log(219 × q1 × · · · × qm−1) ≤
eγ×q1×· · ·×qm−1×qm×log log(219×q1×· · ·×qm−1×qm) = eγ×n×log log(219×n).

Indeed the previous inequality is equivalent with

qm×log log(219×q1×· · ·×qm−1×qm) ≥ (qm+1)×log log(219×q1×· · ·×qm−1)
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or alternatively

qm × (log log(219 × q1 × · · · × qm−1 × qm)− log log(219 × q1 × · · · × qm−1))
log qm

≥

log log(219 × q1 × · · · × qm−1)
log qm

.

We can apply the inequality lemma 2.4 [lower-bound] to the previous
one just using b = log(219 × q1 × · · · × qm−1 × qm) and a = log(219 ×
q1 × · · · × qm−1). Certainly, we have

log(219 × q1 × · · · × qm−1 × qm)− log(219 × q1 × · · · × qm−1) =

log
219 × q1 × · · · × qm−1 × qm

219 × q1 × · · · × qm−1
= log qm.

In this way, we obtain

qm × (log log(219 × q1 × · · · × qm−1 × qm)− log log(219 × q1 × · · · × qm−1))
log qm

>

qm
log(219 × q1 × · · · × qm)

.

Using this result we infer that the original inequality is certainly satis-
fied if the next inequality is satisfied

qm
log(219 × q1 × · · · × qm)

≥ log log(219 × q1 × · · · × qm−1)
log qm

which is trivially true for qm ≥ log(219×q1×· · ·×qm−1×qm) [Cho+07].
Case 2: qm < log(219 × q1 × · · · × qm−1 × qm) = log(219 × n).
We need to prove

π2

6
× 3

2
× σ(n)

n
≤ eγ × log log(219 × n).

We know 3
2
< 1.503 < 4

2.66
. Nevertheless, we could have

3

2
× σ(n)

n
× π2

6
<

4× σ(n)

3× n
× π2

2× 2.66

and therefore, we only need to prove

σ(3× n)

3× n
× π2

5.32
≤ eγ × log log(219 × n)

where this is possible because of 3 - n. If we apply the logarithm to
the both sides of the inequality, then we obtain

log(
π2

5.32
)+(log(3+1)−log 3)+

m∑
i=1

(log(qi+1)−log qi) ≤ γ+log log log(219×n).
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In addition, note log( π2

5.32
) < 1

2
+ 0.12. However, we know

γ + log log qm < γ + log log log(219 × n)

since qm < log(219×n). After of applying the lemma 2.5 [upper-bound]
for each term log(q + 1)− log q, then it is enough to prove

0.12 +
1

2
+

1

3
+

1

q1
+ · · ·+ 1

qm
≤ 0.12 +

∑
q≤qm

1

q
≤ γ + log log qm

where qm ≥ 11. In this way, we only need to prove∑
q≤qm

1

q
≤ γ + log log qm − 0.12

which is true according to the lemma 5.1 [bound] when qm ≥ 11. In
this way, we finally show the lemma is indeed satisfied. �

7. Robin on Divisibility

Lemma 7.1. [btw2-3] Robins(n) holds for all n > 5040 when 3 - n.
More precisely: every possible counterexample n > 5040 of the Robin’s
inequality must comply with (220 × 313) | n.

Proof. We will check the Robin’s inequality is true for every natural
number n = qa11 × qa22 × · · · × qamm > 5040 such that q1, q2, · · · , qm are
distinct prime numbers, a1, a2, · · · , am are natural numbers and 3 - n.
We know this is true when the greatest prime divisor of n > 5040 is
lesser than or equal to 7 according to the lemma 4.1 [case]. Therefore,
the remaining case is when the greatest prime divisor of n > 5040 is
greater than 7. We need to prove

f(n) < eγ × log log n

that is true when

π2

6
×

m∏
i=1

qi + 1

qi
≤ eγ × log log n

according to the lemma 3.1 [pro]. Using the formula (6.1), we obtain
that will be equivalent to

π2

6
× σ(n′)

n′
≤ eγ × log log n

where n′ = q1 × · · · × qm is the core(n) according to the lemma 1.3
[basic-results] [Cho+07]. However, the Robin’s inequality has been
proved for all integers n not divisible by 2 (which are bigger than 10)
[Cho+07]. Hence, we only need to prove the Robin’s inequality is true
when 2 | n′. In addition, we know the Robin’s inequality is true for
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every natural number n > 5040 such that ν2(n) ≤ 19 according to the
lemma 1.3 [basic-results] [Her18]. Consequently, we only need to prove
the Robin’s inequality is true for all n > 5040 such that 220 | n and
thus,

eγ × n′ × log log(219 × n′

2
) ≤ eγ × n′ × log log n

because of 219 × n′

2
≤ n when 220 | n and 2 | n′. In this way, we only

need to prove

π2

6
× σ(n′) ≤ eγ × n′ × log log(219 × n′

2
).

According to the formula (6.1) and 2 | n′, we have

π2

6
× 3× σ(

n′

2
) ≤ eγ × 2× n′

2
× log log(219 × n′

2
)

which is the same as

π2

6
× 3

2
× σ(

n′

2
) ≤ eγ × n′

2
× log log(219 × n′

2
)

that is true according to the lemma 6.1 [strict] when 3 - n′

2
. In addition,

we know the Robin’s inequality is true for every natural number n >
5040 such that ν3(n) ≤ 12 according to the lemma 1.3 [basic-results]
[Her18]. Consequently, we only need to prove the Robin’s inequality is
true for all n > 5040 such that 220 | n and 313 | n. To sum up, the
proof is completed. �

Lemma 7.2. [btw5-7] Robins(n) holds for all n > 5040 when 5 - n or
7 - n.

Proof. We need to prove

f(n) < eγ × log log n

when (220 × 313) | n. Suppose that n = 2a × 3b × m, where a ≥ 20,
b ≥ 13, 2 - m, 3 - m and 5 - m or 7 - m. Therefore, we need to prove

f(2a × 3b ×m) < eγ × log log(2a × 3b ×m).

We know

f(2a × 3b ×m) = f(3b)× f(2a ×m)

since f is multiplicative [Voj20]. In addition, we know f(3b) < 3
2

for
every natural number b [Voj20]. In this way, we have

f(3b)× f(2a ×m) <
3

2
× f(2a ×m).
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Now, consider

3

2
× f(2a ×m) =

9

8
× f(3)× f(2a ×m) =

9

8
× f(2a × 3×m)

where f(3) = 4
3

since f is multiplicative [Voj20]. Nevertheless, we have

9

8
× f(2a × 3×m) < f(5)× f(2a × 3×m) = f(2a × 3× 5×m)

and

9

8
× f(2a × 3×m) < f(7)× f(2a × 3×m) = f(2a × 3× 7×m)

where 5 - m or 7 - m, f(5) = 6
5

and f(7) = 8
7
. However, we know the

Robin’s inequality is true for 2a × 3× 5×m and 2a × 3× 7×m when
a ≥ 20, since this is true for every natural number n > 5040 such that
ν3(n) ≤ 12 according to the lemma 1.3 [basic-results] [Her18]. Hence,
we would have

f(2a×3×5×m) < eγ×log log(2a×3×5×m) < eγ×log log(2a×3b×m)

and

f(2a×3×7×m) < eγ×log log(2a×3×7×m) < eγ×log log(2a×3b×m)

when b ≥ 13. �

Lemma 7.3. [btw11-47] Robins(n) holds for all n > 5040 when a prime
number qm - n for 11 ≤ qm ≤ 47.

Proof. We know the Robin’s inequality is true for every natural number
n > 5040 such that ν7(n) ≤ 6 according to the lemma 1.3 [basic-results]
[Her18]. We need to prove

f(n) < eγ × log log n

when (220 × 313 × 77) | n. Suppose that n = 2a × 3b × 7c ×m, where
a ≥ 20, b ≥ 13, c ≥ 7, 2 - m, 3 - m, 7 - m, qm - m and 11 ≤ qm ≤ 47.
Therefore, we need to prove

f(2a × 3b × 7c ×m) < eγ × log log(2a × 3b × 7c ×m).

We know

f(2a × 3b × 7c ×m) = f(7c)× f(2a × 3b ×m)

since f is multiplicative [Voj20]. In addition, we know f(7c) < 7
6

for
every natural number c [Voj20]. In this way, we have

f(7c)× f(2a × 3b ×m) <
7

6
× f(2a × 3b ×m).
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However, that would be equivalent to

49

48
× f(7)× f(2a × 3b ×m) =

49

48
× f(2a × 3b × 7×m)

where f(7) = 8
7

since f is multiplicative [Voj20]. In addition, we know

49

48
×f(2a×3b×7×m) < f(qm)×f(2a×3b×7×m) = f(2a×3b×7×qm×m)

where qm - m, f(qm) = qm+1
qm

and 11 ≤ qm ≤ 47. Nevertheless, we know

the Robin’s inequality is true for 2a×3b×7× qm×m when a ≥ 20 and
b ≥ 13, since this is true for every natural number n > 5040 such that
ν7(n) ≤ 6 according to the lemma 1.3 [basic-results] [Her18]. Hence,
we would have

f(2a × 3b × 7× qm ×m) < eγ × log log(2a × 3b × 7× qm ×m)

< eγ × log log(2a × 3b × 7c ×m)

when c ≥ 7 and 11 ≤ qm ≤ 47. �

8. Proof of Main Theorems

Theorem 8.1. [1-main] Robins(n) holds for all n > 5040 when a prime
number qm - n for qm ≤ 47.

Proof. This is a compendium of the results from the lemmas 7.1 [btw2-
3], 7.2 [btw5-7] and 7.3 [btw11-47]. �

Theorem 8.2. [2-main] Let n > 5040 and n = r × qm, where qm ≥ 47
denotes the largest prime factor of n. We prove if Lagarias(r) holds,
then Lagarias(n) holds.

Proof. We need to prove

σ(n) ≤ Hn + exp(Hn)× logHn.

We have that

σ(r) ≤ Hr + exp(Hr)× logHr

since Lagarias(r) holds. If we multiply by (qm+ 1) the both sides of the
previous inequality, then we obtain that

σ(r)× (qm + 1) ≤ (qm + 1)×Hr + (qm + 1)× exp(Hr)× logHr.

We know that σ is submultiplicative according to the lemma 1.3 [basic-
results] (that is σ(n) = σ(qm×r) ≤ σ(qm)×σ(r)) [Cho+07]. Moreover,
we know that σ(qm) = (qm + 1) [Cho+07]. In this way, we obtain that

σ(n) = σ(qm × r) ≤ (qm + 1)×Hr + (qm + 1)× exp(Hr)× logHr.
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Hence, it is enough to prove that

(qm + 1)×Hr + (qm + 1)× exp(Hr)× logHr

≤ Hn + exp(Hn)× logHn

= Hqm×r + exp(Hqm×r)× logHqm×r.

If we apply the lemma 2.3 [harmonic-bound] to the previous inequality,
then we could only need to show that

(qm + 1)× log(eγ × (r + 1)) + (qm + 1)× eγ × (r + 1)× log log(eγ × (r + 1))

≤ log(eγ × qm × r) + eγ × qm × r × log log(eγ × qm × r).

We know this last inequality is true since we can easily check that the
subtraction of

log(eγ × qm × r) + eγ × qm × r × log log(eγ × qm × r)

with

(qm+1)× log(eγ×(r+1))+(qm+1)×eγ×(r+1)× log log(eγ×(r+1))

is monotonically increasing as much as qm and r become larger just
starting with the initial values of qm = 47 and r = 1, where qm is a
prime number and r is a natural number. Actually, this evidence seems
more obvious when the values of qm and r are incremented much more
even for real numbers. Indeed, the derivative of this subtraction is
larger than zero for all real number r ≥ 1 when qm ≥ 47 and therefore,
it is monotonically increasing when the variable r tends to the infinity
in the interval [1,+∞]. Since there is nothing that can avoid this
increasing behavior since this subtraction is continuous in that interval,
then we could state this theorem is always true.

In fact, a function f(r) of a real variable r is monotonically increasing
in some interval if the derivative of f(r) is larger than zero and the
function f(r) is continuous over that interval [AVV06]. Certainly, the
derivative of this subtraction is larger than zero over the evaluation of
r in [1,+∞] just because of the impact that has the value of qm ≥ 47
in the whole differentiation, where we know the derivative of log x and
log log x is 1

x
and 1

x×log x respectively [SLL09]. Of course, this result

is not true for some small values in the range of 1 < qm < 47, that’s
why it’s so important this detail. Consequently, if this subtraction is
monotonically increasing for the real numbers, then this will be the
same when qm ≥ 47 is a prime number and r is a natural number. In
this way, we can claim that Lagarias(n) has been checked for n = r×qm
when Lagarias(r) holds and the largest prime factor qm of n complies
with qm ≥ 47. �
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Consequently, we finally conclude that

Theorem 8.3. [final] Lagarias(n) holds for all n ≥ 1 and thus, the
Riemann Hypothesis is true.

Proof. On the one hand, Lagarias(n) has been checked for all n ≤ 5040
by computer. On the other hand, for all n > 5040 we have that
Lagarias(n) has been recursively verified due to lemma 1.2 [condition],
theorems 8.1 [1-main] and 8.2 [2-main]. Indeed, for every natural num-
ber n > 5040, there is always an integer s such that n = s× t, s is not
divisible by any prime number greater than 47 and s is divisible by all
the prime powers of n when the prime factors are lesser than 47 (in
some cases, the only chance is that s could be lesser than or equal to
5040). In this way, we have that Lagarias(s) holds using the lemma 1.2
[condition] and theorem 8.1 [1-main] when s > 5040 and therefore, with
a multiplication of factor by factor we could obtain that Lagarias(s× t)
holds recursively over the theorem 8.2 [2-main]. In addition, we can
omit the application of the lemma 1.2 [condition] and theorem 8.1 [1-
main] when s ≤ 5040 and obtain the same result, since we know that
Lagarias(s) also holds for every natural number s ≤ 5040. For example,
we can show the number n = 173 × 193 × 53 × 1132 > 5040 satisfies
Lagarias(n), because of Lagarias(173 × 193) holds by lemma 1.2 [con-
dition] and theorem 8.1 [1-main] and therefore, Lagarias(173 × 193 ×
53) holds and next Lagarias(173 × 193 × 53 × 113) holds and finally
Lagarias(173× 193× 53× 1132) holds using recursively the theorem 8.2
[2-main] just with a multiplication of factor by factor, where every fac-
tor is a prime number qm ≥ 47 such that qm ∈ {53, 113}. In conclusion,
we show that Lagarias(n) holds for all n ≥ 1 and therefore, the Rie-
mann Hypothesis is true: This is a direct consequence of theorem 1.1
[RH]. �
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