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Abstract—Workflow is a group of tasks that are processed in a
particular order to complete an application. Also, it is a popular
paradigm used to model complex applications. Executing complex
application in a distributed system such as cloud computing
implicates optimization of several conflicting objectives such as
monetary cost, energy consumption, total execution time of the
application (makespan), etc. Regardless of this trend, most of
the workflow scheduling approaches focused on single or bi-
objectives optimization problem. In this paper, we considered
the problem of workflow scheduling in a cloud environment as
a multi-objective optimization problem, and hence proposed a
multi-objective workflow-scheduling algorithm based on decom-
position (WSABD). The proposed algorithm is capable of finding
optimal solutions with a single run. Our evaluation results show
that, by a single run, the proposed approach manages to obtain
the Pareto Front solutions which are at least as good as schedules
produced by running a single-objective scheduling algorithm with
contraint for multiple times.

Index Terms—Multi-objective optimization, workflow schedul-
ing algorithm, cloud computing.

I. INTRODUCTION

A decade ago, workflow emerged as a popular paradigm
to represent big data applications in distributed environments
such as the cloud. One of the main objectives of work-
flow scheduling in a distributed environment is makespan
optimization. It is well-known that workflow scheduling in
a heterogeneous environment is NP-complete [1]. As cloud
computing gain popularity use, makespan optimization is no
longer the only one objective to be optimized during workflow
scheduling.

There is a rise of other objectives of the same interest as
makespan such as cost, energy, reliability, utilization, etc, that
need to be taken into consideration during workflow schedul-
ing. Therefore, modern workflow scheduling algorithms for
cloud environment must be able to optimize more than one
objective at the same time. Generally, cloud machines renting
price is charged based on the computation capacity of the
machines used. For example, the pricing models adopted by
CloudSigma [2] and Elastichosts [3], are based on the users
selected CPU frequency. To minimize the makespan, the user
may need 1MHz CPU frequency additional,which results in a
small but still higher monetary cost. With such pricing schema,
an interesting challenge arising to the user may be how to
properly select the machine and tune their CPU frequency

so that makespan and cost of running his/her application are
minimized.

More powerful or faster machines will cost more but pro-
duce shorter makespan schedules while slower machines may
cost less and produce longer makespan schedules. In this con-
text, cost and makespan are conflicting objectives. Selecting
the machine capacity for the improvement of the total cost
values cannot be possible without deteriorating the makespan
values. Note that there is no single solution that can optimize
both objectives at the same time. In this case, decision makers
may have to select the final preferred solution from the Pareto
optimal objective vectors. Therefore, approximating the set of
all the Pareto optimal objective vectors is the appropriate way
to deal with a multi-objective optimization problem.

It is well-known that solutions to a multi-objective opti-
mization problem under trivial situations could be an optimal
solution of a scalar optimization problem in which the ob-
jective is an aggregation of all the objectives [4]. Therefore,
approximation of the PF can be decomposed into a number of
scalar objective optimization sub-problems. To the best of our
knowledge, none of the majority of the current state multi-
objective workflow scheduling algorithms [5]–[10] considered
decomposition.

With cost and makespan minimization in mind, in this
paper, we propose a workflow-scheduling algorithm based on
decomposition (WSABD). Given a scientific workflow with
deterministic model of execution time and communication
time, given also a set of resources with CPU frequencies
and cost, WSABD starts with initialization step using CFMax
[11], then updates the functional values, finally, checks for the
satisfaction of stopping criteria if stopping criteria are satisfied,
the algorithm returns Pareto Front solutions otherwise goes to
the update step. In order to speed up the runtime, WSABD
uses a search operation to get new solutions rather than
overlapping mutation operations. The main contribution of this
paper is proposing a novel workflow scheduling algorithm with
three variants, which incorporate decomposition approaches
in workflow scheduling and use search operation rather than
mutation.

The rest of this paper is organized as follow: section II
presents the related works, section III identifies the problem
to be solved; Proposed algorithm is described in section IV;
Evaluation settings and findings are presented in section V;



Finally, section VI concludes our work and summarizes future
works .

Fig. 1: DAG example with communication time

Tasks Id Machine1 Machine2 Machine3
1 30 12 16
2 27 21 72
3 4 36 6
4 21 6 20
5 20 16 81
6 28 6 48
7 35 14 7
8 5 48 30
9 21 3 36

10 48 2 64

TABLE I: An example of execution time

Machines MaxCPUfr MinCPUfr StepCPUfr

1 4200 2100 300
2 3600 2400 300
3 3000 2000 200

TABLE II: An example of Frequency settings for 3 machines

II. RELATED WORKS

Workflow scheduling and resource provisioning have be-
come the fundamental research topic on the cloud-computing
platform. A remarkable number of works have been done to
deal with optimization problem, either as single objective, bi-
objective or as multi-objective optimization problem. Among
those focused on optimization of makespan as a single ob-
jective, HEFT [12] is the lightweight workflow scheduling
heuristic for a heterogeneous environment like a cloud. Given
a set of machines, HEFT ranks tasks according to their
values, and then schedule them one after another to the
machine that minimizes its execution time by taking into
consideration the tasks communication time. Because of its
low complexity, HEFT has been employed by other researchers
to provide new workflow scheduling algorithms [11], [13]–
[16]. With the objective of mapping all the workflow tasks to

the available VMs so that makespan and cost are minimized,
[17] proposed a bi-objective algorithm which is a hybrid
of HEFT and GSA(Gravitation Search Algorithm). As cloud
computing emerges, modern workflow scheduling algorithms
have to be able to optimize more than one objective. Dif-
ferent researches have been carried out to respond to this
trend [6]–[10]. Mostly, multi-objective workflow scheduling
algorithms rely on finding the Pareto set solutions and then find
non-dominated solutions from the Pareto set. Different from
another usual objective, the work presented in [7] designed
a new systematic method that considers both tasks security
demand and interaction in secure tasks placement in the cloud.
This work proposed a heuristic algorithm that is based on
tasks completion time and security requirements. Most of
the multi-objective workflow-scheduling algorithm considered
two to three objective at once, [6] proposed a generic multi-
objective optimization framework to evaluate list scheduling
heuristic over four scheduling objectives(makespan, cost, en-
ergy consumption and reliability). The proposed algorithm ap-
proximates the optimal solution by considering user-specified
constraints on objectives in a dual strategy: maximize the
distance to the users constraints for dominant solutions and
minimize it. Evolutionary algorithms are an excellent way to
solve the multi-objective optimization problem, however, there
are designed for non-constrained problems. With the aim of in-
vestigating the proper task-machine mapping plan to minimize
the total financial cost and degree of imbalance under deadline
constraints, The algorithm proposed in [18] modified NSGA-
II (Non-dominated Sorting Genetic Algorithm-II) proposed
in [19] and make it accept constraints, Then use modified
version to to solve the considered optimization problem. [20]
proposed a scheduler that is capable of computing a set of
trade-off solutions in a single run. The main objective of this
work is to rely on the empirical models for the execution
time of workflow tasks, the involved energy consumption and
then overcome the drawback of deterministic facts(execution
time and communication time are known in advance). Decom-
position is a traditional multi-objective optimization strategy
that decomposes a multi-objective optimization problem into
a number of scalar optimization problems and optimizes them
simultaneously. [4] presented a multi-objective evolutionary
algorithm that is based on the decomposition techniques.
However, this work is not designed for workflow scheduling
purposes.

Differentiating from the work presented above, this paper
proposes a workflow-scheduling algorithm based on decom-
position. Our algorithm uses a search operation to get a new
solution rather than overlapping mutation. To generate the
initial population our algorithm employs CFMax [11].

III. SYSTEM MODEL

We assume the presence of cloud computing machines
that are charged based on the pay-as-you-go basis of the
CPU frequency used to execute each task in the workflow.
Each allocated machine is provisioned from the beginning
of the execution time of the task until its completion time.



Information about data transfer between tasks and execution
time of tasks when the machines run at their maximum CPU
frequency are known in advance as illustrated in figure 1 and
table I respectively. We also consider a workflow application
modeled as Directed Acyclic Graph(DAG) G = (T,D), where
T represent a set of interdependent tasks T = {t1, t2, .., tn}
and D represent a set of intermediate data between two
adjacent tasks D = {dij} (Figure 1 for illustration). We use
pred(ti) to determine a set of predecessors of task ti, and
Succ(ti) to determine a set of successors of task ti. If task
ti is adjacent to task tj , task ti is a parent of task tj , tj is
a child of task ti. Task tj can not start its execution before
all its parents are completed and transmitted all required data
dij to it. If a task is executed on the machine using a CPU
frequency lower than the maximum, its execution time can be
calculated by:

ET(t,f) = (β · (fmax

f
− 1) + 1) · ET(t,fmax) (1)

where ET(t,fmax) is the execution time when task ti runs at
the maximum CPU frequency and the parameter β indicates
the impact of the CPU frequency on task execution time in
the range of 0 to 1. In this paper, we set β=0.4 by default.

The heterogeneous machines operates on variant CPU
frequencies in between maximum and minimum frequency
(fmin, fmax) with a step frequency fstep that determine the
variability level as illustrated in table II. Each machine is
charged according to the CPU frequency allocated to each
task. We adopted one of the pricing model presented in [15].
Let C(m,f) represent the price charge per time unity use of a
machine m with CPU frequency f , C(m,fmin) represent the
price charge per time unity use of a machine m running at
minimum CPU frequency fmin, and δ represent the coefficient
to tune the charging rate of the price according to f . Then,
with linear pricing model C(m,f) can be calculated as bellow:

C(m,f) = Cm,f + δm.
fi − fmin

fmin
(2)

Let also EC(t,m,f) denote the task execution cost on the
machine running at a frequency f . EC(t,m,f) is calculated
as:

EC(t,m,f) = ET(t,f) · C(m,f) (3)

The total cost to execute the whole workflow tasks is calcu-
lated as:

TC =
∑

∀(t,m)∈S

EC(t,m,f) (4)

where S is the schedule which describes the tasks-machines
mapping and the operating CPU frequency of each machine.
The aim of multi-objective optimization algorithms is to find
the trade-off between contradicting objectives. During multi-
objective workflow scheduling, there may be a big or even
infinite number of solution. However, only non-dominated
solutions can be taken by decision-makers for the selection of
the final preferred solution. A solution Sa is said to dominate
a solution Sb if and only if Sa is better than Sb in both

objectives. F (x
′
) is said to be Pareto Optimal if there is no

solution x such that F (x) dominates F (x
′
). This means that

any change in Pareto optimal values for the satisfaction of one
objective must lead to the change in at least another objective.
A set of all Pareto optimal solutions is called PS, and a set
of all Pareto optimal objective vectors is called PF. Some
mathematical models have been developed to approximate PF,
however, it is well-known that Pareto Optimal solutions for a
multi-objective problem under slight condition can be optimal
solution of a scalar optimization problem in which objective
is an combination of both the weight vectors [4]. Hence,
approximation of the PF can be decomposed into a number
of scalar objective optimization sub-problems. In this paper,
we adopted three decomposition approaches: Weighted sum,
Tchebycheff, and Penalty Boundary intersection approaches,
to decompose the problem of approximation of the PF into
number of scalar optimization problems. Let gws be de-
composition method using weighted sum approach, gte be
decomposition method using Tchebycheff approach, and gpbi

be decomposition method using penalty boundary intersection.
The decomposition values can be computed as bellow:

minimize gws(x|λ) =
m∑
i=1

λifi(x) (5)

minimize gte(x|λ, z) = max
1≤i≤m

{λi|fi(x)− zi|} (6)

minimize gpbi(x|λ, z) = d1 + θd2

where d1 =
‖(F (x)− z)Tλ‖

‖λ‖
and d2 = ‖F (x)− (z + d1λ)‖.

(7)

Where x is a vector containing the variables of both objectives
to be optimized(Cost and Makespan) λ is weight vector, z
represents the reference point which is equal to the minimal
values for both objective considered(Cost, Makespan),θ is a
penalty parameter that has to be greater than 0, d1 is the
distance between z∗ and y, d2 is the distance between F (x)
and line L. More details about those three approaches can be
found in [4].

Based on the model and assumptions above, we presented
the multi-objective workflow scheduling algorithm, which
generates schedules and properly tunes the CPU frequency for
each task so that the makespan and total cost for the submitted
workflow are minimized.

IV. THE PROPOSED ALGORITHM

This section describes the Workflow Scheduling Algo-
rithm Based on Decomposition(WSABD), a multi-objective
algorithm proposed to solve the problem described in sec-
tion III. As presented in algorithm 2, WSABD takes seven
elements(W , R, SC, N , WV , T , A) as input. Those input
elements are described as follow: W is a set of tasks with
known execution time and communication time, R is a set of
resources with CPU frequencies and associated prices, SC
is a stopping criteria (a fixed number of iteration), N is



number of sub-problem considered, WV is a uniform spread
of N Weight Vectors: λ1...λN (N=2), T is the number of
the weighted vectors in the neighborhood of each weight
vector, A is a set of decomposition approaches that are used to
compute and compare new solutions. In our case, A consists
of three approaches: Weighted Sum (WS), Tchebcheff (TE)
and Penalty Based Boundary (PBI). WSABD returns EP as
the output, where EP is a set of non-dominated solutions. The
proposed algorithm consists of three main steps: Initialization,
Update and Stopping criteria.

Algorithm 1 Using a Specific Decomposition Approach

switch (A)
2: case (WSABD-WS):

Calculate gws(xj‖λj), gws(y
′‖λj) using Eq.(5), break

4: case (WSABD-TE):
Calculate gte(xj‖λj , z), gte(y

′‖λj , z) using Eq.(6),
break

6: case (WSABD-PBI):
Calculate gpbi(xj‖λj , z), gpbi(y′‖λj , z) using Eq.(7),
break

8: end switch
if (g∗(y

′‖λj , z) ≤ g∗(xj‖λj , z)) then
10: Set xj = y

′
and FV j = F (y

′
)

end if

In our previous study [21], we proposed workflow schedul-
ing algorithm with two variant(CFMax, CFMin). The pur-
pose of our study [21] is to minimize the users’ monetary
expenditure for the submitted workflow application under
a given deadline. The experimental results of our proposal
show that CFMax performs better than CFMin. To satisfy
the user’s deadline regardless of the total cost, CFMax starts
with makespan-aware scheduling algorithm (HEFT but other
can be used like in [11]) and schedule each task to the
appropriate machine using the maximum CPU frequency. To
guarantee the cost reduction, a Reduction weight(RW) table
is created to measure the cost reduction impacted by the
task reassignment and CPU frequency re-allocation.The values
are inserted in RW according to Eq.(8), where TC(t,m′ ,f ′ )

represents new task’s cost after changing CPU frequency, and
TC(t,m,f) represents the cost of executing the tasks on the
machine using current CPU frequency. To take re-assignment
decision, the combination of machine and CPU frequency
that produces the maximum value in RW are selected as
the winner. In the first step of WSABD, we initialize the
inputs, CFMax is used to generate the initial population
(line 4 of Algorithm 2). In the second step, we update the
initialized variables by iteratively changing vectors variables
and iteration settings. We compute new solutions according to
the updated settings and update new solutions according to the
decomposition approaches decision. In step three, we check
if stopping criteria is satisfied to return the Non-Dominated
solutions (namely, EP ), otherwise go to step two.

RW(t,m,f) = TC(t,m′ ,f ′ ) − TC(t,m,f) (8)

Algorithm 2 WSABD (Workflow Scheduling Algorithm
Based On Decomposition)

Input: W,R, SC,N,WV, T,A
Output: EP : External Population(Non Dominated Solutions)

Step1: Initialization :
1: Set Iteration = 0, EP = ∅
2: Calculate Euclidean distance between any two weight

vectors then work out the T closest weight vectors to each
weight vector store in B.

3: Initialize W and R
4: Initialize the population using CFMax [11]
5: Calculate the individual cost and makespan of the popu-

lation as the objective function value (FV )
6: Initialize the reference point z, z=(minimizedcost,
minimizedmakespan)
Step 2: Update

7: for (individual: population) do
8: if (index[individual] is even) then
9: Get new individual y

′ ← through minimized-cost
10: else
11: Get new individual y

′ ← through minimized-
makespan

12: end if
13: Calculate the cost and makespan of y

′
, rename them as

FV (y
′
)

14: Update reference point z using FV(y
′
)

Update the solutions of this individual’s neighbors
15: for (j ∈ B (individual)) do
16: Call Algorithm 1 with A: WSABD-[SW , TE,

PBI]
17: end for

Update EP
18: Remove from EP all the vectors dominated by FV (y

′
)

19: add F (y
′
) to the EP if no Vectors in EP dominate

FV (y
′
)

20: end for
21: iteration +=1

Step 3: Stopping criteria
22: if (iteration==SC) then
23: return EP
24: else
25: Go to step 2.
26: end if

In detail, step one (from line 1 to 6) consists of initialization
of the input variables such as number of weight vectors in
the neighborhood (T ), weight vector indexes B, machines
information, DAG information. After initializing the initial
population using CFMax, the individual cost and makespan are
calculated as objective function values. Among the objective
function values (F ), the minimum one is selected as the initial
reference point z. Note that T plays an important role by
limiting the search operation to a certain extend. The second
step (from line 7 to 26) consists of two sub-steps. In the
first sub-step (from line 7 to 15), we update the individual
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by searching the minimized cost (y) or makespan (y) based
on the position index of the individual in the population. If the
index of the individual in the population is even, we get the
minimized cost otherwise we get the minimized makespan.
Then the new cost and the new makespan are calculated
according to the new individual values and renamed as F(y).
Finally, the reference point is updated according to F(y).
In the second sub-step(from line 16 to 26): The solutions
of the individuals neighbors are updated. As shown in the
Algorithm 1, in this stage we use either of the approaches
defined in Eq.(5), (6) and (7). For each selected approach, we
calculate the g∗(y′‖λj , z) and g∗(xj‖λj , z). Before re-setting
the current cost-makespan(xj) value to be equal to the new
individual y the two values are compared first. If the new
values (g∗(y′‖λj , z)) are less or equal to the current values
(g∗(xj‖λj , z)), update is allowed otherwise the current values
are keept and the algorithm continues. EP is also updated
according to the new values of FV (y). This is repeated until
the stopping criteria are satisfied then the final EP is returned.

V. EVALUATION RESULTS

The algorithm presented in Section 2 and its simulation
tool are implemented in Java. A 4 core Intel i5-7300HQ
@2.5GHz CPU with 8GB-RAM PC is used as an experimental
environment. Each simulated machine run at a CPU frequency
in the range between maximum and minimum, with a variation
step, selected randomly as shown in table II. We let pricing
model be linear and its parameters cmin and δ to be equal
9.24 and 3.33 respectively as in our previous work [11].

We consider two types of workflows: Montage and Inspiral
with 1000 tasks per each workflow. The input parameters such
as population size, number of neighbors and number of the
iteration are set to be 20, 5 and 2000 respectively. WSABD is
applied to each DAG with each of the other parameters defined
above.

Given the above parameters and settings, CFMax is firstly
executed. However, original CFMax is designed for single
objective optimization problem. With the help of weight vector



that is assigned to each objective, CFMax gets the ability
to respond to the multi-objective optimization problem. The
results generated by CFMax are also the initial population
for WSABD. WSABD can approximate optimal solutions (set
of makespans and costs) at the end of a single run. Note
that WSABD is made of three decomposition approaches.
As long as the iteration number is not yet achieved and all
possibility not tried yet the algorithm will continue to generate
new solutions. The optimization results for both considered
workflows are presented in Figure 2. Users can determine
the solutions that suit their needs based on some constraints
such as users’ budget and/or deadline. To evaluate the runtime
of WSABD, the aforementioned environment and settings are
used to run each algorithm 100 times and return the average
as their runtime results as shown in Figure 3.

Based on the result presented in Figures 2 and 3, the key
findings of this paper can be summarized as follows:

• WSABD-WS and WSABD-TE can generate almost the
same optimal results for both objectives and these results
are fairly close to the schedules generated by running
CFMax for multiple times.

• In most of the cases, WSABD-WS and WSABD-TE
produce better scheduling results than WSABD-PBI.

• WSABD-PBI can be completed within a shorter time
compared to other approaches.

• The comparison result between the runtime of WSABD-
WS and that of WSABD-TE varies when different DAGs
are used.

VI. CONCLUSION

In this paper, the problem of minimizing makespan and
monetary cost of a submitted workflow is considered and
modeled as a multi-objective optimization problem. A novel
workflow scheduling algorithm based on decomposition is
proposed to assist in the tunning of the CPU frequency for each
task so that both makespan and cost can be minimized. The
evaluation results on optimization show that in different condi-
tions, the performance of running WSABD-WS and WSABD-
TE for just one time, which generate a set of solutions, is
stable and almost as good as running CFMax for multiple
times and generating one solution per time. However, the
evaluation results on runtime show that WSABD-PBI takes
shorter runtime than WSABD-WS and WSABD-TE for both
considered workflows. Future works could consider different
pricing models, study the impact of different settings like
number of machines, number of iteration to the evaluation
result. Additionally, the efficiency of the proposed algorithm
could be tested through a real cloud platform.
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