
EasyChair Preprint

№ 539

Storing and Querying Semantic Data in the

Cloud

Steffen Staab and Daniel Janke

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 28, 2018

Storing and Querying Semantic Data in the Cloud

Daniel Janke1 and Steffen Staab1,2

1 Institute for Web Science and Technologies
Universität Koblenz-Landau, Germany

{danijank,staab}@uni-koblenz.de
http://west.uni-koblenz.de/

2 Web and Internet Science Group
University of Southampton, UK
s.r.staab@soton.ac.uk

http://wais.ecs.soton.ac.uk/

Abstract. In the last years, huge RDF graphs with trillions of triples were cre-
ated. To be able to process this huge amount of data, scalable RDF stores are
used, in which graph data is distributed over compute and storage nodes for scal-
ing efforts of query processing and memory needs. The main challenges to be
investigated for the development of such RDF stores in the cloud are: (i) strate-
gies for data placement over compute and storage nodes, (ii) strategies for dis-
tributed query processing, and (iii) strategies for handling failure of compute and
storage nodes. In this manuscript, we give an overview of how these challenges
are addressed by scalable RDF stores in the cloud.

1 Introduction

In the last years, huge RDF graphs with trillions of triples were created. For instance,
the number of Schema.org-based facts that are extracted out of the Web have reached
the size of three trillions [98]. Another example is the European Bioinformatics Institute
(EMBL-EBI) that would like to convert its datasets into RDF resulting in a graph con-
sisting of trillions of triples. To date no such scalable RDF store exists and the current
EBI RDF Platform can handle only 10 billion triples [88].

In order to provide RDF stores that can scale to these huge graph sizes, researchers
have started to develop RDF stores in the cloud, where graph data is distributed over
compute and storage nodes for scaling efforts of query processing and memory needs.
The main challenges to be investigated for such development are: (i) strategies for data
placement over compute and storage nodes, (ii) strategies for distributed query pro-
cessing, and (iii) strategies for handling failure of compute and storage nodes. In this
manuscript, we want to give an overview of how these challenges have been addressed
by scalable RDF stores in the cloud that have been developed in the last 15 years.

In section 3, we give an overview of the different architectures of scalable RDF
stores in the cloud. Basically there exist three types of architectures. The first type uses
general cluster computing frameworks like Spark3 or HBase4 to perform queries on

3 https://spark.apache.org/
4 https://hbase.apache.org/

RDF graphs. The second type – so-called distributed RDF stores — splits the RDF
graph into smaller parts that are then stored and queried on the compute and storage
nodes. The last type are federated query processing systems. These systems do not have
any influence on the data distribution over compute and storage nodes. Instead, they
process queries over several RDF stores.

In case of cluster computing frameworks and distributed RDF stores, the RDF graph
is distributed among several compute and storage nodes. The general procedure of data
distribution strategies is to first split the graph into several not-necessarily disjoint triple
sets. In relational and NoSQL databases this splitting is called sharding. Thereafter, the
individual triple sets are assigned to compute and storage nodes. An overview of how
these two steps are preformed by the existing RDF stores is given in section 4.

Querying a distributed dataset is usually done by splitting the query into subqueries
that can be answered locally without the need to exchange data over the network. The
results of these subqueries are finally combined into the overall results of the query. In
order to identify which parts of the queries can be answered locally on which compute
nodes, an index is required that stores information about the data distribution. The dif-
ferent types of indices are described in section 5. An overview of how distributed query
processing is done by RDF stores in the cloud is given in section 6.

Another challenge of scalable RDF stores in the cloud is that the failure of an in-
dividual compute or storage node should not lead to the failure of the complete RDF
store. A brief overview of how this challenge is addressed is given in section 7.

In order to evaluate how well RDF stores in the cloud solve the challenges in the
cloud, their performance needs to be evaluated. In section 8, we will present different
methodologies how RDF stores in the cloud are evaluated.

Due to the huge amount of RDF stores in the cloud that were developed in the last
15 years, we will not present distributed solutions for the handling of RDF streams or
reasoning. Interested readers are referred to [118]. Beside RDF stores in the cloud there
also exist distributed graph databases like Sparksee5 or Titan6 as well as distributed
graph processing frameworks like PGX.D [61] or PEGASUS [66]. They are not de-
scribed in this manuscript since they have not been presented as part of an RDF store,
yet. Furthermore, this manuscript gives an overview of how RDF stores in the cloud
work. Readers interested in a performance comparison of RDF stores in the cloud are
referred to, e.g., [49].

2 Preliminaries

RDF stores in the cloud have to deal with the two challenges how to distribute RDF
graphs on several compute and storage nodes and how to retrieve data thereafter again.
The following two sections formalize these challenges. The given definitions are the
usual definitions found in the literature. This section was taken from [64].

5 http://www.sparsity-technologies.com/
6 http://titan.thinkaurelius.com/

2.1 Formalization of Graph Cover Strategies

In order to illustrate different graph cover strategies, we use Figure 1 as our running
example. The graph represents the knows relationship between two employees of the
university institute WeST and one employee of the Leibniz institute GESIS. Addition-
ally, the graph includes the ownership of the dog Bello. The terms r:, e:, w:, g:, and f:
abbreviate IRI prefixes.

g:Dog g:Gesis

g:bello g:wanja

w :daniel w :martin

w :WeST"Daniel" "Martin"

r :type e:employs

e:employsf :givenname

e:ownedBy

f :knows f :knows
f :knows

f :givenname

f :givenname

"Wanja"

Fig. 1: The example graph describing the knows relationships between some employees
of WeST and Gesis.

To formalize the data distribution challenge, we define RDF graphs like in [53].
Assume a signature σ = (I,B, L), where I , B and L are the pairwise disjoint infinite
sets of IRIs, blank nodes and literals, respectively. The union of these sets is abbreviated
as IBL.

Definition 1. The set of all possible RDF triples T for signature σ is defined by T =
(I ∪B)×I× IBL. An RDF graphG or simply graph is defined asG ⊆ T . The set of all
vertices contained in G is defined by VG = {v|∃s, p, o : (v, p, o) ∈ G ∨ (s, p, v) ∈ G}.

(s, p, o) ∈ T is also called a triple with subject s, property p and object o. To simplify
later definitions, the functions subj(t), obj(t) and prop(t) return the subject, object or
property of triple t, respectively. Likewise, we use subj(T), obj(T) and prop(T) to
refer to the set of subjects, objects and properties in the triple set T .

In the context of distributed RDF stores, the triples of a graph have to be assigned
to different compute and storage nodes (in the following, we refer to them more briefly
as compute nodes). The finite set of compute nodes is denoted as C in the rest of this
paper.

Definition 2. Let G denote an RDF graph. Then a graph cover is a function cover :
G→ 2C , that assigns each triple of a graph G to at least one compute node.

Definition 3. The function chunk returns the triples assigned to a specific compute
node by a graph cover (graph chunks). It is defined as

chunkcover: C → 2G

chunkcover(c):= {t|c ∈ cover(t)} .

This definition allows for triples being replicated on several compute nodes. If the
graph chunks are pairwise disjoint the underlying graph cover is called a graph parti-
tioning.7

Some frequently used graph cover strategies require two additional definitions.

Definition 4. A graph cover of RDF graphG is subject-complete, if ∀c ∈ C : ∀ (s, p, o) ∈
chunkcover(c) : ∀ (s, p′, o′) ∈ G : (s, p′, o′) ∈ chunkcover(c).

Example 1. The graph cover shown in Figure 2 is subject-complete, since all triples
with the same subject are located in the graph chunk of c1 or c2.

Definition 5. A path P is a sequence 〈t0, t1, ..., tn〉, if ∀i ∈ [0, n] : ti ∈ G ∧ ∀j ∈
[0, n] : j 6= i ⇒ tj 6= ti and ∀i ∈ [1, n] : ti−1 = (si−1, pi−1, si) ∧ ti = (si, pi, oi).
The length of path P is n+ 1.

Example 2. In the example Graph shown in Figure 1, 〈(w:daniel, f:knows,w:martin),
(w:martin, f:knows, g:wanja)〉 is a path of length 2.

g:Gesis

g:wanja

w :daniel w :martin

"Martin"

e:employs

f :knows f :knows

f :givenname

f :givenname

"Wanja" g:Dog

g:bello

w :daniel

w :martin

w :WeST

"Daniel"

r :type

e:employs

f :givenname

f :knows

c1 c2

g:wanja

e:ownedBy

Fig. 2: An example graph cover of the example graph.

Several RDF stores in the cloud create subsets of an RDF graph that are distributed
among the compute nodes. One frequently used graph subset is called a molecule. A
molecule is a set of triples that are reachable from its anchor vertex. This property of

7 In the context of relational or NoSQL databases, graph covers are called sharding and the
graph chunks shards. In the literature, there exist definitions of sharding that allow for data
replication whereas others do not allow it.

molecules aims for an efficient processing of star-shaped queries, in which the triple
patterns are joined on the subject. Also path-shaped queries might be processed effi-
ciently, if the length of the path is smaller than the diameter of the molecule.

Definition 6. A subset Mv ⊆ G of an RDF graph G is called molecule8 of vertex v if
1. for all triples t ∈ Mv there must exist a path 〈t0, t1, ..., tn, t〉 such that t0 =

(v, p0, o0) and t0, t1, ..., tn ∈Mv and
2. if s is a subject of some triple in Mv , then ∀ (s, p, o) ∈ G : (s, p, o) ∈Mv .

The vertex v is called anchor vertex9.

Definition 7. The directed molecule diameter of a molecule Mv is the longest shortest
path between the anchor vertex v and all objects contained in triples of Mv .

Example 3. The molecule with directed diameter 1 of the anchor vertex g:gesis in the
example graph only contains the triple (g:Gesis, e:employs, g:wanja). A molecule with
diameter 2 of the same anchor vertex would additionally contain (g:wanja, f:knows,w:daniel)
and (g:wanja, f:givenname, "Wanja").

2.2 Formalization of Query Execution Strategies

We define the used SPARQL core as done in [110], [107] and [16]. For this definition
the infinite set of variables V that is disjoint from IBL is required. In order to distinguish
the syntax of variables from other RDF terms, they are prefixed with ?. The syntax of
SPARQL is defined as follows.

Definition 8. A triple pattern is a member of the set TP = (I ∪ L ∪ V) × (I ∪ V) ×
(I ∪ L ∪ V).

Definition 9. A basic graph pattern (BGP) is a
1. triple pattern or
2. a conjunction B1.B2 of two BGPs B1 and B2.

Definition 10. A SELECT query is defined as SELECTW WHERE {B} with W ⊆ V
and B a BGP.

Example 4. The following SELECT query returns the names of all persons who are
known by employees of WeST and who own the dog Bello. It contains a basic graph pat-
tern that concatenates four triple patterns. In the following examples ?v1 <f:knows>

?v2 is abbreviated as tp1, ?v2 <f:givenname> ?v3 as tp2 and so on. All following
examples in this section will refer to this query.

SELECT ?v3 WHERE {
?v1 <f:knows> ?v2.
?v2 <f:givenname> ?v3.
<w:WeST> <e:employs> ?v1.
<gs:bello> <e:ownedBy> ?v2

}
8 We adapted the definition of an RDF molecule in [38] to allow for paths with a length ≥ 1.
9 The term anchor vertex was taken from [79].

Before the semantics of a SPARQL query can be defined, some additional definitions
are required. In the following Q represents the set of all SPARQL queries.

Definition 11. The function var : Q → V returns the set of variables occurring in a
SPARQL query. It is defined as:

1. var(tp) is the set of variables occurring in triple pattern tp.
2. var(B1.B2) := var(B1) ∪ var(B2) for the conjunction of the BGPs B1 and B2.
3. var(SELECTW WHERE {B}) :=W ∩ var(B) for W ⊆ V and B a BGP.

Definition 12. A variable binding is a partial function µ : V 7→ IBL. The set of all
variable bindings is O.

The abbreviated notation µ(t) with t ∈ TP means that the variables in t are substituted
according to µ.

Example 5. The following three partial functions are variable bindings, that assign val-
ues to some variables. µ1 would be an intermediate result produced by the first triple
pattern of the example query in example 4 whereas µ2 and µ3 would be produced by
the second triple pattern.

µ1 = {(?v1,w:martin) , (?v2, g:wanja)}
µ2 = {(?v2, g:wanja) , (?v3, "Wanja")}
µ3 = {(?v2,w:martin) , (?v3, "Martin")}

Definition 13. Two variable bindings µi and µj are compatible, denoted by µi ∼ µj ,
if ∀?x ∈ dom(µi) ∩ dom(µj) : µi(?x) = µj(?x).10

Example 6. The variable bindings µ1 and µ2 from example 5 are compatible since in
both variable bindings g:wanja is assigned to ?v2 which is the only variable occurring
in the domains of both variable bindings. µ1 and µ3 as well as µ2 and µ3 are not com-
patible because they assign different values to common variables.

Definition 14. The join of two sets of variable bindings Ω1 and Ω2 is defined as
Ω1 on Ω2 = {µ1 ∪ µ2|µ1 ∈ Ω1 ∧ µ2 ∈ Ω2 ∧ µ1 ∼ µ2}.
The variables contained in dom(µ1) ∩ dom(µ2) are called join variables.

Example 7. The join of the two variable bindings sets {µ1} and {µ2, µ3} from ex-
ample 5 produces a result set only containing the variable binding {(?v1,w:martin) ,
(?v2, g:wanja) , (?v3, "Wanja")} because only µ1 and µ2 are compatible.

[107] and [16] define the semantics of a SPARQL query as follows:

Definition 15. The evaluation of a SPARQL query Q over an RDF Graph G, denoted
by JQKG, is defined recursively as follows:

1. If tp ∈ TP then JtpKG = {µ|dom(µ) = var(tp) ∧ µ (tp) ∈ G}.
2. If B1 and B2 are BGPs, then JB1.B2KG = JB1KG on JB2KG.

10 dom(µ) refers to the set of variables of this binding.

3. IfW ⊆ V andB is a BGP, then JSELECTW WHERE {B}KG = project(W, JBKG) ={
µ|W |µ ∈ JBKG

}
.11

The execution of a query requires the translation of a SPARQL query into a query
execution tree. This tree defines the individual operations and their execution sequence.
Thereby, each node of the query execution tree consists of three components: (i) the
name of the operation to be executed, (ii) the set of variables that are bound in the
resulting variable bindings and (iii) the set of child operations.

Definition 16. Let Lnode be the set of node labels and Υ = Lnode × 2V × 2Υ the set
of all query execution trees, then a query execution tree of a query Q, denoted as 〈〈Q〉〉,
is defined recursively as follows:

1. If tp ∈ TP then 〈〈tp〉〉 = (tp, var(tp),∅).
2. IfB1 andB2 are BGPs, then 〈〈B1.B2〉〉 = (join, var(B1) ∪ var(B2), {〈〈B1〉〉, 〈〈B2〉〉}).
3. If W ⊆ V and B is a BGP, then 〈〈SELECTW WHERE {B}〉〉 = (project,W, 〈〈B〉〉).

Example 8. Figure 3 shows a graphical representation of one query execution tree for
the example query from example 4. The following query execution tree represents the
first join in its mathematical representation. It has the two child trees (tp1, {?v1, ?v2} ,∅)
and (tp2, {?v2, ?v3} ,∅).

(join, {?v1, ?v2, ?v3} , {
(tp1, {?v1, ?v2} ,∅) ,

(tp2, {?v2, ?v3} ,∅)

})

project

on

on

Jtp1KG Jtp2KG Jtp4KG

on

Jtp3KG

Fig. 3: Bushy query execution tree for the query from example 4.

3 Architectures

The RDF stores in the cloud can be categorized into three groups that characterize their
architecture. The first type of RDF stores in the cloud make use of cloud computing

11 µ|W means that the domain of µ is restricted to the variables in W .

frameworks (see Sec. 4). These frameworks hide the complexity of distributed systems
from the developers. This reduced developing complexity comes with the cost of lim-
ited influence on, e.g., the data placement. To overcome these limitation, developers
of distributed RDF stores have to address the challenges of data placement, distributed
query processing and fault tolerance on their own (see Sec. 3.2). In contrast to this, fed-
erated RDF stores aim to query data from several RDF stores that manage the stored
data on their own (see Sec. 3.3). One application scenario would be querying several
remote SPARQL endpoints that can be found in the linked open data cloud.

One RDF store in the cloud that caused a lot of attention after its launch is Nep-
tune12. Due to a lack of descriptions that can be found, it is unclear which architecture
it has.

3.1 RDF Stores Using Cloud Computing Frameworks

Implementing a distributed system is a challenging task. To reduce the complexity,
several RDF stores in the cloud are realized on top of cloud computing frameworks. As
shown in Fig. 4, these RDF stores need a master node that translates the RDF graph into
some format that can be stored within the cloud computing frameworks. This is the job
of the graph converter. Similarly, SPARQL queries need to be translated into queries
or tasks that can be executed on the cloud computing framework to produce the query
results that are then transferred back to the user. This is done by the query translator.

Cloud Computing

RDF Query

Master

Converter Translator

Framework

Fig. 4: Architecture of an RDF store using a cloud computing framework.

One of the first cloud computing frameworks that was used to build RDF stores
in the cloud is Hadoop13 [135]. RDF stores like SHARD [116], HadoopRDF [42] and
CliqueSquare [44] transform the RDF graph into one or several files that are stored in
the distributed file system of Hadoop [128]. SPARQL queries are translated into one
or several jobs that are executed within Hadoop. Depending on how the RDF graph is
separated into files, one or several files are processed during query execution.

12 https://aws.amazon.com/neptune/
13 https://hadoop.apache.org/

To simplify the usage of Hadoop, the high-level query language and execution
framework Pig14 [99] was developed on top of Hadoop. Instead of translating SPARQL
into Hadoop jobs directly, systems like PigSPARQL [122] and RAPID+ [72] translate
SPARQL into the Pig query language. Pig then translate the code into Hadoop jobs and
tries to optimized the orchestration of the individual jobs.

One of the main limitations of Hadoop is that the result of each individual task
has to be written back into the distributed file system. To overcome this limitation,
Spark15 [144] was developed. Spark stores the result of each job in main memory. These
results can be used by several other jobs before the final result is optionally persisted
on disk. Spark is used by SPARQLGX [50], S2RDF [124], SPARQL-Spark [96] and
PRoST [29].

On top of Spark the graph processing framework GraphX16 [45] was developed. In
this framework a graph can be loaded and algorithms can be performed on it. These
algorithms are vertex-centric, i.e., each vertex is able to receive, process and send
messages to its neighboured vertices. S2X [121] translates SPARQL queries into such
vertex-centric algorithms to produce the query results. Similar to S2X TripleRush [130],
Random Walk TripleRush [132] (both basing on Signal/Collect [131]) and [46] use
vertex-centric graph processing frameworks.

Another type of cloud computing frameworks are NoSQL (Not only SQL) database
systems. These systems usually scale well with a high number of compute nodes and
a fault tolerant. Their withdraw is that they usually do not provide ACID transactions.
One type of NoSQL systems are key-value stores. These systems map a unique key to
an arbitrary value. DynamoDB17 [34] is such a distributed key-value store. It is used in
AMADA [24] to index and store the triples of the RDF graph.

Column-family stores are another type of NoSQL database systems. These sys-
tems store tabular data like in relational databases. Instead of storing all data of a row
physically together, column-family stores locate all entries of a set of columns (i.e.,
a column-family) physically together. Examples of these stores are HBase18 (used by
Jena-HBase [70], H2RDF+ [103]), Cassandra19 [77] (used by CumulusRDF [75]), Ac-
cumulo20 (used by Rya [114] and RDF-4X [4]) and Impala21 [117] (used by Sempala
[123] and [111]). RDF stores relying on these column-family stores usually vary in the
way how they store the RDF graph in tables.

The last type of NoSQL database systems that are used in RDF stores are document
stores. Document stores store the data in documents which are objects with arbitrary
fields and values. Each of the fields can be used to index the data. The RDF store [32]
uses Couchbase22 and D-SPARQ [95] uses MongoDB23.
14 https://pig.apache.org/
15 https://spark.apache.org/
16 https://spark.apache.org/graphx/
17 https://aws.amazon.com/de/dynamodb/
18 https://hbase.apache.org/
19 https://cassandra.apache.org/
20 https://accumulo.apache.org/
21 https://impala.apache.org/
22 https://www.couchbase.com/
23 https://www.mongodb.com/

3.2 Distributed RDF Stores

In contrast to RDF stores that use cloud computing frameworks, distributed RDF store
have to address the challenges resulting from the distribution. To reduce the complexity
of these challenges, most distributed RDF stores are realized with a master-slave archi-
tecture. In this architecture a dedicated compute node is the master. It is responsible for
coordinating the individual slaves that store the RDF graph and process the queries. The
disadvantage of this architecture is that the master node can easily become a bottleneck
of the distributed RDF store. To overcome this limitation some distributed RDF stores
are realized with a peer-to-peer architecture in which the design of every compute node
is identical.

Distributed RDF Stores with Master-Slave Architecture. In distributed RDF stores
that have a master-slave architecture there exists one master and several slaves. The
master is a dedicate compute node that is responsible for the coordination of all slaves.
The slaves are the compute nodes that store the graph and process the queries. The
general architecture of such a distributed RDF store is shown in Figure 5.

Graph Cover Query

Master

Creator Coordinator

Local RDF Storage

Query Processor
Slave

Dictionary Index

Local RDF Storage

Query Processor
Slave

Fig. 5: Architecture of a master-slave distributed RDF store.

When a graph is loaded, the master first replaces each string identifier of a resource
by a shorter unique integer identifier. This replacement reduces the storage size of the
graph that needs to be processed. The mapping between the string and integer identifiers
are stored in the dictionary. Thereafter, the graph cover creator assigns the triples to the
individual slaves. Thereby, an index is created which keeps track on which slave which
part of the graph is stored. Each slaves stores the triples assigned to him in its local RDF
storage.

In order to query the RDF store, a query is send to the master. The query coordinator
first encodes all string identifier in the query with the help of the dictionary. The query is
then translated into a query execution tree and optimized. With the help of the index, the
query coordinator can decide which part of the query can be executed on which slave
and initiates the query processing on the slaves. On each slave the query processor

processes the (sub)query assigned to him on the local RDF storage. The intermediate
results can then be directly exchanged between all slaves. The final results are sent back
to the query coordinator. With the help of the dictionary the query coordinator replaces
the integer identifier of the results by it string identifier and sends them back to the user.

The architectures of Custered TDB [102], COSI [23], Partout [43], GraphDB [17],
Blazegraph [2], SemStore [138], TriAD [52], DREAM [55], [105], DiploCoud [139]
and [104] are as described above. But there also exist variations of this architecture.
For instance in Trinity.RDF [145], WARP [62], YARS2 [60] and 4store [58] the query
coordinator also has to join intermediate results.

Some of the components of the master can be distributed among the slaves. For
instance, in EAGRE [146] the graph cover creation is performed on all slaves in par-
allel and the index is distributed over all slaves. Furthermore, distributed RDF stores
do not necessarily need all of the presented components. For instance, PHDStore [10],
2way [106] and [27] do not need a global index and/or dictionary. If distributed RDF
stores adapt the graph cover during runtime based on the actual workload, the master
also contains a redistribution controller as in AdPart [57], AdHash [9, 56] and Spar-
tex [5].

Beside these pure distributed RDF stores there also exist hybrid RDF stores that
also use some cloud computing infrastructure. In Sedge [142] a reimplementation of
Pregel [84] is used to process distributed queries. A more common approach is, to use
Hadoop to process only distributed joins as done in [63], [39], [143], SPA [81], VB-
Partitioner [79], SHAPE [80] and [137].

Distributed RDF Stores with peer-to-peer Architecture. In distributed RDF stores
that follow the peer-to-peer architecture all compute nodes – called peers – consist
of the same components. This architecture has the advantage that no single compute
node can become a bottleneck by design. The disadvantage is that usually no compute
node knows how many compute nodes exist and how the data is distributed among all
compute nodes. Usually in systems like Edutella [37, 97], RDFPeers [25], PAGE [35],
GridVine [6, 31], RDFCube [87], Atlas [67], 3RDF [12], [13] and [101], a distributed
index is used that routes requests to the compute node storing the requested data. Since
this distributed index is the central component of the architecture, the implementation
choice of the index determines how the triples of the RDF graph are assigned to the
compute nodes. The architecture of most peer-to-peer distributed RDF stores is shown
in Figure 6.

To load an RDF graph, the complete graph can be sent to any compute node. The
graph cover creator asks the distributed index on which compute node the individual
triples should be created. Based on this decision the triples are distributed over the
compute nodes. When a compute node receives triples from a graph cover creator, it
inserts them into its local RDF store and updates the distributed index. In order to speed
up the graph loading procedure, the RDF graph can be split into several parts that are
processed by the graph cover creators on several compute nodes in parallel.

When a user sends a query to any of the compute nodes, the query coordinator cre-
ates the query execution tree. Based on the index the query coordinator decides which
part of the query execution tree is sent to which compute node. When a query processor

Graph Cover Query

Peer Node

Creator Coordinator

Local RDF Storage

Query Processor

Index

Graph Cover Query

Peer Node

Creator Coordinator

Local RDF Storage

Query Processor

Index

Graph Cover Query

Peer Node

Creator Coordinator

Local RDF Storage

Query Processor

Index

Fig. 6: Architecture of a peer-to-peer distributed RDF store.

receives some subquery from a query coordinator, it retrieves the requested information
from its local RDF store. The intermediate results are sent to other compute nodes or
back to the query coordinator where they will be further processed. Finally, the query
coordinator computes the overall results and send them back to the user.

In contrast to the master-slave architecture, peer-to-peer distributed RDF stores usu-
ally do not have a global dictionary. As a consequence string identifiers are used when
transferring triples during the loading of a graph or intermediate results during the query
processing.

3.3 Federated RDF Stores

In the linked open data cloud24 there exist many public datasets and SPARQL endpoints.
In order to combine several datasets and query them together a naive approach would
be to download all datasets and load them into a single RDF store. This naive approach
has several disadvantages. First of all, it requires a lot of computational resources to
store and process several datasets at once. Furthermore, when the datasets change, the
system would need to keep track of these changes and update its local copies of the
datasets.

To overcome these limitations, federated RDF stores have been developed. Their
basic idea is to query remote RDF stores directly. The general architecture of federated
RDF stores is shown in Figure 7. In order to query the remote RDF stores a global index

24 http://lod-cloud.net/

Query

Query Federator

Coordinator Index

RDF Store

Local RDF Cache

RDF Store

Fig. 7: Architecture of a federated RDF store.

is required that indicates which RDF stores contain data that are relevant for the query.
This index is created by retrieving statistical information that are provided by the remote
RDF stores (e.g., SPLENDID [48], WoDQA [8], LHD [134], DAW [120], SemaGrow
[26], FEDRA [91], LILAC [92] and Odyssey [90]) or the user (e.g., DARQ [115]),
by sending special queries to the remote RDF stores (e.g., FedX [127], ANAPSID [7,
93], Lusail [86]) or by observing the results that are returned during the processing of
user queries (e.g., ADERIS [83]). Also combinations of these strategies are possible as
in Avalanche [18]. Also the absence of the index is possible if the resource IRIs are
dereferenced as proposed by SIHJoin [76].

When a user sends a query, the query coordinator transforms it into a query ex-
ecution tree. With the help of the index it can decide which remote RDF store can
contributed to the query. Based on this decision it forwards the query or parts of it to
the corresponding remote RDF stores. The returned intermediate results are joined by
the query coordinator and finally sent back to the user. In order to speed up the query
execution, the query federator also contains a local RDF cache in which data retrieved
by previous queries is cached. This cached data can be reused for future queries, which
might reduce the number of queries that needs to be sent to the remote RDF stores.

4 Graph Cover Strategies

One core aspect of RDF stores in the cloud is, how the RDF graph is distributed among
the compute nodes, resulting in a graph cover. A common procedure to create a graph
cover is to first split the RDF graph into small possibly overlapping subsets. Thereafter,
this graph subsets are assigned to compute nodes. In RDF stores that bases on cloud
computing frameworks, the influence on how this assignment to compute nodes is done
is usually limited. Therefore, in section 4.1 is described how a graph is split into subsets
that are then stored in the cloud computing framework. The graph cover strategies of
distributed RDF stores can in general be separated into three categories: (i) hash-based
graph cover strategies (see section 4.2), (ii) graph-clustering-based graph cover strate-
gies (see section 4.3) and (iii) workload-aware graph cover strategies that distributes
the graph based on a historic query workload (see section 4.4). In order to reduce the
amount of queries that need to combine data from different compute nodes, the n-hop

replication was proposed that replicates triples at the border of the chunks of arbitrary
graph cover strategies (see section 4.5).

When RDF stores are queried frequently, the initial distribution of the graph on
the compute nodes might be suboptimal for the current query workload. To improve
the query performance, some RDF stores have implemented a dynamic graph cover
strategy (see section 4.6). This strategy observes the current query workload and tries
to optimize the data placement by moving or copying parts small triple sets from one
compute node to another.

Since there are is huge number of graph cover strategies, we focus in this section
only on the most frequently graph cover strategies and give only hints to a few variations
that can be found. We do not present exotic graph cover strategies that were only used
in a single RDF store. Parts of this section was taken from [64].

4.1 Graph Cover Strategies in Cloud-Computing-Framework-Based RDF
Stores

RDF stores that build on cloud computing frameworks have usually limited influence
how the data is placed on the individual RDF stores. There influence is limited to the
way how the RDF graph is split into subsets that are stored in files or tables. The goal
of splitting the RDF graph into subsets is to reduce the amount of triples that need to
be processed during the query execution. This is achieved by storing all triples with the
same subject, object, predicate or combinations of them in the same file or table.

Molecule Graph Splits. In order to process star-shaped queries efficiently, the RDF
graph is split into molecules of diameter 1. This means that all triples with the same
subject are stored in one file. D-SPARQ [95], follows this approach. The advantage of
the molecule graph cover is that for star shaped queries whose triple patterns are joined
on a subject no join needs to be processed. In case of a constant subject only a single
file needs to be processed.

g:Gesis g:wanja
e:employs

w :daniel

w :martin
w :WeST

e:employs

e:employs

g:Dog
g:bello

r :type

e:ownedBy g:wanja

g:wanja
"Wanja"

w :danielf :knows

f :givenname

w :daniel
f :knows

f :givenname

f :knows

f :givenname
"Martin"

"Daniel"

w :martin

w :martin
g:wanja

Fig. 8: The example graph split into molecules.

In order to reduce the number of required joins, RAPID+ [72] proposes to store all
triples that have the same resource identifier at a subject or object position in a single
file. Additionally, RAPID+ reduces the number of joins by increasing the molecule
diameter in order to process path-shaped queries more efficiently.

In some RDF stores like Stratustore [129], Sempala [123] and SHARD [116] all
molecules are stored in a single table. Each molecule is basically represented by a single
row in this table with the subject as unique identifier. The predicates are the column
names and the object as the value stored in each cell. If the combination of subject and
property occurs in several triples, these cells store a list of objects or several rows for
this subject are created. This storage layout is called property table in the literature.

Vertical Graph Splits. The basic idea of the vertical cover originated in [3] to store
RDF data in a relational database so that for each property a table is created in which all
triples with this property are stored. In the context of distributed RDF stores, approaches
like Jena-HBase [71], PigSPARQL [122], [147] and SPARQLGX [124] store all triples
with the same property in a file or table. The advantage is that it is easy to compute
but a query that matches with paths of length l will only match with triples on at most
l compute nodes. Thus, this graph cover strategy is likely to result in an imbalanced
workload and a high number of exchanged intermediate results.

g:Dogg:bello
r :type

g:bello g:bello
e:ownedBy

g:Gesis g:wanja
e:employs

w :daniel

w :martin
w :WeST

e:employs

e:employs

g:wanja
f :knows

w :martin
f :knows

f :knows
w :martin

g:wanja w :daniel

w :daniel

w :martin

g:wanja

w :daniel "Daniel"

"Martin"

"Wanja"

f :givenname

f :givenname

f :givenname

Fig. 9: An example vertical graph split of the example graph.

One disadvantage of the vertical graph split as presented above is, that frequently
occurring properties like rdf:type lead to very large files. Therefore, the RDF store
HadoopRDF [42] splits these tables based on combinations of properties and the RDFS
types of the objects.

Another variant of the vertical graph split is realized in S2RDF [124]. In order to
reduce the number of joins that need to be processed, they additionally create tables for
all possible subject-subject and subject-object joins of triples.

4.2 Hash-Based Graph Cover Strategies

Hash Cover. A hash cover assigns triples to chunks according to the hash value com-
puted on their subjects modulo the number of compute nodes. Thus, all triples with the
same subject – i.e., a molecule – are located in the same graph chunk. This graph cover
strategy is used, for instance, by Virtuoso Clustered Edition [40], VB-Partitioner [79],
SPA [81], 4store [58] and AdHash [9].

Example 9. The following hash function produces the graph cover shown in Figure 2.

∀r ∈ {g:Gesis, g:wanja,w:martin}: hash(r):= 1

∀r ∈ {g:bello,w:WeST,w:daniel}: hash(r):= 2 .

The advantages of the hash cover are that it is easy to compute and due to a rela-
tively random assignment of triples to compute nodes the resulting graph chunks will
have similar sizes. The disadvantages are that it may lead to a high number of ex-
changed intermediate results if a query matches with long paths. Since all hash covers
are subject-contained, this graph cover strategy might be a good choice if the expected
queries will only match with paths of a short length (ideally 1).

Beside the subject, distributed RDF stores like Trinity.RDF [145], Clustered TDB [102],
YARS2 [59, 60] and RDFPeers [25] also use property and/or the object to assign each
triple three times to the compute nodes.25 Additionally, RDF stores like PAGE [35] and
[13] append at least two elements of each triple and use the hash of the result to assign
triples to compute nodes.

Hierarchical Hash Cover. Inspired by the observations that IRIs have a path hierarchy
and IRIs with a common hierarchy prefix are often queried together, SHAPE [80] uses
an improved hashing strategy to reduce the inter-chunk queries. First, it extracts the path
hierarchies of all IRIs. For instance, the extracted path hierarchy of "http://www.
w3.org/1999/02/22-rdf-syntax-ns#type" is "org/w3/www/1999/02/
22-rdf-syntax-ns/type". Then, for each level in the path hierarchy (e. g., "org",
"org/w3", "org/w3/www", ...) it computes the percentage of triples sharing a hierar-
chy prefix. If the percentage exceeds an empirically defined threshold and the number
of prefixes is equal or greater to the number of compute nodes at any hierarchy level,
then these prefixes are used for the hash cover.

Example 10. Assume the hash is computed on the prefixes gesis and west of the subject
IRIs in the example graph. If the hash function returns 1 for gesis and 2 for west the
resulting hierarchical hash cover is shown in Figure 10.

In comparison to the hash cover the creation of a hierarchical hash cover requires
a higher computational effort to determine the IRI prefixes on which the hash is com-
puted. For queries that match with paths in which the subjects and objects have the
same IRI prefix the number of exchanged intermediate results may be reduced. This

25 If the hash cover is only computed on the predicate, the resulting graph cover would be similar
to the vertical graph split.

reduction might come at the cost of a more imbalanced query workload since only a
few chunks will contain these paths. Thus, the use of the hierarchical hash cover might
be beneficial (i) if the network connecting the compute nodes is slow or (ii) if other
functionality such as prefix matching benefits from the hierarchical hash cover.

4.3 Graph-Clustering-Based Graph Cover Strategies

Graph clustering considers splitting a graph into partitions, i.e., a graph cover with pair-
wise disjoint graph chunks. In this area a wide variety of algorithms were developed
(for instance, see the survey [85]). The basic idea is that an RDF graph is partitioned
by one of these algorithms. Since most of the graph clustering algorithm create an as-
signment from vertices to compute nodes, the triple are usually assigned to the compute
node to which its subject was assigned to. The most frequently applied graph clustering
approach is the minimal edge-cut partitioning which described below.

Another rarely used graph clustering algorithm tries to optimize the modularity.
The modularity measures the difference between the actual number of edges within the
partitions and the expected number of such edges. This strategy was applied for instance
by MO+ [113].

Minimal Edge-Cut Cover. The minimal edge-cut cover is a vertex-centred partitioning
which tries to solve the k-way graph partitioning problem as described in [69]. It aims
at minimizing the number of edges between vertices of different partitions under the
condition that each partition contains approximately |VG|

k many vertices. Details about
the computation of k-way graph partitioning and the targeted approximation can, e.g.,
be found in [69]. RDF stores like [63] and [105] convert the outcome of the minimal
edge-cut algorithm, i.e., a partitioning of VG, into a graph cover of G by assigning each
triple to the compute node to which its subject has been assigned.

Example 11. A minimal edge-cut algorithm might assign the resources g:Dog, g:Gesis,
g:bello, g:wanja and "Wanja" to compute node c1 and all other resources to compute

g:Dog

g:Gesis

g:bello

g:wanja

w :daniel

r :type

e:employs

e:ownedBy

f :knows f :givenname

"Wanja"

g:wanja

w :daniel

w :martin
w :WeST

"Daniel"

"Martin"

e:employs

f :givenname

f :knows

f :knows

f :givenname

c1 c2

e:employs

Fig. 10: An example hierarchical hash cover which is also a minimal edge-cut cover of
the example graph.

node c2. For our specific running example the result of the minimal edge-cut cover
strategy is identical to the results of the hierarchical hash cover strategy depicted in
Figure 10.

In this example there exist two edges connecting vertices assigned to different
chunks. One is the f:knows edge starting at g:wanja and ending at w:daniel. The other is
the f:knows edge starting at w:martin and ending at g:wanja. Since the subject g:wanja
of the first triple is assigned to c1, this triple is assigned to c1. The subject of the second
triple w:martin is assigned to c2. Therefore, this triple is assigned to c2.

Since the minimal edge-cut cover considers the graph structure, the creation of the
graph cover requires a high computational effort. The advantage of considering the
graph structure might be a reduced number of exchanged intermediate results. This
would make the minimal edge-cut cover a good choice if the network connection be-
tween compute nodes is slow.

In order to optimize the query performance, TriAD [52] creates an over-partitioning.
For instance, to create a graph cover that assigns triples to 5 compute nodes, 100k-200k
partitions are created. These partitions are then assigned to compute nodes. To improve
the performance of queries that use RDFS schema information, in [108] the RDFS
schema is replicated to all graph chunks. Since the minimal edge-cut can lead to graph
chunks whose cardinally vary strongly, [133] proposes to weight vertices by the number
of triples in which it occurs.

An alternative optimization is performed by EAGRE [146]. Instead of partitioning
the original graph, a minimal edge-cut cover of the summary graph is created. Each
vertex of the summary graph represents a set of molecules that have similar predi-
cates. An edge (v1, v2) in the summary graph is created, if any anchor vertex of the
molecules contained in v2 occur as object in any molecule contained in v1. The ver-
tices are weighted by the number of molecules they contain. This graph cover strategy
ensures that molecules with similar predicates are stored on the same compute node.

4.4 Workload-Aware Graph Cover Strategies

Another type of graph cover strategies assume that the query workload does not change
much over the time. Therefore, they learn from a historic query workload which triples
have been frequently queried together first. Based on this knowledge they try to find a
optimal graph cover for future queries. These approaches are, for instance:

– The novel idea applied in WARP [62] is creating an initial minimal edge-cut cover
and then replicate triples in a way such that all historic queries can be answered
locally.

– In COSI [23] edges are weighted based on the frequency they are requested by the
historic query workload. Thereafter, a weighted minimal edge-cut partitioning is
performed leading to an improved horizontal containment.

– In [17] the resulting graph cover aims to balance the overall workload of all queries
equally among all compute nodes. Thereby, each query is processed by a single
compute node in an ideal case. To reach this goal, the proposed algorithm assigns
the triples required by the queries to compute nodes in a way that the number of
replicated triples is reduced.

– In Partout [43] the queries contained in the historic query workload are first gen-
eralized by replacing every rarely queried subject or object constants by variables.
Thereafter, the matches of this generalized triple patterns are assigned to compute
nodes in a way that (i) ideally each query can be answered by a single compute node
without replicating triples and (ii) the query workload of all queries is distributed
equally among all compute nodes.

– DiploCloud [140] generalizes the queries in the historic query workload by using
schema information. Then triple sets are computed that can produce a single query
result. Finally, the triple sets are distributed equally among all compute nodes.

4.5 nnn-Hop Replication

Whenever a query combines data from different graph chunks, intermediate results need
to be exchanged between different compute nodes. To reduce the number of exchanged
intermediate results for a subject-complete graph cover of graph G, the n-hop repli-
cation strategy extends each of its chunks chi by replicating all triples contained in
some path of length ≤ n in G starting at some subject or object occurring in chi. This
way all queries that match with paths of length ≤ n could be processed without ex-
changing intermediate results. The n-hop replication is used by systems like [63] and
VB-Partitioner [79].

g:Gesis

g:wanja

w :daniel w :martin

"Martin"

e:employs

f :knows f :knows

f :givenname

f :givenname

"Wanja"
g:Dogg:bello

w :daniel

w :martin

w :WeST"Daniel"

r :type

e:employsf :givenname

f :knows

c1 c2

e:ownedBy

"Daniel"

f :givenname

f :knows g:wanja

"Martin"

f :givenname

"Wanja"

f :givenname

Fig. 11: The 2-hop extension of the hash cover in Figure 2.

Example 12. Applying the 2-hop replication extension on the hash cover in Figure 2
results in the 2-hop hash cover shown in Figure 11. In this cover a query could match
with the path (g:bello, e:ownedBy, g:wanja) , (g:wanja, f:knows,w:daniel) on compute
node c2 without the need to exchange intermediate results.

The n-hop replication may reduce the number of transferred intermediate results at
the cost of replicating triples. This replication will increase the effort to create the graph
cover and increase the size of the graph chunks. Furthermore, the replication might
cause a higher computational effort during the query processing since the replicated
triples might lead to duplicate intermediate results. Thus, using the n-hop replication
might be beneficial if the network connecting the intermediate results is slow and the
number of replicated triples is low.

4.6 Dynamic Graph Cover Strategies

Graph covers created by one of the graph cover strategies above can lead to a high
amount of data transfer between compute nodes, if the actual query workload needs to
combine data stored on different compute nodes. In order to overcome this limitation,
PHD-Store [9] and AdHash [9] keeps track of basic graph patterns that are queried fre-
quently. When the frequency exceeds a threshold, triples that match with these frequent
triple patterns are replicated in a way that these basic graph patterns can be executed
locally.

Instead of only trying to reduce the network communication, Sedge [9] tries to
primarily distribute the query workload equally among the compute nodes. There-
fore, Sedge keeps track how frequently the molecules are queried together. If a set
of molecules are queried together with a high frequency, these set of molecules is repli-
cated to a compute node with a low workload.

Another type of graph cover strategies assumes that during runtime new triples can
be added to the RDF store. In this setting it may happen that a single compute node
stores much more triples then other compute nodes. To prevent the compute node from
being overloaded, the triples of that compute node can be redistributed based on the
prefix of some hash values (as done in [101]). Another strategy is performed by [19].
The triples are sorted lexicographically and one half of them is sent to another compute
node. In both cases the systems keep track to which compute node they have moved the
triples.

5 Indices

RDF stores in the cloud distributed the triples of an RDF graph over several computers.
When a query is sent to these RDF stores, they require an index which can tell on which
compute nodes the data contributing to the query processing is located. These indices
are either stored on a single compute node – i.e., the master or the query federator –
(see section 5.1) or they are distributed over several compute nodes (see section 5.2). A
centralized index has the advantage that it has knowledge about all graph chunks. To
reduce the size of the index, some type of aggregation needs to be applied. In contrast to
this distributed indices need fewer aggregation, since they are stored across all compute
nodes. But a single index lookup might require the routing of the lookup via several
compute nodes until the required information is found.

5.1 Centralized Indices

Hash-Based Index. In distributed RDF stores that apply some variant of a hash cover
strategy (for instance, Virtuoso Clustered Edition [40], 4store [58] or Trinity.RDF [145]),
no explicit index is required. Based on the knowledge of all compute nodes, the hash
function and the triple elements that were hashed, the compute node to which triples
following a specific pattern were assigned can be identified.

Statistics-Based Index. Another type of centralized indices base on statistical infor-
mation about the resources occurring in the individual graph chunks. In RDF stores like
DARQ [115], FedX, [133] and Sedge [142] the frequency of every subject, property
and object in each chunk is counted and stored. Since these information do not tell any-
thing about the RDFS types contained in the graph chunks, systems like SPLENDID
[115], WoDQA [115], LHD [115], SemaGrow [115], Avalanche [115] bases on VoID
descriptions [11] of each graph chunk. These descriptions contain the occurences of
URIs in the dataset, the used RDFs types and the properties that occur in triples whose
objects occur as subject in triples assigned to a different compute node. Since these
information might be complicated to collect in a federated setting, if the remote RDF
stores do not provide VoID descriptions, ANAPSID [115] restricts itself to only count
the occurrences of properties and RDFS types.

If a triple pattern with two constants is requested, the indices described so far could
only restrict the number of queried compute nodes by either of the two constants. To re-
strict the number of queried compute nodes even further, LILAC [92], SemStore [138]
additionally count how frequently all subject-property, property-object and subject-
object combinations occur.

Since not all subjects and objects occurring in a dataset have an RDFS type, the RDF
store Odyssey [90] defines the type of an subject v by the set of properties occurring in
its molecule Mv . Since the number of types might me very large, types with similar
property sets are merged. Additionally, it counts how frequently instances of molecule
types are connected by properties.

Summary-Graph-Based Index. In distributed RDF stores summary graphs are cre-
ated. This summary graph can be queried to identify compute nodes that store triples
required for the processing of a query. The definition of a summary graph differ between
the RDF stores.

In TriAD [52] each graph chunk becomes a vertex in the summary graph. Since
TriAD uses minimal edge-cut cover, the underlying algorithm assigns each vertex to a
compute node. For each triple (s, p, o), an edge with label p is crated in the summary
graph that connects the vertices representing the chunks stored on the compute nodes
to which s and o were assigned to. To reduce the size of the summary graph, all edges
connecting the same vertices and having the same label are represented by only a single
edge.

Example 13. Figure 12 shows the summary graph created from the minimal edge cut
cover in Figure 10. The vertices represent the compute nodes. For instance, c1 repre-
sents the graph chunk of compute node c1. The self-loop at the vertices represent the

r :type

e:employs

e:ownedBy

f :givenname
f :knows

f :givenname

e:employs

c1 c2

f :knows

f :knows

Fig. 12: The summary graph of the graph cover shown in Figure 10 used by TriAD.

properties occurring within these compute nodes. To simplify the graphic, all labels
were attached to a single edge instead of creating an own edge for every label. The two
edges connecting both vertices represent both triples whose subject and object were
assigned to different compute nodes.

Another type of summary graph is used by EAGRE [146]. Vertices in the summery
graph represent molecule types. A molecule type is a set of all properties that occur in
at least one molecule. To reduce the number of molecule types, molecule types with
similar properties are merged. Each triple t contained in a molecule of type T1 whose
object is the anchor vertex of another molecule of type T2 will result in an edge with
the label of the property that connects the vertices T1 and T2 of the summary graph.

e:employs

f :knows

r :type
e:ownedBy

c1 c1

e:employs

c2c1 c2

f :knows
f :givenname

e:ownedBy

Fig. 13: The summary graph of the graph cover shown in Figure 10 used by EAGRE.

Example 14. Figure 13 shows the summary graph created by EAGRE for the graph
cover shown in Figure 10. The three vertices represent the three different molecule
types. The properties occurring in molecules of that type are written in the upper part of
the vertex. The compute nodes on which molecules of that type can be found are listed
in the bottom part of each vertex. The leftmost vertex represents the dog molecule, the
middle vertex represents the employee molecules and the right vertex represents the
institutes molecules. The e:employs edge connecting the institutes molecule type with
the employees molecule type represents the edges that connect the two institutes with
their employees.

5.2 Distributed Indices

In distributed indices every compute node knows only a part of the complete index.
In order to find every entry of the complete index, the compute nodes have to forward

the index lookup request to other compute nodes, until the compute node knowing the
requested information is found. In order to route these index lookups, overlay networks
are created that define to which compute node an index lookup should be forwarded.

Hash-Based Index. If a distributed RDF store uses a hash partitioning, each compute
node can determine on which compute node a triple can be found, by knowing the set
of all available compute nodes. This approach is done, for instance, by HDRS [22] and
Virtuoso Clustered Edition [41].

c1

c2

c3

c4c5

c6

c7

(a) Ring overlay.

c1 c2 c3 c4

0 1

00 01 10 11

(b) Tree overlay.

Fig. 14: The different types of overlay networks used in distributed hash indices.

In peer-to-peer distributed RDF stores, the set of all compute nodes might be large
and change over time. To prevent the replication of this set and keeping it up-to-date on
all compute nodes, each compute node only stores a set of neighboured compute nodes,
to which index lookups might be forwarded. The definition of the neighbourhood cre-
ates an overlay structure. In peer-to-peer distributed RDF stores the following overlay
structures are used frequently:

Ring structure. In RDFPeers [25], PAGE [35], Atlas [67] and [82] the compute nodes
are order, e.g., by their IP address. This order defines the direct neighbours of each
compute node. To ensure that every compute node has exactly two neighbours, the
first and last compute node are defined as neighbours. An example of the resulting
ring is shown in Figure 14a. If only the ring structure would be given, finding a
compute node that stores the requested data would take linear time. To reduce the
lookup time, each compute nodes stores shortcuts to compute nodes at later posi-
tions in the ring. For instance, compute node c1 knows compute nodes c2, c3 and c5.
If c1 is asked whether it knows some information about resource r, it can compute
with the hash that triples with this resource would have been assigned to, e.g., c6.
Since he does not know c6 he sends the request to c5 which is closest to c6.

Tree structure. In GridVine [6, 31], UniStore [68], 3RDF [12], [14], [13] the overlay
network is based on a prefix tree as shown in Figure 14b. Each vertex in this tree
represents a prefix. The root has an empty prefix, the left child of the root node has
the prefix 0 and the leaf c1 stores all triples with resources whose hash value start

with 00. Each compute node knows the path from the root to itself. For each node
n in the path, the compute node knows one compute node contained in the subtree
of the siblings of n. For instance c1, would forward every hash with prefix 01 to
compute node c2 and every hash with prefix 1 to compute node c3.
Combinations of both overlay structures can be found in [19] and [101]. The basic

idea is initially they use the ring overlay structure. If one compute nodes has to store
too many entries, it redistributes it triples based on a tree structure.

Schema-Based Index. Instead of using hash-based indices, the RDFS types can be
used to distribute data. The RDFS types contained in a dataset usually build a type
hierarchy. Similar to the tree overlay structure presented above, each compute node is
responsible for the instances of the RDFS types assigned to him. If a compute node
should retrieve instances of a given type T that is not assigned to him, it searches for
a superclass of T for which he knows a responsible compute node and forwards the
request to it. This so called semantic overlay network [30] is used, for instance, by
SQPeer [73].

Chunk-Integrated Summary Graph Index. A completely different type of distributed
index is presented in [108, 109]. It adapts the idea of the summary graph from TriAD
as described in section 5.1. Instead of realizing an separate index structure, it integrates
the summary graph into its local RDF storage. With the help of these additional infor-
mation a compute node can decide, whether another compute node has data that might
lead to further query results.

g:Dog

g:Gesis

g:bello

g:wanja

r :type

e:employs

e:ownedBy

f :givenname

"Wanja"

w :daniel

w :martin
w :WeST

"Daniel"

"Martin"

e:employs

f :givenname

f :givenname

c1 c2

e:employs

c2

f :knows

f :givenname
e:employs

c1

f :givenname
e:employs

e:ownedByr :type

f :knows

w :daniel

f :knows

f :givenname e:employs

g:wanja
f :knows
f :givenname

f :knows

e:ownedBy
e:employs

f :knows

f :knows

Fig. 15: The summary graph integrated into the graph cover shown in Figure 10.

Example 15. Figure 15 shows the minimal edge-cut graph cover from Figure 10 ex-
tended by the triples from the summary graph. On c1 the graph chunk from c2 is repre-
sented by a super vertex named c2. All triples whose subject or object is contained in the
graph chunk of c1 but the counterpart not, is represented by an edge connecting the ver-
tex within the chunk of c1 with the super vertex representing the graph chunk in which
the other vertex is contained. For instance, the subject of the triple w:daniel f:knows

w:martin is contained in the chunk of c1 whereas its object is only contained in the
chunk of c2. Therefore, the chunk of c1 is extended by the triple w:daniel f:knows

c2. Furthermore, for each property p label occurring in the graph chunk of c2, a triple
c2 p c2 is added to the chunk of compute node c1.

6 Distributed Query Processing Strategies

RDF stores in the cloud distribute RDF graphs over several compute nodes. One chal-
lenge which arises from this distribution is how to query the distributed graph. In gen-
eral RDF stores in the cloud try to compute as much on the graph chunks as possible
without the need to exchange data. Therefore, the received query is decomposed into
subqueries that can be executed only on the individual graph chunks stored on a single
compute node. In the simplest case these subqueries consist of a single triple pattern.
Other systems can make use of some properties of the underlying graph cover. For in-
stance, SHARD [103] uses a graph cover that assigns all triples with the same subject
to one compute node. As a result, all star-shaped subqueries can be executed locally.
Another example are RDF stores that make use of the n-hop replication. This replica-
tion ensures that all queries that match with a subgraph with diameter n can be executed
locally. If the local RDF storage is able to return all partial matches of the query, the
complete query can be executed by the local RDF storage. With the help of the indices,
the number of compute nodes that can contributed to a subquery can be restricted.

The intermediate results of the subqueries needs to be joined in order to produce
the overall query result. Several RDF stores transfer all intermediate results to a single
compute node that is then responsible for joining it (see section 6.1). If a huge number
of intermediate results are produced, the joining compute node might be overloaded.
Therefore, several RDF stores distribute the join computation over several compute
nodes (see section 6.2). An example how queries are executed in distributed graph pro-
cessing frameworks is given in section 6.3.

6.1 Centralized Join

Especially in federated RDF stores, the intermediate results of subqueries that were
executed on remote RDF stores have to be joined on the query federator. Thereby, the
join strategies of relational databases are applied. The following join strategies are used:

Nested loop join [89]: For each element in the intermediate result list of the first sub-
query, the intermediate result list of the second result list needs to be iterated com-
pletely to find all join candidates.

Merge join [89]: For this join the intermediate result lists must be ordered. One list is
iterated and for each element the join candidates in the other list can be retrieved.
Due to the ordering the other list does not need to be traversed from the beginning.
Instead only the elements with the same value of the join variable needs to be
reiterated. This join is performed by the distributed RDF store Partout [43].

Hash join [36]: The intermediate results of the subqueries are stored in separate hash
tables. Each hash table distributes the results into several buckets. If both hash
tables use the same number of buckets, only the intermediate results of two buckets
need to be joined at once. When all buckets are joined, the join is finished.

Symmetric join [136]: This type of join is a non-blocking hash join. For every subquery
a hash table is created that stores the already received intermediate results. When a
new intermediate result is received, it is joined with all join candidates in the other
hash tables. The results are emitted and the intermediate result is inserted in the
hash table of the subquery that produced it. This join strategy is performed by, e.g.,
ANAPSID [7] and LHD [134].

Bind join [54]: In order to perform a bind join, the first subquery is executed. For each
returned distinct intermediate variable binding µ, the second subquery is executed.
Thereby, all variables bound by µ in the second subquery are substituted by the
bound values. This type of join is performed by, e.g., FedX [127], Avalanche [18]
and SemaGrow [26].

Beside performing a single type of join operation, RDF stores like DARQ [115]
and SPLENDID [48] choose between a bind join and a nested loop join or between a
bind join and a hash join, respectively. The choice depends on the expected number of
returned results.

Another join strategy is performed by [105]. In this distributed RDF store partial
evaluation [65] is performed. This means that the complete query is executed on the lo-
cal RDF stores of each compute node. These local RDF stores return the overall results
and all intermediate results. For each intermediate result the subquery that created the
result is returned. The intermediate results from all compute nodes are sent to a single
compute node who finally joins the intermediate results and returns the overall results.

6.2 Decentralized Join

The subqueries in which a query is decomposed can easily produce a large number
of intermediate results. Joining all intermediate results on a single compute node can
overload the capacity of this compute node. To overcome this limitation several RDF
stores in the cloud apply distributed joins.

Replication-Based Distributed Join. In order to distribute the number of join com-
putations over the individual compute nodes, in SemStore [138] all intermediate results
of a subquery are sent to all compute nodes on which the succeeding subquery is ex-
ecuted. This strategy increase the amount of transferred intermediate results but each
compute node only joins its local results with the intermediate results produced by the
other compute nodes.

Distributed Hash Join. In DiploCoud [139] the intermediate results of the subqueries
are joined by a distributed hash join. Basically, the distributed hash join is similar to a
centralized hash join. The only difference is that each compute node is a bucket of the
used hash table.

The hypercube hash join was initially presented in [20] and was used in the dis-
tributed RDF store presented in [28]. The basic idea is that for each join variable one
dimension is created. For instance, if a query has three join variable, three dimensions
are created. Therefore, we need to arrange the compute nodes as a three-dimensional
cube. Each compute node is responsible for one cubic region within this cube. There-
after, every triple pattern is executed in parallel producing variable bindings. If the vari-
able binding {(?v1, w:martin)} is produced, it is forwarded to all compute nodes that
are responsible for the value hash(w:martin) in the ?v1-dimension. Each compute
node performs a local join of the variable bindings it has received from the different
triple patterns. Depending on the selection of the regions each compute node is respon-
sible, the workload can be equally distributed among all compute nodes.

Distributed Merge Join. In a distributed merge join the intermediate result lists of the
subqueries are sorted by the values of the join variables. Thereafter, each compute node
receives all elements within a specific value range and joins them. This type of join is
primarily performed in Hadoop-based RDF stores like H2RDF+ [103], SHARD [103],
[63] and Spark-based RDF stores like SparkRDF [141] and SPARQLGX [50].

Distributed Bind Join. One way to realize a distributed bind join is implemented in
AdHash [9]. The first triple pattern is executed on each compute node. Thereafter, each
compute node performs a centralized bind join based on the variable binding the first
triple pattern has produced on this compute node.

In RDFPeers [25], GridVine [6, 31], Atlas [67] and 3RDF [12] a hash cover is ap-
plied in which each triple is stored on at most three compute nodes based on the hash
of its subject, property and object. As a consequence all triples in which one resource
occurs are located on the same compute node. Since usually each triple pattern of a
query contains at least one constant, all matches for this triple pattern can be found on
a single compute node. In order to process a query, the query coordinator determines
a sequence in which the compute nodes should be traversed to process all triple pat-
terns. When moving from one compute node to the other, all intermediate results are
transferred. In order to join the intermediate results, bind joins are performed.

In order to generalize and parallelize the previously described strategy, [82] intro-
duced the so called spread by value querying strategy26. The basic idea is that the first
triple pattern is processed on the computed nodes on which matches occur. These com-
pute nodes start a bind join processing with the second triple pattern. When a compute
node identifies with the help of the global index that for one triple pattern there exist
matches on a different compute node, it will fork the query processing on the other
compute node that will continue with this branch of the query execution. The final

26 This idea is named differently in the literature. For instance, in Trinity.RDF [145] it is called
graph exploration.

query results are sent back to the query coordinator. This strategy was also used by, for
instance, [14], [13], [108, 109] and TripleRush [130]. In order to speed up the query
execution, Trinity.RDF [145] performs the spread by value strategy from the first and
the last triple pattern in parallel.

Example 16. In this example the basic graph pattern <w:WeST> <e:employs> ?v1.

?v1 <f:knows> ?v2. ?v2 <f:givenname> ?v3 should be executed on the graph
cover with integrated summary graph index in figure 15. The first triple pattern creates
the variable binding {(?v1, w:martin)} on compute node c2. Based on this variable
binding the variable ?v1 of the second triple pattern will be substituted by w:martin.
When processing the triple pattern <w:martin> <f:knows> ?v2, the variable bind-
ing {(?v1, w:martin), (?v2, g:wanja)} is produced. Before processing the third triple
pattern, ?v3 will be substituted by g:wanja. As a result <g:wanja> <f:givenname>

?v3 is executed. This time the only possible substitution for ?v3 is the super vertex c1.
This match means that there exists a triple on compute node c1 that would match with
the triple pattern. Therefore, the query, the created variable binding, and the metadata
that this variable binding was created by the first two triple pattern is sent to com-
pute node c1. Now, c1 executes <g:wanja> <f:givenname> ?v3 and produces the
resulting variable binding {(?v1, w:martin), (?v2, g:wanja), (?v3, "Wanja")}. For
the sake of simplicity, the other intermediate results produced by the triple patterns that
were executed in parallel were skipped during the explanation of this example.

6.3 Distributed Query Processing in Graph Processing Frameworks.
In S2X [141] a different type of distributed query processing is presented. First, each
vertex checks whether it can be a substitution for some variable in the query by check-
ing its incident edges, their labels and the adjacent vertices. Thereafter, it notifies the
neighboured vertices by its variable bindings. If for one variable binding no join com-
patible variable binding can be found on the neighboured vertices, it is discarded. The
notification of the neighboured vertices and the discard of local variable bindings is re-
peated until the variable binding of each vertex in the graph does not change any more.
The remaining variable binding can be retrieved and joined as the final results.

7 Fault Tolerance

One problem of RDF stores in the cloud is that a single compute node might fail or
become disconnected from the network. RDF stores that bases on cloud computing
frameworks mainly rely on the fault tolerance of the used framework. In federated RDF
stores the actual data is stored on remote RDF stores that are not under control of the
system administrator. As a result the fault tolerance is not an urgent problem for both
types of RDF stores.

In contrast to these RDF stores, the failure of compute nodes is an issue for dis-
tributed RDF stores. Since most of these RDF stores that can be found in the literature
are proof-of-concept implementations, they do not address the problem of fault toler-
ance. The few systems that deal with fault tolerance, address this problem by replica-
tion. Systems like Virtuoso Clustered Edition [41] suggest to create identical copies of
all compute nodes. If one compute node fails, it is replaced by one of its copies.

Another strategy to become fault tolerant is used by, e.g., 4store [58] and RDFPeers
[25]. In these distributed RDF stores there exists an partial order of all compute nodes,
for instance, created by the comparison of their IP addresses. To ensures that every
compute node has a successor and predecessor, the successor of the last compute node
is the first compute node. Based on this ordering, the triples assigned to one compute
node are also assigned to the neighboured compute nodes. If one compute node fails, the
index forwards the queries to one of neighbours that store replicas of the data originally
assigned to the failed compute node.

8 Evaluation Methodologies

In order to evaluate the performance of RDF stores several benchmarks were proposed.
In general benchmarks consist of a dataset, a set of queries and several performance
metrics. In order to test the RDF stores with differently-sized RDF graphs, benchmarks
usually use a dataset generator that generated RDF stores based on a schema and/or spe-
cific characteristics. Some benchmarks provide fixed queries or query patterns that con-
tain special variables that are substituted by constants after dataset generation (see sec-
tion 8.1). Instead of providing query patterns, benchmark generators generate queries
based on query characteristics (see section 8.2). In section 8.3, we elaborate how bench-
mark are used to evaluate distributed RDF stores.

8.1 Benchmarks

Lehigh University Benchmark. LUBM [51] was developed to test the query optimizer
performance. It generates an RDF graph based on its Univ-Bench ontology. This ontol-
ogy describes universities, their departments, employees, courses, students and related
activities. In order to provide more realistic datasets, several constraints are applied dur-
ing data generation. For instance, a university can have between 15 and 25 departments

Query # Triple Patterns Query Diameter
Q1 2 1
Q2 6 2
Q3 2 1
Q4 5 1
Q5 2 1
Q6 1 1
Q7 4 2
Q8 5 2
Q9 6 2

Q10 2 1
Q11 2 1
Q12 4 2
Q13 2 2
Q14 1 1

Table 1: LUBM query characteristics.

and the ratio between undergraduate students and faculty is between 8 and 14. The 14
provided SPARQL queries are designed to test how well the query optimizer can im-
prove the join ordering. The characteristics of the queries are shown in table 1. LUBM
proposes the following performance metrics:
Load time is the time that the RDF store needs to parse and load the RDF graph.
Repository size is the size of all files that are required by the RDF store to store the

dataset including dictionary and indices.
Query execution time is the average time to execute a query ten times.
Query completeness and soundness measures with percentage of all results were re-

trieved and the percentage of correct results.

SP2Bench SP2Bench [126] was designed to test the most common SPARQL constructs
and how they are applied in realistic queries. It provides a dataset generator that creates
an RDF graph that follows the DBLP schema. This schema describes publications like
articles and inproceedings with their bibliographic information. The generated graph
mimics the characteristics of the real DBLP graph. SP2Bench provides 17 queries. They
mainly focus on testing the join ordering capabilities of the query optimizer but also
complex filters and duplicate elimination. The characteristics of the queries are given in
table 2. The proposed performance metrics are:
Load time is the time that the RDF store needs to parse and load the RDF graph.
Query execution time is the average time to execute a query.
Global query execution time is the arithmetic and geometric mean of all 17 queries. It

is computed by multiplying the execution times of all 17 queries and then comput-
ing the 17th root of the result. If a query could not be processed, it is punished with
3600 seconds.

Query # Triple Patterns Query Diameter
Q1 5 1
Q2 10 1
Q3a 2 1
Q3b 2 1
Q3c 2 1
Q4 8 2
Q5a 6 2
Q5b 6 2
Q6 9 2
Q7 13 5
Q8 8 2
Q9 4 2

Q10 1 1
Q11 1 1
Q12a 6 2
Q12b 8 2
Q12c 1 1

Table 2: SP2Bench query characteristics.

Memory consumption is measured by (i) the maximum amount of memory that was al-
located during the processing of each individual query and (ii) the average memory
consumption of all queries.

Berlin SPARQL Benchmark (BSBM). The BSBM27 [21] focusses on the use case
of an e-commerce platform. It aims to simulate the search and navigation patterns of
multiple concurrently acting customers. The dataset is generated based on a relational
schema. This schema represents products, their offers and the custom reviews of the
products. BSBM provides 12 query patterns whose characteristics are given in table 3.
These query mainly test the ability to optimize the join ordering and the early appli-
cation of filters. In BSBM a query pattern refers to a query in which some constants
are replaced by a special type of variable. During the runtime of the benchmark these
special variable are replaced with varying constants occurring in the dataset. A set of
queries in which each query pattern is instantiated is called a query mix. Several of
these query mixes are executed in parallel in order to measure the performance of the
RDF store. The proposed performance metrics are:

Load time is the time that the RDF store needs to parse and load the RDF graph.
Query mixes per hour is the number of query mixes that can be completely processed

within one hour.
Queries per second is the number of queries, which are instantiated from a single query

pattern, that can be answered within one second.

Query # Triple Patterns Query Diameter
Q1 5 1
Q2 15 2
Q3 7 1
Q4 10 1
Q5 7 1
Q6 2 1
Q7 14 2
Q8 10 2
Q9 1 1

Q10 7 2
Q11 2 2
Q12 9 2

Table 3: BSBM query characteristics.

Semantic Publishing Benchmark (SPB). The SPB28 [74] is a benchmark motivated
by the industry. The use case is a publisher organization that provides metadata about its
27 http://wifo5-03.informatik.uni-mannheim.de/bizer/
berlinsparqlbenchmark/

28 http://ldbcouncil.org/developer/spb

Query # Triple Patterns Query Diameter
Q1 26 3
Q2 9 2
Q3 8 1
Q4 4 1
Q5 6 2
Q6 5 2
Q7 6 1
Q8 11 2
Q9 9 1

Q10 7 3
Q11 8 2

(a) Basic query set characteristics.

Query # Triple Patterns Query Diameter
Q1 26 3
Q2 9 2
Q3 1 1
Q4 3 1
Q5 3 2
Q6 4 2
Q7 2 1
Q8 4 1
Q9 1 1

Q10 5 1
Q11 11 1
Q12 9 1
Q13 5 1
Q14 12 2
Q15 10 2
Q16 9 1
Q17 5 2
Q18 6 1
Q19 4 1
Q20 11 2
Q21 9 1
Q22 9 1
Q23 9 1
Q24 4 1
Q25 4 1

(b) Advanced query set characteristics.

Table 4: SPB query characteristics.

published work. Many journalists search for data and perform insertions and deletions
concurrently. SPB provides a dataset generator that is designed to create datasets with
several billions of triples that mimic the BBC datasets. Similar to BSBM it provides
query templates that contains special variables that will be instantiated before query
execution. SPB defines two set of query templates. The basic query set focuses on join
ordering, duplicate elimination and filtering whereas the advanced query set addition-
ally contains, e.g., analytical queries. The query characteristics are given in table 4a and
in table 4b. The proposed performance metrics are:

Minimum, maximum and average query execution time for each executed query.
Average execution rate per second measures how many queries could be finished per

second in average.

FedBench. FedBench [125] is designed as a benchmark for federated RDF stores. It
provides three different dataset collections: (i) a general linked data collection contain-
ing DBPedia, GeoNames, Jamendo, Linked_MDB, New York Times and Semantic Web

Dog Food, (ii) a life science data collection containing KEGG, ChEBI and DrugBank as
well as (iii) a dataset of 10M triples generated with the dataset generator of SP2Bench.
FedBench provides two self-made query sets as well as the queries from SP2Bench for
the three data collections. The first two query sets focus on the number of data sources
involved, the join ordering and query results set sizes. Since the actual benchmark can-
not be found online any more, the characteristics of the queries cannot be examined.
The proposed performance metrics are:

Query execution time for each executed query.
Number of requests to remote RDF stores during the processing of each query.

8.2 Benchmark Generators

DBPedia SPARQL Benchmark (DBSB). The general idea of DBSB [94] is to scale
the DBPedia dataset to the required size and create queries based on a historic query
log of DBPedia SPARQL endpoints. In order to generate the dataset a DBPedia dump
is taken. To increase the size, triples are replicated and there namespaces are changed.
To shrink the dataset size, triples are removed in a way that its characteristics like the
indegree and the outdegree of vertices is not changed. In order to generate queries,
DBSB clusters all queries of a historic query log. Out of each cluster the most frequent
queries were picked as well as queries that cover most SPARQL features. Based on the
selected queries, new queries are generated by replacing the constants with resources
of the generated dataset during the benchmark generation process.

Waterloo SPARQL Diversity Test Suite (WatDiv). WatDiv [15] was designed to
create benchmarks that are able to test the performance change of RDF stores under
varying dataset and query characteristics. Therefore, the dataset generator is able to
create datasets with variations of (a) the entity types, (b) the graph topology, (c) the well-
structuredness of entities (i.e., which portion of the defined edges are usually present at
an entity), (d) the probability of edges connecting two entities and (e) the cardinality of
properties. In order to generate queries based on a dataset, the following characteristics
are defined:
Triple Pattern Count defines the number of triple patterns occurring in the generated

query.
Join Vertex Count counts the number of resources or variables that occur in multiple

triple patterns.
Join Vertex Degree determined in how many triple patterns each join vertex occurs.
Join Vertex Type defines whether a subject-subject, subject-object or object-object join

is performed.
Result Cardinality is the number of results.
Filter Triple Pattern Selectivity defines with witch portion of the graph a triple pattern

matches.
BGP-Restricted f-TP Selectivity determines to which extent a triple pattern contributes

to the overall selectivity of a query.
Join-Restricted f-TP Selectivity determines to which extent a triple pattern contributes

to the overall selectivity of a join.

FEASIBLE. FEASIBLE [119] does not provide a dataset generator. Instead it can use
an arbitrary dataset for which a historic query log exists. FEASIBLE aims to generate
queries that have similar characteristics to the queries in the query log. Therefore, in a
first step all syntactical incorrect queries and queries with no results are removed. Each
query is transformed into a vector based on the following query characteristics:
SPARQL features defines which SPARQL features like SELECT, ASK, UNION, etc. oc-

cur in the query.
Triple Pattern Count defines the number of triple patterns occurring in the generated

query.
Join Vertex Count counts the number of resources or variables that occur in multiple

triple patterns.
Join Vertex Degree determined in how many triple patterns each join vertex occurs.
Join Vertex Type defines whether a subject-subject, subject-object or object-object join

is performed.
Triple Pattern Selectivity defines with witch portion of the graph a triple pattern matches.

From the resulting set of query vectors, the requested number of queries are selected in
a way that their vectors are as far away as possible from each other.

SPLODGE. The idea of SPLODGE [47] is to generated queries with a given set of
characteristics from an arbitrary dataset. Thereby, it uses the following query character-
istics:
Query Type defines whether a SELECT, CONSTRUCT, ASK or DESCRIBE query should

be generated.
Join Type defines whether a conjunctive join (.), disjunctive join (UNION) or left-join

(OPTIONAL) should be performed.
Result Modifiers defines whether the result set should be altered by DISTINCT, LIMIT,

OFFSET or ORDER_BY operators.
Variable Patterns defines at which positions of the triple pattern variables should occur.
Join Patterns defines whether a subject-subject, subject-object or object-object join is

performed.
Cross Products defines whether conjunctive join without join variable should be per-

formed.
Number of Sources defines from how many different data sources triples should be

combined to answer the query.
Number of Joins defines how many joins should occur in the query.
Query Selectivity defines with witch portion of the graph all triple patterns of a query

match.

8.3 Performed Evaluations

The before mentioned benchmarks are usually used to evaluate and compare the perfor-
mance of RDF stores as a whole. Table 5 summarizes the evaluations published from
the beginning of 2016. All of them use are least one of the benchmarks described above.

Beside the generated datasets they usually also use a few realistic datasets. The maxi-
mal dataset size is in most cases approximately 1 billion triples. In two cases a dataset
with up to 4.2 billion triples was used. Most RDF stores in the cloud were deployed on
10 compute nodes. In one evaluation 19 compute nodes were used.

Paper Benchmark Max. Dataset Size # compute nodes compute node size
[29] WatDiv ~100M triples 10 6 cores, 32 GB RAM, 4 TB disk
[112] WatDiv ~1,000M triples 10 6 cores, 32 GB RAM, 4 TB disk
[96] LUBM ~1,330M triples 18 12 cores, 50 GB RAM

WatDiv
[92] WatDiv ~10M triples 11 4 cores, 24 GB RAM
[86] LUBM ~35M triples 18 slaves 16 cores, 28 GB RAM

1 federator 16 cores, 56 GB RAM
[5] LUBM ~4,200M triples 12 24 cores, 148 GB RAM

[140] LUBM ~220M triples 4-16 slaves 4 cores, 8 GB RAM, 500 GB disk
1 master 4 cores, 16 GB RAM, 500 GB disk

[124] WatDiv ~1,000M triples 10 6 cores, 32 GB RAM, 4 TB disk
[121] WatDiv ~100M triples 10 6 cores, 32 GB RAM, 4 TB disk
[109] WatDiv ~1,382M triples 10 8 cores, 32 GB RAM

LUBM
[106] BSBM ~5M triples 4-12 2 cores, 8 GB RAM
[105] WatDiv ~1,099M triples 10 4 cores, 16 GB RAM, 500 GB disk

LUBM
FedBench

[104] WatDiv ~250M triples 10 4 cores, 16 GB RAM, 150 GB disk
[57] WatDiv ~4,288M triples 5-12 24 cores, 148 GB RAM

LUBM
[50] WatDiv ~1,380M triples 10 4 cores, 17 GB RAM

LUBM
[4] LUBM ~3,100M triples 11 8 cores, 16 GB RAM, 3TB disk

Table 5: Evaluations of RDF stores in the cloud published since 2016.

The evaluations in these papers use rather small datasets. To give a better overview
of the capabilities of current RDF stores, [1] reports RDF stores running on a single
server or in the cloud that could store RDF graphs consisting of several billions or even
one trillion triples (see the summary in table 6).

In order to compare the influence of alternative graph cover strategies or different
query execution strategies, all but the examined component of the distributed RDF store

29 http://www.oracle.com/us/corporate/features/database-12c/
index.html

30 https://franz.com/agraph/allegrograph/
31 https://www.stardog.com/
32 www.ontotext.com/products/ontotext-graphdb/
33 https://jena.apache.org/
34 http://www.cs.ox.ac.uk/isg/tools/RDFox/

RDF Store Max. Dataset Size
com-
pute
nodes

compute node size

Oracle Database 12c29 ~1 trillion triples 1 360 cores, 2 TB RAM, 45 TB disk
AllegroGraph30 ~1 trillion triples 1 ?

Stardog31 ~50,000M triples 1 32 cores, 256 GB RAM
Virtuoso Clustered Edition [41] ~37,000M triples 8 8 cores, 16 GB RAM, 4 TB disk

GraphDB32 ~17,000M triples 1 16 cores, 512 GB RAM
4store [58] ~15,000M triples 9 ?

Blazegraph [2] ~12,700M triples ? ?
YARS2 [2] ~7,000M triples ? ?
Jena TDB33 ~1,700M triples 1 2 cores, 10 GB RAM

RDFox34 ~1,700M triples 1 16 cores, 50 GB RAM
Table 6: Evaluations of RDF stores reported by [1].

need to stay the same. This was done, for instance in [96] to compare different query
execution strategies on top of Spark or in [33], [63], [79] and [146] to compare different
graph cover strategies. But these evaluation used Hadoop or its distributed file system
to exchange data during the query processing. As a result, it remains unclear whether
their results are applicable on distributed RDF stores in which the data is exchanged
directly between the compute nodes.

9 Conclusion

To cope with the growing size of huge graphs, scalable RDF stores in the cloud are used,
where the graph data is distributed among several compute nodes. From this distributed
setting several challenges like (i) the data placement strategy, (ii) the distributed query
processing, and (iii) the handling of failed compute nodes. In this manuscript we gave
an overview of how these challenges are addressed by RDF stores in the cloud.

Due to the high number of RDF stores in the cloud, we have only given an overview
of core challenges in distributed RDF stores. Beside these core challenges there exist
further features that are required during the practical usage of relational databases in
the industry today. Realizing them in RDF stores is a challenging task so that they are
only partly realized in RDF stores. In order to achieve a broader usage of RDF stores in
industry, further research is required to implement these features in RDF stores in the
cloud. In the following we describe some of these features. As an example use case we
assume an online retailer.

When two customers try to order a unique product at the same time, only one of the
orders must be successful and the other must fail. To prevent the situation that both cus-
tomers could successfully order the unique product, transactional security (i.e., atom-
icity, consistency, isolation and durability) is required. Realizing transactional security
in a distributed setting where the data is separated among several compute nodes might
require a lot of coordination between the compute nodes. This additional coordination
increase the query query execution time. To avoid this overhead while providing trans-
actional security, most RDF stores in the cloud assume that the RDF graph is immutable

after loading it. Only few RDF stores like Virtuoso Clustered Edition [40] allow for in-
serting or deleting triples after loading.

In order to identify which products were sold the most frequently in the last three
month, the database is required to perform online analytical processing (OLAP) queries.
This type of queries require a huge amount of data to be processed. In context of RDF
stores in the cloud, processing OLAP queries cannot be done by sending all required
data to a single compute node since a single compute node might be overloaded by the
huge amount of data. Therefore, graph cover strategies and distributed query execution
strategies need to be developed that support the parallel processing of OLAP queries
with a low number of exchanged network packets.

To simplify the search for a product, the online retailer has categorized its products
in a category hierarchy. For instance, an orange lemonade can be categorized as lemon-
ade, soft drink and drink. With the introduction of SPARQL 1.1 [110] property paths
were introduced that allow for requesting all offered drinks independently of the subcat-
egory they belong to. This type of query differs from the pure graph pattern matching
done in SPARQL 1.0 since it can easily require the traversal of long paths. In a dis-
tributed setting the traversal of long paths may lead to a high network traffic reducing
the query execution time. One challenge arising from these queries is, how to optimize
the data placement for these queries. Alternatively to SPARQL, the retailer might want
to use other query languages like GraphQL35.

The retailer wants to prevent teenagers from buying alcohol. Therefore, he stores
in database the rules that every customer younger than 20 is a teenager and teenagers
should not be allowed to buy alcohol. These rules should be automatically applied to
all customers. In order to realize this, RDF stores need the ability to reason about RDF
graphs. In this context reasoning means inferring logical consequences and checking
the consistency of the RDF graph. Usually, reasoning is done during the loading time
of the graph and all logical consequences are stored as explicit triples in the graph. The
challenge of distributed reasoning is that the reasoning of the complete graph might
overload a single compute node. Therefore, distributed reasoning algorithms are re-
quired. A few RDF stores in the cloud like MaRVIN [100] and Rya [114] have ad-
dressed this challenge. Another problem is, if the RDF graph is mutable after loading.
In this case the deletion or insertion of triples might produce inconsistencies, a lot of
newly inferred triples need to be inserted or formerly inferred triples need to be re-
moved.

Finally, the retailer wants to advertise summer products like swimwear, portable
fans, etc. more prominently if the temperature in the town where the customer lives
is high. Therefore, the constantly streamed data from temperature sensors needs to be
processed. This quickly arriving stream data cause further challenges for RDF stores,
like quickly combining the received data with static data, updating the database fre-
quently or balancing the workload among all compute nodes. CQELS Cloud [78] is one
example of a system that processes RDF streams in a distributed fashion.

35 https://graphql.org/

References

1. Largetriplestores. https://www.w3.org/wiki/LargeTripleStores, accessed:
2018-07-10

2. The bigdatar RDF Database. Retrieved: 29.10.2014, http://www.bigdata.com/
whitepapers/bigdata_architecture_whitepaper.pdf

3. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web Data
Management Using Vertical Partitioning. In: Proceedings of the 33rd International Con-
ference on Very Large Data Bases. pp. 411–422. VLDB ’07, VLDB Endowment (2007),
http://dl.acm.org/citation.cfm?id=1325851.1325900

4. Abbassi, S., Faiz, R.: RDF-4X: A Scalable Solution for RDF Quads Store in
the Cloud. In: Proceedings of the 8th International Conference on Management of
Digital EcoSystems. pp. 231–236. MEDES, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/3012071.3012104

5. Abdelaziz, I., Harbi, R., Salihoglu, S., Kalnis, P.: Combining Vertex-Centric
Graph Processing with SPARQL for Large-Scale RDF Data Analytics. IEEE
Transactions on Parallel and Distributed Systems 28(12), 3374–3388 (2017).
https://doi.org/10.1109/TPDS.2017.2720174

6. Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Van Pelt, T.: GridVine: Building Internet-
Scale Semantic Overlay Networks. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F.
(eds.) The Semantic Web – ISWC 2004. pp. 107–121. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

7. Acosta, M., Vidal, M.E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: An Adaptive
Query Processing Engine for SPARQL Endpoints. In: Aroyo, L., Welty, C., Alani, H., Tay-
lor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) The Semantic Web – ISWC
2011. pp. 18–34. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

8. Akar, Z., Halaç, T.G., Ekinci, E.E., Dikenelli, O.: Querying the Web of Interlinked
Datasets using VOID Descriptions. In: WWW2012 Workshop on Linked Data on
the Web, Lyon, France, 16 April, 2012 (2012), http://ceur-ws.org/Vol-937/
ldow2012-paper-06.pdf

9. Al-Harbi, R., Abdelaziz, I., Kalnis, P., Mamoulis, N., Ebrahim, Y., Sahli, M.: Adaptive
Partitioning for Very Large RDF Data. CoRR abs/1505.0 (2015), http://arxiv.org/
abs/1505.02728

10. Al-Harbi, R., Ebrahim, Y., Kalnis, P.: PHD-Store: An Adaptive SPARQL Engine with Dy-
namic Partitioning for Distributed RDF Repositories. CoRR abs/1405.4 (2014), http:
//arxiv.org/abs/1405.4979

11. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets with
the VoID Vocabulary. W3c interest group note, W3C (2011), http://www.w3.org/
TR/2011/NOTE-void-20110303/

12. Ali, L., Janson, T., Lausen, G.: 3rdf: Storing and Querying RDF Data on Top of the 3nuts
Overlay Network. In: 2011 22nd International Workshop on Database and Expert Systems
Applications. pp. 257–261 (aug 2011). https://doi.org/10.1109/DEXA.2011.1

13. Ali, L., Janson, T., Schindelhauer, C.: Towards Load Balancing and Parallelizing of RDF
Query Processing in P2P Based Distributed RDF Data Stores. In: 2014 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing. pp. 307–
311 (feb 2014). https://doi.org/10.1109/PDP.2014.79

14. Ali, L., Janson, T., Lausen, G., Schindelhauer, C.: Effects of Network Structure Improve-
ment on Distributed RDF Querying. In: Hameurlain, A., Rahayu, W., Taniar, D. (eds.)
Data Management in Cloud, Grid and P2P Systems. pp. 63–74. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2013)

15. Aluç, G., Hartig, O., Özsu, M., Daudjee, K.: Diversified Stress Testing of RDF Data Man-
agement Systems. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vran-
dečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) The Semantic Web – ISWC
2014, Lecture Notes in Computer Science, vol. 8796, pp. 197–212. Springer International
Publishing (2014). https://doi.org/10.1007/978-3-319-11964-9_13

16. Arenas, M., Pérez, J.: Federation and Navigation in SPARQL 1.1. In: Eiter, T., Krennwall-
ner, T. (eds.) Reasoning Web. Semantic Technologies for Advanced Query Answering, Lec-
ture Notes in Computer Science, vol. 7487, pp. 78–111. Springer Berlin Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33158-9_3

17. Basca, C., Bernstein, A.: Distributed SPARQL Throughput Increase: On the effectiveness
of Workload-driven RDF partitioning. In: ISWC2013 (2013)

18. Basca, C., Bernstein, A.: Querying a Messy Web of data with AVALANCHE. Web Se-
mantics: Science, Services and Agents on the World Wide Web 26(0) (2014), http:
//www.websemanticsjournal.org/index.php/ps/article/view/361

19. Battré, D., Heine, F., Höing, A., Kao, O.: On Triple Dissemination, Forward-Chaining, and
Load Balancing in DHT Based RDF Stores. In: Moro, G., Bergamaschi, S., Joseph, S.,
Morin, J.H., Ouksel, A.M. (eds.) Databases, Information Systems, and Peer-to-Peer Com-
puting. pp. 343–354. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

20. Beame, P., Koutris, P., Suciu, D.: Skew in Parallel Query Processing. In: Proceed-
ings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems. pp. 212–223. PODS ’14, ACM, New York, NY, USA (2014).
https://doi.org/10.1145/2594538.2594558

21. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. Int. J. Semantic Web Inf. Syst.
5(2), 1–24 (2009). https://doi.org/10.4018/jswis.2009040101

22. Böhm, C., Hefenbrock, D., Naumann, F.: Scalable Peer-to-peer-based RDF Man-
agement. In: Proceedings of the 8th International Conference on Semantic Sys-
tems. pp. 165–168. I-SEMANTICS ’12, ACM, New York, NY, USA (2012).
https://doi.org/10.1145/2362499.2362523

23. Bröcheler, M., Pugliese, A., Subrahmanian, V.S.: COSI: Cloud Oriented Subgraph Identifi-
cation in Massive Social Networks. In: Advances in Social Networks Analysis and Mining
(ASONAM). pp. 248–255 (Aug 2010). https://doi.org/10.1109/ASONAM.2010.80

24. Bugiotti, F., Camacho-Rodríguez, J., Goasdoué, F., Kaoudi, Z., Manolescu, I., Zampetakis,
S.: SPARQL Query Processing in the Cloud. In: Harth, A., Hose, K., Schenkel, R. (eds.)
Linked Data Management. Emerging Directions in Database Systems and Applications,
Chapman and Hall/CRC (Apr 2014)

25. Cai, M., Frank, M.: RDFPeers: a scalable distributed RDF repository based on a structured
peer-to-peer network. Proceedings of the 13th International Conference on World Wide
Web pp. 650–657 (2004), http://dl.acm.org/citation.cfm?id=988760

26. Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: Optimizing Fed-
erated SPARQL Queries. In: Proceedings of the 11th International Conference on Se-
mantic Systems. pp. 121–128. SEMANTICS ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2814864.2814886

27. Cheng, L., Kotoulas, S.: Scale-Out Processing of Large RDF Datasets. IEEE Transactions
on Big Data 1(4), 138–150 (2015). https://doi.org/10.1109/TBDATA.2015.2505719

28. Chu, S., Balazinska, M., Suciu, D.: From Theory to Practice: Efficient Join Query Evalu-
ation in a Parallel Database System. In: Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data. pp. 63–78. SIGMOD ’15, ACM, New York,
NY, USA (2015). https://doi.org/10.1145/2723372.2750545

29. Cossu, M., Färber, M., Lausen, G.: PRoST: Distributed Execution of {SPARQL} Queries
Using Mixed Partitioning Strategies. In: Proceedings of the 21th International Conference

on Extending Database Technology, {EDBT} 2018, Vienna, Austria, March 26-29, 2018.
pp. 469–472 (2018). https://doi.org/10.5441/002/edbt.2018.49

30. Crespo, A., Garcia-Molina, H.: Semantic Overlay Networks for P2P Systems. In: Moro, G.,
Bergamaschi, S., Aberer, K. (eds.) Agents and Peer-to-Peer Computing. pp. 1–13. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005)

31. Cudre-Mauroux, P., Agarwal, S., Aberer, K.: GridVine: An Infrastructure for
Peer Information Management. IEEE Internet Computing 11(5), 36–44 (sep 2007).
https://doi.org/10.1109/MIC.2007.108

32. Cudré-Mauroux, P., Enchev, I., Fundatureanu, S., Groth, P., Haque, A., Harth, A., Kepp-
mann, F., Miranker, D., Sequeda, J., Wylot, M.: Nosql databases for rdf: An empirical eval-
uation. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J., Aroyo,
L., Noy, N., Welty, C., Janowicz, K. (eds.) The Semantic Web – ISWC 2013, Lecture
Notes in Computer Science, vol. 8219, pp. 310–325. Springer Berlin Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41338-4_20

33. Curé, O., Naacke, H., Baazizi, M.A., Amann, B.: On the evaluation of RDF distribution
algorithms implemented over apache spark. In: Proc. of the 11th Int. Workshop on Scalable
Semantic Web Knowledge Base Systems (at ISWC-2015). pp. 16–31 (2015)

34. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s Highly Available
Key-value Store. In: Proceedings of Twenty-first ACM SIGOPS Symposium on Oper-
ating Systems Principles. pp. 205–220. SOSP ’07, ACM, New York, NY, USA (2007).
https://doi.org/10.1145/1294261.1294281

35. Della Valle, E., Turati, A., Ghioni, A.: PAGE: A Distributed Infrastructure for Fostering
RDF-Based Interoperability. In: Eliassen, F., Montresor, A. (eds.) Distributed Applications
and Interoperable Systems. pp. 347–353. Springer Berlin Heidelberg, Berlin, Heidelberg
(2006)

36. DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M.R., Wood, D.A.: Imple-
mentation Techniques for Main Memory Database Systems. In: Proceedings of the 1984
ACM SIGMOD International Conference on Management of Data. pp. 1–8. SIGMOD ’84,
ACM, New York, NY, USA (1984). https://doi.org/10.1145/602259.602261

37. Dhraief, H., Kemper, A., Nejdl, W., Wiesner, C.: Processing and Optimization of Complex
Queries in Schema-Based P2P-Networks. In: Ng, W.S., Ooi, B.C., Ouksel, A.M., Sartori, C.
(eds.) Databases, Information Systems, and Peer-to-Peer Computing. pp. 31–45. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005)

38. Ding, L., Peng, Y., da Silva, P.P., McGuinness, D.L.: Tracking
RDF Graph Provenance using RDF Molecules. Tech. rep., UMBC
(2005), https://ebiquity.umbc.edu/paper/html/id/240/
Tracking-RDF-Graph-Provenance-using-RDF-Molecules

39. Du, F., Bian, H., Chen, Y., Du, X.: Efficient SPARQL Query Evaluation in
a Database Cluster. IEEE Int. Congress on Big Data pp. 165–172 (2013).
https://doi.org/10.1109/BigData.Congress.2013.30

40. Erling, O., Mikhailov, I.: Towards Web Scale RDF. In: 4th Int. Workshop on Scalable Se-
mantic Web Knowledge Base Systems (SSWS2008) (2008)

41. Erling, O., Mikhailov, I.: Virtuoso: RDF Support in a Native RDBMS. In: de Virgilio, R.,
Giunchiglia, F., Tanca, L. (eds.) Semantic Web Information Management, pp. 501–519.
Springer Berlin Heidelberg (2010). https://doi.org/10.1007/978-3-642-04329-1_21

42. Farhan Husain, M., McGlothlin, J., Masud, M.M., Khan, L., Thuraisingham, B.: Heuristics-
Based Query Processing for Large RDF Graphs Using Cloud Computing. Knowl-
edge and Data Engineering, IEEE Transactions on 23(9), 1312–1327 (Sep 2011).
https://doi.org/10.1109/TKDE.2011.103

43. Galarraga, L., Hose, K., Schenkel, R.: Partout: A Distributed Engine for Efficient RDF
Processing. CoRR abs/1212.5 (2012), http://arxiv.org/abs/1212.5636

44. Goasdoué, F., Kaoudi, Z., Manolescu, I., Quiané-Ruiz, J.A., Zampetakis, S.: CliqueSquare:
Flat plans for massively parallel RDF queries. In: 2015 IEEE 31st International Conference
on Data Engineering. pp. 771–782 (apr 2015). https://doi.org/10.1109/ICDE.2015.7113332

45. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: GraphX:
Graph Processing in a Distributed Dataflow Framework. In: Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation. pp. 599–613.
OSDI’14, USENIX Association, Berkeley, CA, USA (2014), http://dl.acm.org/
citation.cfm?id=2685048.2685096

46. Goodman, E.L., Grunwald, D.: Using Vertex-centric Programming Platforms to Implement
SPARQL Queries on Large Graphs. In: Proceedings of the 4th Workshop on Irregular Ap-
plications: Architectures and Algorithms. pp. 25–32. IA³ ’14, IEEE Press,
Piscataway, NJ, USA (2014). https://doi.org/10.1109/IA3.2014.10

47. Görlitz, O., Thimm, M., Staab, S.: Splodge: Systematic generation of sparql bench-
mark queries for linked open data. The Semantic Web–ISWC 2012 pp. 116–132 (2012).
https://doi.org/10.1007/978-3-642-35176-1_8

48. Görlitz, O., Staab, S.: SPLENDID: SPARQL Endpoint Federation Exploiting VOID De-
scriptions. In: Proceedings of the Second International Conference on Consuming Linked
Data - Volume 782. pp. 13–24. COLD’11, CEUR-WS.org, Aachen, Germany, Germany
(2010), http://dl.acm.org/citation.cfm?id=2887352.2887354

49. Graux, D., Jachiet, L., Genevès, P., Layaïda, N.: A Multi-Criteria Experimental Ranking of
Distributed SPARQL Evaluators (2016), https://hal.inria.fr/hal-01381781

50. Graux, D., Jachiet, L., Genevès, P., Layaïda, N.: SPARQLGX: Efficient Distributed
Evaluation of SPARQL with Apache Spark. In: Groth, P., Simperl, E., Gray, A.,
Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) The Semantic Web –
ISWC 2016: 15th International Semantic Web Conference, Kobe, Japan, October 17–21,
2016, Proceedings, Part II, pp. 80–87. Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-46547-0_9

51. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Systems. Web
Semantics: Science, Services and Agents on the World Wide Web 3(2-3) (2005), http:
//www.websemanticsjournal.org/index.php/ps/article/view/70

52. Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: TriAD: A Distributed Shared-nothing
RDF Engine Based on Asynchronous Message Passing. In: SIGMOD. pp. 289–300 (2014).
https://doi.org/10.1145/2588555.2610511

53. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of Semantic Web Databases. In:
PODS. pp. 95–106. ACM (2004). https://doi.org/10.1145/1055558.1055573

54. Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing Queries Across Diverse
Data Sources. In: Vldb. VLDB ’97, vol. Athens, Gr, pp. 276–285. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA (1997)

55. Hammoud, M., Rabbou, D.A., Nouri, R., Beheshti, S.M.R., Sakr, S.: DREAM: Distributed
RDF Engine with Adaptive Query Planner and Minimal Communication. Proc. VLDB En-
dow. 8(6), 654–665 (2015). https://doi.org/10.14778/2735703.2735705

56. Harbi, R., Abdelaziz, I., Kalnis, P., Mamoulis, N.: Evaluating SPARQL Queries on Massive
RDF Datasets. PVLDB 8(12), 1848–1851 (2015), http://www.vldb.org/pvldb/
vol8/p1848-harbi.pdf

57. Harbi, R., Abdelaziz, I., Kalnis, P., Mamoulis, N., Ebrahim, Y., Sahli, M.: Accelerating
SPARQL queries by exploiting hash-based locality and adaptive partitioning. The VLDB
Journal 25(3), 355–380 (jun 2016). https://doi.org/10.1007/s00778-016-0420-y

58. Harris, S., Lamb, N., Shadbolt, N.: 4store: The Design and Implementation of a Clustered
RDF Store. In: Scalable Semantic Web Knowledge Base Systems - SSWS2009. pp. 94–109
(2009)

59. Harth, A., Decker, S.: Optimized Index Structures for Querying RDF from the Web. In:
Proc. of LA-WEB ’05. pp. 71—-. IEEE (2005). https://doi.org/10.1109/LAWEB.2005.25

60. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository for Query-
ing Graph Structured Data from the Web. In: ISWC-2007, vol. 4825, pp. 211–224. Springer
Berlin Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_16

61. Hong, S., Depner, S., Manhardt, T., Van Der Lugt, J., Verstraaten, M., Chafi, H.: PGX.D: A
Fast Distributed Graph Processing Engine. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. pp. 58:1—-58:12.
SC ’15, ACM, New York, NY, USA (2015). https://doi.org/10.1145/2807591.2807620

62. Hose, K., Schenkel, R.: WARP: Workload-aware replication and partitioning
for RDF. In: Data Engineering Workshops (ICDEW). pp. 1–6 (Apr 2013).
https://doi.org/10.1109/ICDEW.2013.6547414

63. Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL Querying of Large RDF Graphs.
PVLDB 4(11), 1123–1134 (2011)

64. Janke, D., Staab, S., Thimm, M.: Impact analysis of data placement strate-
gies on query efforts in distributed rdf stores. Journal of Web Semantics
(2018). https://doi.org/https://doi.org/10.1016/j.websem.2018.02.002, http:
//www.websemanticsjournal.org/index.php/ps/article/view/516

65. Jones, N.D.: An Introduction to Partial Evaluation. ACM Comput. Surv. 28(3), 480–503
(sep 1996). https://doi.org/10.1145/243439.243447

66. Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: A Peta-Scale Graph Mining System
Implementation and Observations. In: 2009 Ninth IEEE International Conference on Data
Mining. pp. 229–238 (2009). https://doi.org/10.1109/ICDM.2009.14

67. Kaoudi, Z., Koubarakis, M., Kyzirakos, K., Miliaraki, I., Magiridou, M., Papadakis-
Pesaresi, A.: Atlas: Storing, updating and querying RDF(S) data on top of DHTs. Web
Semantics: Science, Services and Agents on the World Wide Web 8(4) (2010), http:
//www.websemanticsjournal.org/index.php/ps/article/view/250

68. Karnstedt, M., Sattler, K.U., Richtarsky, M., Muller, J., Hauswirth, M., Schmidt,
R., John, R.: UniStore: Querying a DHT-based Universal Storage. In: 2007 IEEE
23rd International Conference on Data Engineering. pp. 1503–1504 (apr 2007).
https://doi.org/10.1109/ICDE.2007.369054

69. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Par-
titioning Irregular Graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998).
https://doi.org/10.1137/S1064827595287997

70. Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.M., Castagna, P.: Jena-HBase: {A} Dis-
tributed, Scalable and Effcient {RDF} Triple Store. Tech. rep., Department of Computer
Science at The University of Texas at Dallas (2012)

71. Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.M., Castagna, P.: Jena-HBase: A Dis-
tributed, Scalable and Effcient RDF Triple Store. In: Proceedings of the ISWC 2012
Posters & Demonstrations Track, Boston, USA, November 11-15, 2012 (2012), http:
//ceur-ws.org/Vol-914/paper_14.pdf

72. Kim, H., Ravindra, P., Anyanwu, K.: From SPARQL to MapReduce: The Journey Using
a Nested TripleGroup Algebra. PVLDB 4(12), 1426–1429 (2011), http://www.vldb.
org/pvldb/vol4/p1426-kim.pdf

73. Kokkinidis, G., Christophides, V.: Semantic Query Routing and Processing in P2P Database
Systems: The ICS-FORTH SQPeer Middleware. In: Lindner, W., Mesiti, M., Türker, C.,
Tzitzikas, Y., Vakali, A.I. (eds.) Current Trends in Database Technology - EDBT 2004
Workshops. pp. 486–495. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

74. Kotsev, V., Kiryakov, A., Fundulaki, I., Alexiev, V.: Ldbc semantic publishing bench-
mark (spb) - v2.0 first public draft release. Tech. rep., The Linked Data Benchmark
Council (June 2014), https://github.com/ldbc/ldbc_spb_bm_2.0/blob/
master/doc/LDBC_SPB_v2.0.docx?raw=true

75. Ladwig, G., Harth, A.: CumulusRDF: Linked Data Management on Nested Key-Value
Stores. In: Proceedings of the 7th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2011) at the 10th International Semantic Web Confer-
ence (ISWC2011) (Oct 2011)

76. Ladwig, G., Tran, T.: SIHJoin: Querying Remote and Local Linked Data. In: Antoniou,
G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.)
The Semantic Web: Research and Applications. pp. 139–153. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

77. Lakshman, A., Malik, P.: Cassandra: A Decentralized Structured Storage System. SIGOPS
Oper. Syst. Rev. 44(2), 35–40 (apr 2010). https://doi.org/10.1145/1773912.1773922

78. Le-Phuoc, D., Nguyen Mau Quoc, H., Le Van, C., Hauswirth, M.: Elastic and Scalable
Processing of Linked Stream Data in the Cloud. In: Alani, H., Kagal, L., Fokoue, A., Groth,
P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) The
Semantic Web – ISWC 2013. pp. 280–297. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013)

79. Lee, K., Liu, L.: Efficient Data Partitioning Model for Heterogeneous Graphs in the Cloud.
In: Proc. of the Int. Conf. on High Performance Computing, Networking, Storage and Anal-
ysis. pp. 46:1—-46:12. ACM (2013). https://doi.org/10.1145/2503210.2503302

80. Lee, K., Liu, L.: Scaling Queries over Big RDF Graphs with Semantic Hash Partitioning.
PVLDB 6(14), 1894–1905 (Sep 2013). https://doi.org/10.14778/2556549.2556571

81. Lee, K., Liu, L., Tang, Y., Zhang, Q., Zhou, Y.: Efficient and Customizable Data Partitioning
Framework for Distributed Big RDF Data Processing in the Cloud. In: IEEE CLOUD ’13.
pp. 327–334 (2013). https://doi.org/10.1109/CLOUD.2013.63

82. Liarou, E., Idreos, S., Koubarakis, M.: Evaluating Conjunctive Triple Pattern Queries over
Large Structured Overlay Networks. In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) The Semantic Web - ISWC 2006.
pp. 399–413. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

83. Lynden, S., Kojima, I., Matono, A., Tanimura, Y.: ADERIS: An Adaptive Query Processor
for Joining Federated SPARQL Endpoints. In: Meersman, R., Dillon, T., Herrero, P., Kumar,
A., Reichert, M., Qing, L., Ooi, B.C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M.,
Hitzler, P., Mohania, M. (eds.) On the Move to Meaningful Internet Systems: OTM 2011.
pp. 808–817. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

84. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski,
G.: Pregel: A System for Large-scale Graph Processing. In: Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data. pp. 135–146. SIGMOD ’10,
ACM, New York, NY, USA (2010). https://doi.org/10.1145/1807167.1807184

85. Malliaros, F.D., Vazirgiannis, M.: Clustering and community detection
in directed networks: A survey. Physics Reports 533(4), 95–142 (2013).
https://doi.org/10.1016/j.physrep.2013.08.002

86. Mansour, E., Abdelaziz, I., Ouzzani, M., Aboulnaga, A., Kalnis, P.: A Demonstration of
Lusail: Querying Linked Data at Scale. In: Proceedings of the 2017 ACM International
Conference on Management of Data. pp. 1603–1606. SIGMOD ’17, ACM, New York, NY,
USA (2017). https://doi.org/10.1145/3035918.3058731

87. Matono, A., Pahlevi, S.M., Kojima, I.: RDFCube: A P2P-Based Three-Dimensional Index
for Structural Joins on Distributed Triple Stores. In: Moro, G., Bergamaschi, S., Joseph, S.,
Morin, J.H., Ouksel, A.M. (eds.) Databases, Information Systems, and Peer-to-Peer Com-
puting. pp. 323–330. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

88. McMurry, J., Jupp, S., Malone, J., Burdett, T., Jenkinson, A., Parkinson, H., Davies, M.,
Brandizi, M., et al.: Report on the scalability of semantic web integration in biomedbridges
(2015). https://doi.org/10.5281/zenodo.14071

89. Mishra, P., Eich, M.H.: Join Processing in Relational Databases. ACM Comput. Surv. 24(1),
63–113 (1992). https://doi.org/10.1145/128762.128764

90. Montoya, G., Skaf-Molli, H., Hose, K.: The Odyssey Approach for Optimizing Federated
{SPARQL} Queries. In: The Semantic Web - {ISWC} 2017 - 16th International Semantic
Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part {I}. pp. 471–489
(2017). https://doi.org/10.1007/978-3-319-68288-4_28

91. Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.E.: Federated SPARQL Queries Pro-
cessing with Replicated Fragments. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier,
M., D’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K.,
Thirunarayan, K., Staab, S. (eds.) The Semantic Web - ISWC 2015, pp. 36–51. Springer
International Publishing, Cham (2015)

92. Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.E.: Decomposing Federated Queries
in presence of Replicated Fragments. Web Semantics: Science, Services and Agents on
the World Wide Web 42(1) (2017), http://www.websemanticsjournal.org/
index.php/ps/article/view/486

93. Montoya, G., Vidal, M.E., Acosta, M.: A Heuristic-based Approach for Planning Federated
SPARQL Queries. In: Proceedings of the Third International Conference on Consuming
Linked Data - Volume 905. pp. 63–74. COLD’12, CEUR-WS.org, Aachen, Germany, Ger-
many (2012), http://dl.acm.org/citation.cfm?id=2887367.2887373

94. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.C.: DBpedia SPARQL Benchmark
– Performance Assessment with Real Queries on Real Data. In: Aroyo, L., Welty, C., Alani,
H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) The Semantic Web –
ISWC 2011. pp. 454–469. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

95. Mutharaju, R., Sakr, S., Sala, A., Hitzler, P.: D-SPARQ: Distributed, Scalable and Efficient
RDF Query Engine. In: ISWC (Posters & Demos)’13. pp. 261–264 (2013)

96. Naacke, H., Amann, B., Curé, O.: SPARQL Graph Pattern Processing with Apache Spark.
In: Proceedings of the Fifth International Workshop on Graph Data-management Expe-
riences & Systems. pp. 1:1—-1:7. GRADES’17, ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3078447.3078448

97. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I., Löser, A.:
Super-peer-based Routing and Clustering Strategies for RDF-based Peer-to-peer Networks.
In: Proceedings of the 12th International Conference on World Wide Web. pp. 536–543.
WWW ’03, ACM, New York, NY, USA (2003). https://doi.org/10.1145/775152.775229

98. Norvig, P.: The semantic web and the semantics of the web: Where does meaning come
from? In: Proceedings of the 25th International Conference on World Wide Web. pp. 1–1.
WWW ’16, International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, Switzerland (2016)

99. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-so-foreign
Language for Data Processing. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data. pp. 1099–1110. SIGMOD ’08, ACM, New York, NY,
USA (2008). https://doi.org/10.1145/1376616.1376726

100. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.:
Marvin: distributed reasoning over large-scale Semantic Web data. Web Semantics:
Science, Services and Agents on the World Wide Web 7(4) (2009), http://www.
websemanticsjournal.org/index.php/ps/article/view/173

101. Osorio, M., Aranda, C.B.: Storage Balancing in P2P Based Distributed RDF Data Stores.
In: Proceedings of the Workshop on Decentralizing the Semantic Web 2017 co-located

with 16th International Semantic Web Conference {(ISWC} 2017) (2017), http://
ceur-ws.org/Vol-1934/contribution-04.pdf

102. Owens, A., Seaborne, A., Gibbins, N., schraefel, M.: Clustered TDB: A Clustered Triple
Store for Jena (Nov 2008), http://eprints.soton.ac.uk/266974/, http://
eprints.soton.ac.uk/266974/

103. Papailiou, N., Tsoumakos, D., Konstantinou, I., Karras, P., Koziris, N.: H2RDF+: An Ef-
ficient Data Management System for Big RDF Graphs. In: Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data. pp. 909–912. SIGMOD ’14,
ACM, New York, NY, USA (2014). https://doi.org/10.1145/2588555.2594535

104. Peng, P., Zou, L., Chen, L., Zhao, D.: Query Workload-based RDF Graph Fragmenta-
tion and Allocation. In: Proceedings of the 19th International Conference on Extending
Database Technology, EDBT 2016, Bordeaux, France, March 15-16, 2016, Bordeaux,
France, March 15-16, 2016. pp. 377–388 (2016). https://doi.org/10.5441/002/edbt.2016.35

105. Peng, P., Zou, L., Özsu, M.T., Chen, L., Zhao, D.: Processing SPARQL Queries
over Distributed RDF Graphs. The VLDB Journal 25(2), 243–268 (apr 2016).
https://doi.org/10.1007/s00778-015-0415-0

106. Penteado, R.R.M., Scroeder, R., Hara, C.S.: Exploring Controlled RDF Distribution. In:
2016 IEEE International Conference on Cloud Computing Technology and Science (Cloud-
Com). pp. 160–167 (2016). https://doi.org/10.1109/CloudCom.2016.0038

107. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM Trans.
Database Syst. 34(3), 16:1—-16:45 (Sep 2009). https://doi.org/10.1145/1567274.1567278

108. Potter, A., Motik, B., Horrocks, I.: Querying Distributed RDF Graphs: The Effects of Parti-
tioning. In: Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS 2014).
pp. 29–44 (2014)

109. Potter, A., Motik, B., Nenov, Y., Horrocks, I.: Distributed RDF Query Answering with
Dynamic Data Exchange. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M.,
Lecue, F., Flöck, F., Gil, Y. (eds.) The Semantic Web – ISWC 2016: 15th International
Semantic Web Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part I, pp.
480–497. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-
319-46523-4_29

110. Prud’hommeaux, E., Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3c recom-
mendation, W3C (2013), http://www.w3.org/TR/sparql11-query/

111. Przyjaciel-Zablocki, M., Schätzle, A., Lausen, G.: TriAL-QL: Distributed Process-
ing of Navigational Queries. In: Proceedings of the 18th International Workshop on
Web and Databases. pp. 48–54. WebDB’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2767109.2767115

112. Przyjaciel-Zablocki, M., Schätzle, A., Lausen, G.: Querying Semantic Knowledge Bases
with SQL-on-Hadoop. In: Proceedings of the 4th ACM SIGMOD Workshop on Algo-
rithms and Systems for MapReduce and Beyond. pp. 4:1—-4:10. BeyondMR’17, ACM,
New York, NY, USA (2017). https://doi.org/10.1145/3070607.3070610

113. Pujol, J.M., Erramilli, V., Rodriguez, P.: Divide and Conquer: Partitioning Online Social
Networks. CoRR abs/0905.4 (2009), http://arxiv.org/abs/0905.4918

114. Punnoose, R., Crainiceanu, A., Rapp, D.: Rya: A scalable rdf triple store for the
clouds. In: 1st Int. Workshop on Cloud Intelligence. pp. 4:1–4:8. ACM (2012).
https://doi.org/10.1145/2347673.2347677

115. Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In: Bech-
hofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) The Semantic Web: Research
and Applications. pp. 524–538. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

116. Rohloff, K., Schantz, R.E.: High-performance, Massively Scalable Distributed Systems Us-
ing the MapReduce Software Framework: The SHARD Triple-store. In: Programming Sup-

port Innovations for Emerging Distributed Applications. pp. 4:1—-4:5. PSI EtA ’10, ACM,
New York, NY, USA (2010). https://doi.org/10.1145/1940747.1940751

117. Russell, J.: Getting Started with Impala: Interactive SQL for Apache Hadoop. O’Reilly
Media (2014), http://shop.oreilly.com/product/0636920033936.do

118. Sakr, S., Wylot, M., Mutharaju, R., Le Phuoc, D., Fundulaki, I.: Linked Data: Stor-
ing, Querying, and Reasoning. Springer International Publishing, Cham, 1 edn. (2018).
https://doi.org/10.1007/978-3-319-73515-3

119. Saleem, M., Mehmood, Q., Ngonga Ngomo, A.C.: FEASIBLE: A Feature-Based SPARQL
Benchmark Generation Framework. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier,
M., D’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K.,
Thirunarayan, K., Staab, S. (eds.) The Semantic Web - ISWC 2015. pp. 52–69. Springer
International Publishing, Cham (2015)

120. Saleem, M., Ngonga Ngomo, A.C., Xavier Parreira, J., Deus, H.F., Hauswirth, M.: DAW:
Duplicate-AWare Federated Query Processing over the Web of Data. In: Alani, H., Ka-
gal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C.,
Janowicz, K. (eds.) The Semantic Web – ISWC 2013: 12th International Semantic Web
Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part I, pp. 574–
590. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41335-3_36

121. Schätzle, A., Przyjaciel-Zablocki, M., Berberich, T., Lausen, G.: S2X: Graph-Parallel
Querying of RDF with GraphX. In: Wang, F., Luo, G., Weng, C., Khan, A., Mitra, P., Yu, C.
(eds.) Biomedical Data Management and Graph Online Querying. pp. 155–168. Springer
International Publishing, Cham (2016)

122. Schätzle, A., Przyjaciel-Zablocki, M., Lausen, G.: PigSPARQL: Mapping SPARQL to
Pig Latin. In: Proceedings of the International Workshop on Semantic Web Infor-
mation Management. pp. 4:1—-4:8. SWIM ’11, ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1999299.1999303

123. Schätzle, A., Przyjaciel-Zablocki, M., Neu, A., Lausen, G.: Sempala: Interactive SPARQL
Query Processing on Hadoop. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C.,
Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) The Se-
mantic Web – ISWC 2014, Lecture Notes in Computer Science, vol. 8796, pp. 164–179.
Springer International Publishing (2014). https://doi.org/10.1007/978-3-319-11964-9_11

124. Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: {S2RDF:} {RDF} Querying
with {SPARQL} on Spark. PVLDB 9(10), 804–815 (2016), http://www.vldb.org/
pvldb/vol9/p804-schaetzle.pdf

125. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench: A
Benchmark Suite for Federated Semantic Data Query Processing. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) The Semantic
Web – ISWC 2011. pp. 585–600. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

126. Schmidt, M., Hornung, T., Meier, M., Pinkel, C., Lausen, G.: SP2Bench: A SPARQL Per-
formance Benchmark. In: de Virgilio, R., Giunchiglia, F., Tanca, L. (eds.) Semantic Web
Information Management: A Model-Based Perspective, pp. 371–393. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-04329-1_16

127. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization Tech-
niques for Federated Query Processing on Linked Data. In: Aroyo, L., Welty, C., Alani,
H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) The Semantic Web –
ISWC 2011. pp. 601–616. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

128. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop Distributed File System.
In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). pp.
1–10 (2010). https://doi.org/10.1109/MSST.2010.5496972

129. Stein, R., Zacharias, V.: RDF on Cloud Number Nine. In: Ceri, S., Valle, E.D., Hendler,
J., Huang, Z. (eds.) Proceedings of the 4th Workshop on New Forms of Reasoning for the
Semantic Web: Scalable {&} Dynamic. CEUR Workshop Proceedings (2010)

130. Stutz, P., Verman, M., Fischer, L., Bernstein, A.: TripleRush: a fast and scalable triple
store. In: 9th International Workshop on Scalable Semantic Web Knowledge Base Systems.
CEUR Workshop Proceedings, http://ceur-ws.org, Aachen, Germany (2013)

131. Stutz, P., Bernstein, A., Cohen, W.: Signal/Collect: Graph Algorithms for the (Semantic)
Web. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) The Semantic Web – ISWC 2010. pp. 764–780. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2010)

132. Stutz, P., Paudel, B., Verman, M., Bernstein, A.: Random Walk TripleRush: Asyn-
chronous Graph Querying and Sampling. In: Proceedings of the 24th International Con-
ference on World Wide Web. pp. 1034–1044. WWW ’15, International World Wide Web
Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2015).
https://doi.org/10.1145/2736277.2741687

133. Wang, R., Chiu, K.: Optimizing Distributed RDF Triplestores via a Locally Indexed Graph
Partitioning. In: Parallel Processing (ICPP), 2012 41st International Conference on. pp.
259–268 (Sep 2012). https://doi.org/10.1109/ICPP.2012.47

134. Wang, X., Tiropanis, T., Davis, H.C.: LHD: Optimising Linked Data Query Processing
Using Parallelisation. In: Proceedings of the WWW2013 Workshop on Linked Data on the
Web, Rio de Janeiro, Brazil, 14 May, 2013 (2013), http://ceur-ws.org/Vol-996/
papers/ldow2013-paper-06.pdf

135. White, T.: Hadoop: The Definitive Guide. O’Reilly, Beijing, 4 edn.
(2015), https://www.safaribooksonline.com/library/view/
hadoop-the-definitive/9781491901687/

136. Wilschut, A.N., Apers, P.M.G.: Dataflow query execution in a parallel main-
memory environment. Distributed and Parallel Databases 1(1), 103–128 (jan 1993).
https://doi.org/10.1007/BF01277522

137. Wu, B., Zhou, Y., Yuan, P., Liu, L., Jin, H.: Scalable SPARQL querying using path parti-
tioning. In: 2015 IEEE 31st International Conference on Data Engineering. pp. 795–806
(apr 2015). https://doi.org/10.1109/ICDE.2015.7113334

138. Wu, B., Zhou, Y., Yuan, P., Jin, H., Liu, L.: SemStore: A Semantic-Preserving Distributed
RDF Triple Store. In: CIKM-2014 (2014)

139. Wylot, M., Cudré-Mauroux, P.: Diplocloud: Efficient and scalable management of rdf data
in the cloud. IEEE Transactions on Knowledge and Data Engineering 28(3), 659–674
(2016). https://doi.org/10.1109/TKDE.2015.2499202

140. Wylot, M., Cudré-Mauroux, P.: DiploCloud: Efficient and Scalable Management of RDF
Data in the Cloud. IEEE Transactions on Knowledge and Data Engineering 28(3), 659–674
(2016). https://doi.org/10.1109/TKDE.2015.2499202

141. Xu, Z., Chen, W., Gai, L., Wang, T.: SparkRDF: In-Memory Distributed RDF Manage-
ment Framework for Large-Scale Social Data. In: Dong, X.L., Yu, X., Li, J., Sun, Y. (eds.)
Web-Age Information Management. pp. 337–349. Springer International Publishing, Cham
(2015)

142. Yang, S., Yan, X., Zong, B., Khan, A.: Towards Effective Partition Management for
Large Graphs. In: Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data. pp. 517–528. SIGMOD ’12, ACM, New York, NY, USA (2012).
https://doi.org/10.1145/2213836.2213895

143. Yang, T., Chen, J., Wang, X., Chen, Y., Du, X.: Efficient SPARQL Query Evaluation via
Automatic Data Partitioning. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W.
(eds.) Database Systems for Advanced Applications. pp. 244–258. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2013)

144. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster Comput-
ing with Working Sets. In: Proceedings of the 2Nd USENIX Conference on Hot Topics in
Cloud Computing. p. 10. HotCloud’10, USENIX Association, Berkeley, CA, USA (2010),
http://dl.acm.org/citation.cfm?id=1863103.1863113

145. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A Distributed Graph
Engine for Web Scale RDF Data. PVLDB 6(4), 265–276 (Feb 2013).
https://doi.org/10.14778/2535570.2488333

146. Zhang, X., Chen, L., Tong, Y., Wang, M.: EAGRE: Towards scalable I/O efficient
SPARQL query evaluation on the cloud. In: ICDE-2013. pp. 565–576 (Apr 2013).
https://doi.org/10.1109/ICDE.2013.6544856

147. Zhang, X., Chen, L., Wang, M.: Towards Efficient Join Processing over Large RDF Graph
Using MapReduce. In: Ailamaki, A., Bowers, S. (eds.) Scientific and Statistical Database
Management, Lecture Notes in Computer Science, vol. 7338, pp. 250–259. Springer Berlin
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31235-9_16

