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Abstract. We present a bounded equivalence verification technique
for higher-order programs with local state. This technique combines
fully abstract symbolic environmental bisimulations similar to symbolic
game semantics, novel up-to techniques, and lightweight state invariant
annotations. This yields an equivalence verification technique with no
false positives or negatives. The technique is bounded-complete, in that
all inequivalences are automatically detected given large enough bounds.
Moreover, several hard equivalences are proved automatically or after
being annotated with state invariants. We realise the technique in a tool
prototype called Hobbit and benchmark it with an extensive set of new
and existing examples. Hobbit can prove many classical equivalences
including all Meyer and Sieber examples.

Contextual equivalence is a relation over program expressions which guar-
antees that related expressions are interchangeable in any program context. It
encompasses verification properties like safety and termination. It has attracted
considerable attention from the semantics community (cf. the 2017 Alonzo Church
Award), and has found its main applications in the verification of cryptographic
protocols [4], compiler correctness [24] and regression verification [9,10,8,17].

In its full generality, contextual equivalence is hard as it requires reasoning
about the behaviour of all program contexts, and becomes even more difficult in
languages with higher-order features (e.g. callbacks) and local state. Advances in
bisimulations [16,26,3], logical relations [1,12,14] and game semantics [18,23,7,19]
have offered powerful theoretical techniques for hand-written proofs of contextual
equivalence in higher-order languages with state. However, these advancements
have yet to be fully integrated in verification tools for contextual equivalence
in programming languages, especially in the case of bisimulation techniques.
Existing tools [11,22,13] only tackle carefully delineated language fragments.

In this paper we aim to push the frontier further by proposing a bounded model
checking technique for contextual equivalence for the entirety of a higher-order
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language with local state ([15, Sec. 3]). This technique, realised in a tool called
Hobbit,3 automatically detects inequivalent program expressions given sufficient
bounds, and proves hard equivalences automatically or semi-automatically.

Our technique uses a labelled transition system (LTS) for open expressions
in order to express equivalence as a bisimulation. The LTS is symbolic both for
higher-order arguments ([15, Sec. 4]), similarly to symbolic game models [7,19]
and derived proof techniques [3,14], and first-order ones ([15, Sec. 6]), adopting
established techniques (e.g. [5]) and tools such as Z3 [21]. This enables the
definition of a fully abstract symbolic environmental bisimulation, the bounded
exploration of which is the task of the Hobbit tool. Full abstraction guarantees
that our tool finds all inequivalences given sufficient bounds, and only reports
true inequivalences. As is corroborated by our experiments, this makes Hobbit a
practical inequivalence detector, similar to traditional bounded model checking [2]
which has been proved an effective bug detection technique in industrial-scale C
code [5,6,27].

However, while proficient in bug finding, bounded model checking can rarely
prove the absence of errors, and in our setting prove an equivalence: a bound
is usually reached before all—potentially infinite—program runs are explored.
Inspired by hand-written equivalence proofs, we address this challenge by propos-
ing two key technologies: new bisimulation up-to techniques, and lightweight user
guidance in the form of state invariant annotations. Hence we increase signifi-
cantly the number of equivalences proven by Hobbit, including for example all
classical equivalences due to Meyer and Sieber [20].

Up-to techniques [25] are specific to bisimulation and concern the reduction
of the size of bisimulation relations, oftentimes turning infinite transition systems
into finite ones by focusing on a core part of the relation. Although extensively
studied in the theory of bisimulation, up-to techniques have not been used in
practice in an equivalence checker. We specifically propose three novel up-to
techniques: up to separation and up to re-entry ([15, Sec. 5]), dealing with
infinity in the LTS due to the higher-order nature of the language, and up to
state invariants ([15, Sec. 7]), dealing with infinity due to state updates. Up
to separation allows us to reduce the knowledge of the context the examined
program expressions are running in, similar to a frame rule in separation logic.
Up to re-entry removes the need of exploring unbounded nestings of higher-
order function calls under specific conditions. Up to state invariants allows us to
abstract parts of the state and make finite the number of explored configurations
by introducing state invariant predicates in configurations.

State invariants are common in equivalence proofs of stateful programs, both
in handwritten (e.g. [16]) and tool-based proofs. In the latter they are expressed
manually in annotations (e.g. [8]) or automatically inferred (e.g. [13]). In Hobbit
we follow the manual approach, leaving heuristics for automatic invariant inference
for future work. An important feature of our annotations is the ability to express
relations between the states of the two compared terms, enabled by the up to

3 Higher Order Bounded BIsimulation Tool (Hobbit), https://github.com/LaifsV1/Hobbit.
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state invariants technique. This leads to finite bisimulation transition systems in
examples where concrete value semantics are infinite state.

The above technologies, combined with standard up-to techniques, transform
Hobbit from a bounded checker into an equivalence prover able to reason
about infinite behaviour in a finite manner in a range of examples, including
classical example equivalences (e.g. all in [20]) and some that previous work on
up-to techniques cannot algorithmically decide [3] (cf. [15, Ex. 22]). We have
benchmarked Hobbit on examples from the literature and newly designed ones
([15, Sec. 8]). Due to the undecidable nature of contextual equivalence, up-to
techniques are not exhaustive: no set of up-to techniques is guaranteed to finitise
all examples. Indeed there are a number of examples where the bisimulation
transition system is still infinite and Hobbit reaches the exploration bound.
For instance, Hobbit is not able to prove examples with inner recursion and
well-bracketing properties, which we leave to future work. Nevertheless, our
approach provides a contextual equivalence tool for a higher-order language with
state that can prove many equivalences and inequivalences which previous work
could not handle due to syntactic restrictions and other limitations ([15, Sec. 9]).

Related work

Our paper marries techniques from environmental bisimulations up-to [16,26,25,3]
with the work on fully abstract game models for higher-order languages with
state [18,7,19]. The closest to our technique is that of Biernacki et al. [3], which
introduces up-to techniques for a similar symbolic LTS to ours, albeit with sym-
bolic values restricted to higher-order types, resulting in infinite LTSs in examples
such as [15, Ex. 21], and with inequivalence decided outside the bisimulation by
(non-)termination, precluding the use up-to techniques in examples such as [15,
Ex. 22]. Close in spirit is the line of research on logical relations [1,12,14] which
provides a powerful tool for hand-written proofs of contextual equivalence. The
relational verification engine behind [9,10] is also based on a bounded software
model checker and can provide (unbounded) full proofs. Also related are the tools
Hector [11] and Coneqct [22], and SyTeCi [13], based on game semantics
and step-indexed logical relations respectively (cf. [15, Sec. 9]).
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