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Abstract. Measuring classifier performance is important in machine learning. Risk charts and 
error matrix charts have been developed for this purpose. The strengths and weaknesses of 
using these charts are outlined. Challenges with using these charts are discussed including how 
base rates and using prevalence data for building models and incidence data for evaluating 
models affect model performance. A number of solutions for overcoming these challenges are 
covered   
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1 Introduction 

1.1 Measuring classifier performance 

The performance of binary classifier will be illustrated using risk chart [10] and error 
matrix charts [4,6] for two types of target variables, i.e. binary and continuous varia-
bles. The binary variable, for example, distinguishes risk cases from non-risk cases, 
while the continuous variable represents the magnitude of the risk.  For example, risk 
to revenue with tax collections has dollar amount while risk of rain has the magnitude 
of precipitation in either inches or millimetres. In some applications the magnitude of 
the risk variable can have “negative or positive” values or “debit or credit” in ac-
counting term. When developing a supervised learning model, the priority is frequent-
ly aimed at the ranked order of the magnitude of the risk, e.g. revenue. Hence the 
modelling process should take into consideration both the classification of the risk 
and the magnitude of the risk.  
 
In order to measure and visualise the performance of the classifiers using both the 
binary and continuous target variables, a revised risk chart and error matrix chart are 
proposed in this paper. An example of risk chart is given in Fig. 1, while an example 
of error matrix chart is given in Fig. 3. There are a number of reasons for using these 
charts. Firstly they are useful for evaluating the effects of the weighted classification 
problem [8]. Some classification problems can be weighted based on the importance 
of the cases.  For example, with a tax avoidance and evasion detection model, some 
cases are likely to provide greater revenue than the others and hence are given greater 
weight.  In some cases, there will be not much difference in terms of their strike rates, 
but there can be significant differences in their risk to revenue. The risk to revenue is 
particularly useful if only a portion of the population will be actioned for recovering 
the revenue because of limited audit and investigatory resources.  
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Both Risk charts and Error Matrix charts are sensitive to classifiers performance when 
compared to receiver operating curve (ROC) charts [2]. One challenge with measur-
ing the performance of classifiers is class imbalance.  Recent use of risk charts and 
error matrix charts indicate that they are very sensitive to class imbalance when com-
pared with ROC.  However, ROC charts cannot be used to evaluate the magnitude of 
the risk where risk chart and error matrix charts can.  
 
Risk charts and error matrix charts are ideal for (i) measuring classifier performance 
including risk which is a measure of the size of the risk gain or loss associated with 
target variable of each observation; (ii) comparing classifier performance prior and 
post intervention (iii) further improving risk charts and error matrix charts for measur-
ing classifier performance.  

1.2 Base-rate variation with prevalence and incidence data 

If a sample of size n is drawn for a binary classification problem, then the numbers of 
sample instances, n0 and n1 are respectively in class 0 and 1, n0 + n1 = n.  The base 
rate is the ratio of n1 and n,   α = n1 / n.  When the base rate is not 0.5, then there is class 
imbalance.  One of the challenges with assessing classifier performance is on sample 
selection bias.  This refers to differences in the proportion of cases selected for preva-
lence data when compared to incidence data. Prevalence data is used for model build-
ing, while the incidence data contains the cases which were actioned. Selection bias 
can distort the assessment of the classifier using several known methods such as mis-
classification rate and cumulative gain chart.  Base rates can affect how well a classi-
fier performs with identifying positive and negative cases. If the base rate is low then 
the classifier will have a low strike rate although the misclassification rate is high. If 
the base rate is high, then the classifier will have a high strike rate although the mis-
classification rate is low. These will be demonstrated in section 2 and 3. 
 
The base rate of the prevalence dataset and incidence dataset can be very different and 
these will cause issues in obtaining accurate measures of comparative model perfor-
mance. Unlike ROC charts, which are not affected by base-rates, risk charts and error 
matrix charts can be misinterpreted when the base-rate changes from the data used to 
develop a model compared to the data employed to evaluate the performance of a 
model.  These changes can arise because: 
 

1. Each modeller has a tendency to use different base-rate from prevalence for 
sampling prior model building unless each modeller uses class imbalance 
data.  Having understood the characteristics of risk charts and error matrix 
charts, it is likely that the modeller who used smallest base-rate in his/her 
sample, will produce smaller error or bigger AUC, although their model 
performances are the same.  

2. Once the model has been built, new data is used to obtain risk score for in-
dependent evaluation.  Cases being selected for intervention are generally 
those which are high risk with those that are either low risk or no risk being 
excluded from consideration when it comes to evaluation of model perfor-
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mance. This distorts the results obtained using risk charts and error matrix 
charts. 

Hence, the incidence data for evaluating model performance needs to be corrected for 
this bias. Solutions for doing this are proposed in Section 4 of this paper. 

1.3 Objectives 

These include (i) to illustrate the development and the usage of risk charts and error 
matrix charts for measuring model performance, (ii) to show how the performance of 
models are affected by the samples used to develop the models compared to the sam-
ples used to evaluate the models and (iii) to outline solutions that can be employed to 
improve the evaluation of models.   

2 Risk charts 

Detailed description of risk chart can be found in [10]. This chart involves plotting 
two variables, i.e. target variable (being 1 or 0) and risk variable (see Fig. 1). An ex-
ample is where the data set has two class target variable, e.g. adjusted or not adjusted 
cases when it comes to revenue collection; and the risk variable, e.g.  the magnitude 
of the adjustment if made to recovery of revenue. The adjustment value is a measure 
of the size of the risk associated with each observation. Cases which have no adjust-
ment following an intervention will of course have no risk associated with them (i.e. 
Adjustment ). Cases that do have an adjustment will have a risk associated with 
them, and for convenience the value of the adjustment is viewed as the magnitude of 
the risk. 
 
Gain is a measure of the effectiveness of a classification model calculated as the per-
centage of correct predictions obtained with the model, versus the percentage of cor-
rect predictions obtained without a model. It shows the percentage of positive predic-
tions that the model gains with each slice of the population. A higher overall gain 
indicates better performance. A cumulative gains chart (see Fig. 1) helps visualize the 
benefit of using a predictive model. It also allows the effectiveness of different pre-
dictive models to be compared. The information from the cumulative gains chart can 
be applied to determine which portion of the overall population is to be targeted.  
The advantages of using these charts include to:  
 

i. Investigate why models improve when error increases due to the changes on 
base-rate of prevalence and incidence data 

ii.  Understand the characteristics, strength and weaknesses of the tools for 
measuring classifier performance. 

iii.  Identify the methods to be used for comparing performance prior and post 
modelling, especially when the base-rate changes 
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An example of a risk chart in shown in Fig. 1(a).  If the lowest scores (i.e. the least 
risky cases) were removed from the sample, then the results as shown in Fig. 1(b) 
could be obtained. Hence, the area under curve for the risk chart cannot be used for 
measuring the model accuracy unless further factors are taken onto consideration.  A 
more realistic measure for visualising the risk chart is proposed as in Fig. 2: this 
shows upper and lower limits of maximum area under curve for the risk chart.   
 
There are three curves in the risk chart in Fig. 1(a).  The first is the strike rate for each 
risk scored population, with the score going from high to low (i.e. left to right).  The 
second shows the cumulative revenue based on the risk scores.  The third is the cumu-
lative cases based on the risk scores. Fig. 1(a) is the performance of a classifier for 
prevalence data. It is assumed that the performance of this model is reliable and when 
new data is scored, it still produces same performance.  As noted previously, in prac-
tice only the high risk cases are usually selected for targeting to minimize costs. 
Hence, by reducing the potential true negative cases (as incidence data), the area un-
der risk curves reduces (see Fig. 1(b)). In fact the performances are the same, but the 
area is relative to the upper and lower limit (trapezoidal shape) of the risk charts, 
which are also consistently dependent on the base-rate. Hence, the proposed standard-
isation of the AUC measures is proposed. 
 
In Fig. 2, class imbalance is illustrated and how it affects the risk chart. The slope of 
the dashed line shows the percentage of positive cases. The higher the percentage, the 
more the gradient of the line decreases. If it was 100 percent positive cases, the line 
would be a diagonal going from bottom left to top right of the chart. The line would 
be vertical if there were very small or no positive cases.  Fig. 2 can be used for evalu-
ating the risk. The x-axis is the case load which can be sorted either (1) high-to-low 
positive scores from 1 to 0 or (2) low-to-high for negative scores from -1 to 0. The 
curves will be reversed if the caseload was sorted from (i) low-to-high positive scores 
from 0 to 1 or (ii) high-to-low negative scores from 0 to -1. 
 

In order to improve the usage and utilise the risk chart for model comparison, the risk 
chart illustrated in [9] need to be revised. The two main characteristics are used to 
revise risk charts, i.e. establishing risk chart limit and standardising AUC, i.e. (1) 
introducing risk chart limit.  Let’s defined λ = caseload or percentile of population 

sorted by its ranked scores, 0 ≤ λ  ≤ 1;  �� = ∑ �
�

���� . Let’s also define Ѳ = The cumula-

tive gain or risk,   0 ≤ Ѳ  ≤ 1,  

(a) For �� 	is binary (1 or 0) then the following formula applies: 

Ѳ(��) = 
�
	∑ ������   where I = 1,…., N and n = count of  �� when �� =1. 

(b) For quantifying the magnitude of �� , m(��) continuous variable is used: 

Ѳ(��)  = 
�

∑ �(��)����   where I = 1,…., N and M = ∑ �(��)����  
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Let’s define α is the base rate, α = n/N; where n = count of (��) when ��= 1 and N = 
count of (��) when ��= 1 or ��= 0 (N = total number of instances). 
 

Fig. 1. Risk charts of classifier model performance prior (a) and after selecting score ≥ 0.5 (b) 
 

The risk chart limit consists of  

(a) upper boundary of the instances which are ranked from highest to the lowest.  

(b) lower boundary of the instances which are ranked from lowest to the highest. 

In order to obtain consistent measure of AUC for risk chart, the standardised AUC is 
proposed as : AUC – min(AUC)/[max(AUC) – min(AUC)], this will give the range of 
standardised AUC between 0 and 1. In classification, the risk chart limit of the binary 
target variable has the following upper boundaries are: 
. 

 

 
 
 
Fig. 2. Upper and Lower limit of Maxi-
mum Area Under Curve of Risk Chart 
where α is the base rate of binary classifi-
cation 

(a) Ѳ =  
$ 
%   for λ < α   

(b)  Ѳ = 1 for λ ≥ α 
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And lower boundaries are: 

(a) Ѳ = 0 for λ < 1- α 

(b) Ѳ =  
$ 
% + )1 − �

+,   for λ ≥ 1-α   

The performance measure of classifier with binary target variable can be simply ex-
pressed as the standardized AUC : 

    Ω = (-./0 12)
�0+ = 3 -./0+

3(�0+)                     (1) 

It must satisfy 0 ≤ Ω ≤ 1                     (2) 

Where  Ѳ = performance, λ = Caseload, Ω = Standardised AUC (Area Under Curve). 
There are two properties can be derived from equation (1) and (2): 

2 AUC – α > 0, so α < 2 AUC                  (3) 

2(1-α) > 0, so α < 1                      (4) 

The performance measure of classifier with binary target variable for balance class 
distribution can be derived by substituting α = 0.5 in equation (1), to give:  Ω = 2789 
– 0.5.  and for random performance where the original AUC is the lower triangle.  The 
standardized AUC can be obtained by substituting AUC=0.5 to equation (1), to give 
Ω = 0.5.   Hence, both AUC and Ω are symmetrical at the diagonal: Ω = 789 = 0.5. 
The performance measure of classifier with binary target variable for class Imbalance, 
in particular applying to rare case problems: 

  As : → 0, the equation (1) gives Ω ≈ 789 

  As : → 1, the performance becomes less reliable, as it is not satisfy the 
condition in equation (1).   Whenever possible, it is suggested to consider the con-
version of α and scores by using (1-α) and (1-scores) if the condition in equation (2) 
and (3) cannot be achieved. 

3 Risk and error matrix charts 

A confusion matrix [7] or also known as an error matrix contains information about 
actual and predicted classifications provided by a classification model. Performance 
of such models is commonly evaluated using the data in the matrix. The construction 
of the error matrix chart is based on the generation of proportion score function (PSF) 
[5] which was developed from [4]. The algorithm for generating a PSF is in Algo-
rithm 1. 
 
Error matrix chart is, as indicated previously, illustrated in Fig. 3. It is called by this 
name because of the characteristics of the charts in which the area can be represented 
as an error matrix.  The vertical dash lines which illustrates the cut-off points and the 
horizontal curve line which represent as PSF. They are used to divide these charts 
onto four regions of the upper right hand of the chart containing the false positives 
(FP) and the lower right hand of the chart containing the true positives (TP).  The 



7 

upper left hand of the charts contains the false negatives (FN), the lower left hand of 
the chart contains the true negatives (TN). The error matrix can be represented as:  
 

=>? >@
A? A@B 

 
Let‘s consider introducing low, medium and high risk by the low risk vertical line and 
the high risk vertical line. 
 

Algorithm 1 : Generation of PSF 
1. Input(score, predictedClass, trueClass, numberBin) 
2. rankedScore  ← rank(score, by numberBin) 
3. For i = 1 to numberBin 
4.    sortedRS[i]  ← get(rankedScore,i) 
5.    binSize[i] ← count(sortedRS[i]) 
6.    correct[i] ← count(sortedRS[i], if predClass = trueClass) 
7.    psf[i] ← correct[i]/binSize[i]  
8.    lambda[i] ← i/numberBin; 
9. End; 
10. plot(psf,lambda) 

 
Let’s consider the y-axis Ѳ, and the x-axis λ. The four quadrant which formed by 
proportion score function, Ѳ(λ) and the cut-off point c,  in the Fig. 3, represent the 
error matrix, hence it is called as error matrix chart, where: 

TP = (1 − �) −		C Ѳ(�)	E��
F                 (5) 

FP =	C Ѳ(�)	E��
F                         (6)  

FN =	C Ѳ(�)	E�F
G                         (7)  

TN = λ - C Ѳ(�)	E�F
G                        (8) 

Hence other characteristics such NPV and PPV can be derived: 

NPV = 1 - 
�
H C Ѳ(�)	E�F

G                      (9) 

PPV = 1 - 
�
�0H 	C Ѳ(�)	E��

F                     (10) 

In order to obtain error matrix decomposition, low, medium and high risk lines were 
introduced in Fig. 3 and the error matrix decomposition was obtained. The objective 
of the error matrix decomposition is to enable local classifier performance analysis of 
for example either high, medium or low risk cases.   
 
Error Matrix charts enables the examination of classification hits and errors. It pro-
vides different measures than AUC in ROC or revised risk chart. Some of the 
measures produced in the error matrix chart and its composition can be useful in cer-
tain applications. An example is where the predictive model was intended to identify 
rare cases of serious non-compliance. If the targeting was based on the overall model 
performance, then it means the intention is to maximise the strike rate of the non-risk 
(compliant) cases as they are the majority in the population.  In error matrix charts, 
the matrix can be decomposed into areas of interest and the region of various compo-
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nents in the error matrix charts can be compared to select which model’s performance 
is relevant to identifying rare cases of non-compliance. 

Fig. 3. Error Matrix charts with low and high risk cut-off points and their matrix representation. 
 

 
Fig. 4. Error Matrix with gain and loss risk for describing two stage model. 
 
There are many binary classification models which are required to measure ‘gain’ and 
‘loss’ associated to the classifications. Gain risk variable is the magnitude of the risks 
when the prediction is correct and has positive impact or value, while loss risk varia-
ble is the magnitude of the risk when the prediction is incorrect and has negative im-
pact or value. When an instance is predicted positive, the actual can be either (a) posi-
tive, then it has gain risk variable and (b) negative, then it has loss risk variable. Simi-
larly when the instance is predicted negative, the actual can be either (a) positive, then 
it has loss risk variable and (b) negative, then it has gain risk variable. 
 
A detection model can be used to illustrate the gain and loss risk in revenue.  Each 
outcome of the detection would produce positive or negative revenue.  This problem 
can also be considered as two-stage modelling [3]. The first stage is to predict if a 
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case will result positive or negative outcome.  The second stage is to predict the reve-
nue gain for both positive and negative outcomes.  PSF has been used to demonstrate 
the first stage, i.e. the measure for false positive, true positive, false negative and false 
negative as in Fig. 4.  In order to provide a more comprehensive view of the classifier 
performance, the ‘gain’ and ‘loss’ chart should be part of the PSF.  The ‘gain’ and 
‘loss’ chart is also demonstrated in Fig. 4. 
 
Another example of misleading or biased results is where the sample of prevalence 
and the sample of incidence cases are different: 

i. Let’s consider sample with 41 is true negative, 5 false positive, 3 false nega-
tive, 5 true positive. 

ii.  In order to minimise the intervention cost, the true negative cases being re-
duced, by reducing the true non-risk cases from 41 to 5, it saves 35/58 = 
35.185% resources. 

iii.  The representation of error matrix are changing as shown below: 

      = 3 5
41 5B → =3 5

5 5B 
The initial misclassification error which is e = 0.14814815 becomes L =
0.444444.   

The approach to deal with these issues will be discussed on next section. 

4 Performance of models using prevalence and incidence data 

When comparing classifier performance of prevalence and incidence data are re-
quired, it is important to make sure the results are comparable. There are several is-
sues when the sampling used for model building and/or sampling of model evaluation 
are not randomly drawn.  These issues are illustrated next. 

4.1 Reasons 

Comparisons of classifier performance utilising prevalence and incidence data is nec-
essary for several reasons: 
 
i. Improving model deployment. Constructing the risk and error matrix charts using 
the incidence data are required for analysing the effects of changing the threshold/cut-
off points and case-load selection for model deployment.  
ii. Monitoring model performance. One question that often needs resolution is “Has 
there been any concept drift with model performance where for example it strays from 
detecting fraud?” If there is concept drift and the model performance is not at an ac-
ceptable level, then the model should be rebuilt.  
iii. Business reporting and analysis evaluation. Model/classifier performance using 
incidence data is frequently requested for business performance analysis and report-
ing. 



10 

4.2 Prevalence and incidence sampling 

In order to achieve the objectives for comparing model performance using prevalence 
and incidence data, the sampling selected for both types of data needs to be from the 
same distribution.  For example, if the prevalence sampling is drawn from accidental 
sampling (see below), then the incidence sampling should be the same as used in 
prevalence sampling.  The focus of this paper is on measuring classifier performance 
where the base-rate of prevalence and incidence data is significantly different.  This 
issue is generally due to the method of sampling used to build the model (prevalence) 
and the sampling used to analyse the modelling outcome (incidence) are frequently 
different in practice. In order to compare the performance of prevalence and incidence 
data, the sampling used for building the model should be the same as that used for 
model evaluation.  Generally a model can be constructed using:  
 

i. Accidental sampling. This is the most applicable solution for many data min-
ing applications especially for detecting fraud. The known cases of fraud are 
usually rare in terms of their occurrence and can be expensive to obtain. Hence 
the need to maximise the data set used for training purposes.  The sample used 
will often be what is readily available and convenient. This is known as grab, 
convenience or opportunity sampling.  It involves the sample being drawn 
from that part of the population which is close at hand. The model developer 
using such a sample cannot scientifically make generalizations about the total 
population from this sample because it would not be representative. This type 
of sampling can be useful for initial model building. 

ii.  Non-Accidental sampling The most common forms of non-accidental sam-
plings are random sampling, systematic sampling, stratified sampling, cluster 
sampling and probability-proportional-to-size sampling. While these  are the 
preferred methods for building models, they can have the disadvantages that 
the positive cases included in these samples may not be readily apparent to 
those who develop models. That is, those who have this responsibility may not 
identify all the true positive cases. This is another way of saying some true 
positive cases remain invisible in the selected sample. If the non-accidental 
sample contains a limited number of positive cases, this can undermine model 

performance. 

As has been emphasized incidence data usually has cases that have high risk scores 
and have been actioned. Therefore, the outcomes with these cases are known. Hence, 
this accidental sample is very different from the sample used to develop the model.  

Here the distribution of incidence data has significantly changed from the distribution 
of prevalence data. There are three possible methods for dealing this challenge.  They 
are: 
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i. Oversampling – where all the cells/clusters/strata and scoring percentiles 
have at least ‘minimum’ required number of subjecrs, while several others 
have more data than what is required.  The “correction sampling incidence 
data” proposed in this paper can be utilised and this should provide a reliable 
correction sampling. 

ii.  Under Sampling – There are two scenarios:  (i) One or more of the 
cells/strata/cluster have less data than what are required by the threshold of 
the sampling.  The correction sampling incidence data can be employed, 
however, the result may generally be less reliable than the one with over-
sampling. (ii) One or more of the cells/strata/cluster have no samples or 
missing data.  Here the accuracy of the corrected sampling for these entries 
depends on the accuracy of the assumptions applied about the distribution 
they were drawn. 

iii.  Same sampling – This sampling usually occurs when the prevalence and in-
cidence data are drawn using the same methods.   

There are two possible methods with same sampling to select the incidence data for 
model evaluation: (i) Non-Accidental Sampling such as random sampling can be used 
for measuring classifier performance; (b) Accidental sampling. This is not recom-
mended for model evaluation as it will cause errors 

If prevalence data is drawn using accidental sampling and is used for building the 
model, then there is a need to reconstruct the incidence data prior measuring model 
performance. This can be called ‘corrected sampling incidence data”.    The recon-
struction or correction of the incidence data can be done by “substitution sampling”.  
Substitution sampling is a sampling algorithm used to reconstruct the prevalence data 
using the incidence data. The main characteristics of substitution sampling is “draw-
ing a random sample” from prevalence data, then substituting each instance using 
incidence data. The substitution of the prevalence instances which are the same strata 
or cluster or cell as the incidence data is being substituted. The sample size of preva-
lence data is not the same as incidence data in practice. There are three possible sce-
narios of sampling being over, under or the same size with the ‘random sample’ 
drawn from prevalence data.  If the data in each strata or cluster or cell are either over 
or under sampling, then bootstrap or jackknife method [9] can be utilised for substi-
tuting instances in each strata or cluster or cell, until all instance from “substitution 
sampling” comes from incidence data. The main advantage with substitution sampling 
is how it captures key population characteristics in prevalence data, the sample col-
lected for model building and the data drawn from ‘accidental sampling’.  This meth-
od of sampling produces characteristics in the sample that are proportional to the 
prevalence data. The detail is provided in next section. 

4.3 Corrected Sampling Incidence Data 

Substitution sampling is a method of sampling that involves the substitution and divi-
sion of a population into smaller groups known as strata or cluster or cell.  The strata 
and cluster are formed based on members' shared attributes or characteristics. A ran-
dom sample from each stratum or cluster is taken in a number proportional to the 
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stratum's or cluster’s size when compared to the population. These subsets of the stra-
ta or clusters are then pooled to form a random sample.  Fig. 5 illustrates the descrip-
tion of “substitution sampling” when the sample has only two strata or cluster.  The 
bigger data set (LHS) indicates the sample drawn from prevalence data, while the 
smaller data set (RHS) is the sample belongs to incidence data. 

 

Fig. 5. Substitution sampling, the bogger data 
set (LHS) indicates the sample drawn from 
prevalence data, while the smaller one (RHS) 
is the sample belongs to incidence data. 

 

There are two substitution sampling strategies which are described below.  

Mixed Resampling procedure. Let’s define the prevalence stratified data is 
M�, M3, … , M	, where M	 is the number of cell size at nth cell.  The incidence stratified 
data is is P�, P3, … , P	, where P	 is the number of cell size at nth cell. The stratified 
sampling need to be carried out and the incidence data should be added by a number 
of sample in order to match with some proportion of prevalence data which can be 
formulated as:  
                                P� +	Q� = 	:M� 	                       (11)  

In order to minimise the increase of the overall sample size: 

Minimise  ∑ Q�	���                     (12)  

∑ Q�	��� ≥ 0 for increasing the overall sample size.             (13)  
 
Equation (11) can be expressed as: 	Q� = 	:M� 	− P� 	               (14) 
 
Substituting (14) onto expression (13) and (12)	 

Minimise	∑ :M� 	− P� 			���  and ∑ :M� 	− P� 			��� ≥ 0.       (15) 
 
Let us minimise  R(S) = S	∑ 	M� 	− ∑ 	P� 	STE	R(S) 	≥ 0			��� 		���  
 

Hence S = ∑ 	UV	WVXY
∑ 	ZV	WVXY

 and Q� =	[∑ 	UV	WVXY
∑ 	ZV	WVXY

\ M� −	P�               (16) 

 
There are 3 possibilities of cell sampling required: 

If 	P�  < M�   then use P� plus  additional re-sampling Q�with replacement from P� 
If 	P�  =	M�     then use P� 
If 	P�  > M�   , then use sampling without replacement from P� 
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Over Re-sampling procedure. For over re-sampling procedure applied, the follow-
ing condition applies:  ⋁ ^ ∶ 	Q� 	≥ 0 then we need to introduce β adjustment, so that 
all sample are not being reduced, but being increased.    We need to substitute Q� with 
(` +	a�) where ⋁ ^ ∶ 	Q� 	≥ 0, substituting this to equation 11 in order to get 

         P� + (	` +	a�) = 	:M� 	               (17) 
Equation (17) is used the same way as in expression (12) to (15) in order to obtain   

S = (∑ 	UV)	b	c	WVXY
∑ 	ZV	WVXY

              (18) 

and substituting α onto equation (17) to give: 

        a� =	[(∑ 	UV)b	c	WVXY
∑ 	ZV	WVXY

\ M� −	P� − 	`         (19) 

Substituting equation (18) to Q� =  (` +	a�) gives: 

Q� =	[(∑ 	UV)b	c	WVXY
∑ 	ZV	WVXY

\ M� −	P�          (20) 

Hence, we need to minimise ∆ with the following constraint: 
    ⋁ ^ 	 ∶ 	Q(`) = Q� 	≥ 0	                (21) 

The search the value of β is required in order to  
minimise	Q� 	STE	  Q� 	≥ 0 for I = 1, …, n  
where n is the number of stratified cells as in Algorithm 2. 
 

Algorithm 2: Corrected Sampling  
 

1.  β ← abs (∑ R(Q�))	��� ; where R(Q�) = 	Q� 	^RQ� < 0	STE		R(Q�) = 0	^R			Q� ≥ 0	 
2.  g0 = 0; β0 = 0; Ѳ = 0; r = (1+sqrt(5))/2;  converge = false; 
3. Evaluate: Q(`);  if  Q(`) < 0 then g = 0; else g = 1; 
4. While convergence eq false then 
5.   Ω = (1-r) * (β-β0); 
6.   if g eq 1 then β01 = β0 + Ω;  ̀ �� = 	` − Ω;	  
7.           Evaluate:  Q(`01);  if :  Q(`01) < 0 then g01 = 0; else g01 = 1; 
8.           Evaluate:  Q(`11);  if :  Q(`11) < 0 then g11 = 0; else g11 = 1; 
9.     if g01 eq 1 and g11 eq 1 then   
10.       Diff = β01 – β0; β = β01; g=g01; 
11.             If g01 eq 0 and g11 eq 1 then 
12.       Diff = β11 – β01; β0 = β01; β = β11;g0=g01;g=g11; 
13.     If g01 eq 0 and g11 eq 0 then 
14.         Diff = β – β11; β0 = β11;g0=g11; 
15.      If diff < 3 then converge = true  
16.     else  ̀0 = 	`; 	` = 	` + 	Ω + 	Ѳ;  Ѳ = Ω; 
17.            Evaluate:  Q(`);  if :  Q(`) < 0 then g = 0; else g = 1; 
18.         EndWhile; 
19.          β = round(β); ∆ = Q(`) 
20.   While ∆ < 0  
21.    β = β +1; ∆ = Q(`) 
22.  endWhile; 
23.  Output(β)              
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The white wine data from UCI data repository [1] was used for the experiment using 
mixed resampling procedure and over resampling procedure. The data was clustered 
into seven clusters.  One of the clusters consists of only one instance and was re-
moved.  The random sample of 200 instances was selected as incident data, while the 
remaining 4697 instance was selected as prevalence data. The results of experimenta-
tion using the methods illustrated above for optimized mixture sample is shown in 
Table 1 while optimized over sampling is shown in Table 2. 
 

      Table 1.  Optimised mixture sampling of incidence data 
 Prevalence Incidence Adjusted Incidence Sample 
Cluster ef % n % ∆ 												gh (n+∆)/n 

1 675 14.3678 26 13.0 2.7356 3 1.10522
2 1227 26.1175 56 28.0 -3.7650 -4 0.93277
3 101 2.1499 5 2.5 -0.7003 -1 0.85994
4 1309 27.8629 66 33.0 -10.2742 -10 0.84433
5 948 20.1788 35 17.5 5.3576 5 1.15307
6 437 9.3018 12 6.0 6.6037 7 1.55031

 
Table 2. Optimised over sampling of incidence data 

 Prevalence Incidence Adjusted Incidence Sample 
Cluster ei % n % ∆ 						gh (n+∆)/n % 

1 675 14.3678 26 13.0 7.9080 8 1.30416 17.0
2 1227 26.1175 56 28.0 5.6373 6 1.10067 31.0
3 101 2.1499 5 2.5 0.0736 0 1.01473 2.5
4 1309 27.8629 66 33.0 -0.2435 0 0.99631 33.0
5 948 20.1788 35 17.5 12.6220 13 1.36063 24.0
6 437 9.3018 12 6.0 9.9523 10 1.82936 11.0

5 Conclusion and Future Directions 

Error Matrix charts enables the visualisation of classification errors and their compo-
sition.  It provides different measures from AUC in ROC or AUC in Revised risk 
chart.  The measures from error matrix chart and its composition can be very useful 
for many applications especially class imbalance and rare-cases where the overall 
measure such as the AUC in ROC may not be a useful.  Both risk chart and error ma-
trix charts are very sensitive to base-rates which usually occur when class-imbalance 
data are used for modelling.  Two approaches have been suggested for comparing 
classifier performance with risk and error matrix charts as both approaches provides 
different types of measures of model performance.  
 
When evaluating model performance of prior and post interventions, it is important  
to make sure the same sampling strategy is applied to both prevalence and inciden-
tence datasets, otherwise it can bias the measure of model performance. Although the 
sampling of incidence data can be corrected with the algorithm proposed in this paper; 
the severe under-sampling of incidence data still cannot be solved with any re-
sampling methods. This is due to mainly the sample size being too small or alterna-
tively due to data being missing in each cell. Future research of the proposed methods 
need to be directed towards understanding further the properties and characteristics of 
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risk charts, error matrix charts and their comparative performances with respect to  
sampling for prevalence and incidence data. 
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