Perfect Rainbow Polygons for Colored Point Sets in the Plane

David Flores-Peñaloza, Mikio Kano,
Leonardo Martínez-Sandoval, David Orden, Javier Tejel,
Csaba D. Tóth, Jorge Urrutia and Birgit Vogtenhuber

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Perfect rainbow polygons for colored point sets in the plane

David Flores-Peñaloza ${ }^{* 1}$, Mikio Kano $^{\dagger 2}$, Leonardo Martínez-Sandoval ${ }^{\ddagger 3}$, David Orden ${ }^{\S 4}$, Javier Tejel ${ }^{\boldsymbol{\$} 5}$, Csaba D. Tóth ${ }^{\| 6}$, Jorge Urrutia**7 , and Birgit Vogtenhuber ${ }^{\dagger \dagger 8}$
${ }^{1}$ Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico.
${ }^{2}$ Ibaraki University, Hitachi, Ibaraki, Japan.
${ }^{3}$ Sorbonne Université, Institut de Mathématiques de Jussieu - Paris Rive Gauche (UMR 7586), Paris, France.
${ }^{4}$ Departamento de Física y Matemáticas, Universidad de Alcalá, Alcalá de Henares, Spain.
${ }^{5}$ Departamento de Métodos Estadísticos, IUMA, Universidad de Zaragoza, Zaragoza, Spain.
${ }^{6}$ Department of Mathematics, California State University Northridge, Los Angeles, CA, USA.
${ }^{7}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico.
${ }^{8}$ Institute of Software Technology, Graz University of Technology, Graz, Austria.

Abstract

Given a planar n-colored point set $S=S_{1} \dot{\cup} \ldots \dot{U} S_{n}$ in general position, a simple polygon P is called a perfect rainbow polygon if it contains exactly one point of each color. The rainbow index r_{n} is the minimum integer m such that every n-colored point set S has a perfect rainbow polygon with at most m vertices. We determine the values of r_{n} for $n \leq 7$, and prove that in general $\frac{20 n-28}{19} \leq r_{n} \leq \frac{10 n}{7}+11$. $\|$

1 Introduction

The study of colored point sets has attracted a lot of interest, and particular attention has been given to 2 -, 3 -, and 4 -colored point sets, see [1, 2, and 4]. Let $S=S_{1} \dot{\cup} \ldots \dot{U} S_{n}$ be an n-colored point set in the

[^0]

This project has been supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.
plane, where for every $1 \leq i \leq n, S_{i}$ is the set of elements of S colored with color c_{i}. We assume that each S_{i} is non-empty and that S is in general position. All polygons considered here are simple polygons. An m-gon is a polygon with m vertices, and m-gons for $m=3,4,5,6,7$ are called triangles, quadrilaterals, pentagons, hexagons, and heptagons, respectively.

Given an n-colored point set S, a polygon P is called a perfect rainbow polygon if it contains exactly one point of each color. We are interested in finding the smallest number r_{n} such that any n-colored point set has a perfect rainbow polygon with at most r_{n} vertices.

It is well know that for every 3 -colored point set S, there exists an empty triangle such that its vertices are in S and have different colors, that is, $r_{3}=3$. In this work, we determine the exact values of r_{n} up to $n=7$, which is indeed the first case where $r_{n}>n$. Moreover, for general n, we show lower and upper bounds on r_{n}. Due to space constraints, most proofs are only sketched or completely deferred to the full paper.

2 Rainbow indexes for $\mathrm{n} \leq 7$

Theorem 1 The rainbow indexes for $n \leq 7$ are: $r_{3}=3, r_{4}=4, r_{5}=5, r_{6}=6$, and $r_{7}=8$.

Proof. We sketch the proofs for r_{6} and r_{7}. Figure 1 illustrates the lower bounds. For the upper bound of r_{6}, we prove that parallel lines ℓ_{3} and ℓ_{4} as in Figure 2 do exist and we work out the cases there. For r_{7}, we proceed analogously, constructing the perfect rainbow 8 -gon by adding two edges to the hexagon in order to capture a point of the seventh color.

Figure 1: Lower bound constructions for r_{6} and r_{7}.

Figure 2: Cases for the upper bound of r_{6}.

3 Upper bound for rainbow indexes

We show in this section that for any n-colored point set, there exists a perfect rainbow polygon of size at most $\frac{10 n}{7}+11$. To that end, we first give a lemma showing that seven points (without colors) inside a vertical strip can be always covered by a tree with four vertices and a segment such that their union is inside the strip and is non-crossing (see Figure 3b).

Lemma 2 Let $\left\{p_{1}, \ldots, p_{7}\right\}$ be the seven points of a point set S, ordered from left to right. Let B be the strip defined by the two vertical lines passing through p_{1} and p_{7}, respectively. Then, there exist two noncrossing trees T_{1} and T_{2}, the first one of order 4 and the second one of order 2 , such that:
(i) The union of T_{1} and T_{2} covers the points of S, is inside B and is non-crossing.
(ii) For every $T_{i}, i=1,2$, there exists a special leaf v_{i} such that the extension of the edge in T_{i} incident to v_{i} goes to the left. Moreover, if the extension at v_{i} hits T_{j}, then the extension at v_{j} does not hit T_{i}, that is, the two trees and the two extensions do not create cycles.

Theorem 3 For any n-colored point set S, there is a perfect rainbow polygon of size at most $\frac{10 n}{7}+11$.

Figure 3 illustrates the method to obtain such a perfect rainbow polygon. Assume that $n=7 k$. We choose n points such that each point has a different color. We divide the n points from left to right into k groups of seven points each and apply Lemma 2 to each group to cover the seven points by two trees. Then we join all trees to a long vertical segment P^{\prime} placed to the left, by extending the edge adjacent to the special leaf of each tree. Finally, we build a perfect rainbow polygon by surrounding the edges of the obtained tree.

Figure 3: (a) Dividing the n points into groups of size 7. (b) Applying Lemma 2 to each group. (c) Joining all trees to the segment P^{\prime}. (d) Building the perfect rainbow polygon.

4 Lower bound for rainbow indexes

For every $k \geq 3$, Dumitrescu et al. [3] constructed a set S of $n=2 k$ points in the plane such that every noncrossing covering path has at least $(5 n-4) / 9$ edges. They also showed that every noncrossing covering tree for S has at least $(9 n-4) / 17$ edges. Furthermore, every set of $n \geq 5$ points in general position in the plane admits a noncrossing covering tree with at most $\lceil n / 2\rceil$ noncrossing segments, where a segment is defined as a chain of collinear edges, and this bound is the best possible.

In this section, we use the point sets constructed in [3] to derive a lower bound for the complexity of a covering tree under a new measure that we define here. This bound, in turn, yields a lower bound on the complexity of simple polygons that contain the given points and have arbitrarily small area.

Covering Trees versus Polygons. Let T be a noncrossing geometric tree (i.e., plane straight-line tree). Similarly to [3], we define a segment of T as a path of collinear edges in T. Two segments of T may cross at a vertex of degree 4 or higher; we are interested in noncrossing segments. Any vertex of degree two and incident to two collinear edges can be suppressed; consequently, we may assume that T has no such vertices.

Let \mathcal{M} be a partition of the edges of T into the
minimum number of pairwise noncrossing segments. Let $s=s(T)$ denote the number of segments in \mathcal{M}. A fork of T (with respect to \mathcal{M}) is a vertex v that lies in the interior of a segment $a b \in \mathcal{M}$, and is an endpoint of another segment in \mathcal{M}; the multiplicity of the fork v is 2 if it is the endpoint of two segments that lie on opposite sides of the supporting line of $a b$, otherwise its multiplicity is 1 . Let $t=t(T)$ denote the sum of multiplicities of all forks in T with respect to \mathcal{M}.

We express the number of vertices in a polygon that encloses a noncrossing geometric tree T in terms of the parameters s and t. If all edges of T are collinear, then $s=1$ and T can be enclosed in a triangle. The following lemma addresses the case that $s \geq 2$.

Lemma 4 Let T be a noncrossing geometric tree and \mathcal{M} a partition of the edges into the minimum number of pairwise noncrossing segments. If $s \geq 2$ then for every $\varepsilon>0$, there is a simple polygon P with $2 s+t$ vertices such that area $(P) \leq \varepsilon$ and T lies in P.

Proof. Let $\delta>0$ be the sufficiently small constant (specified below). For every vertex v of T, let D_{v} be a disk of radius δ centered at v. We may assume that $\delta>0$ is so small that the disks $D_{v}, v \in V(T)$, are pairwise disjoint, and each D_{v} intersects only the edges of T incident to v. Then the edges of T incident to v partition D_{v} into $\operatorname{deg}(v)$ sectors. If $\operatorname{deg}(v) \geq 3$, at most one of the sectors subtends a flat angle (i.e., an angle equal to π). If $\operatorname{deg}(v) \leq 2$, none of the sectors subtends a flat angle by assumption. Conversely, if one of the sectors subtends a flat angle, then the two incident edges are collinear; they are part of the same segment (by the minimality of \mathcal{M}), and hence v is a fork of multiplicity 1 .

In every sector that does not subtend a flat angle, choose a point in D_{v} on the angle bisector. By connecting these points in counterclockwise order along T, we obtain a simple polygon P that contains T. Note that P lies in the δ-neighborhood of T, so area (P) is less then the area of the δ-neighborhood of T. The δ-neighborhood of a line segment of length ℓ has area $2 \ell \delta+\pi \delta^{2}$. The δ-neighborhood of T is the union of the δ-neighborhoods of its segments. Consequently, the area of the δ-neighborhood of T is bounded above by $2 L \delta+s \pi \delta^{2}$, which is less than ε if $\delta>0$ is sufficiently small.

It remains to show that P has $2 s+t$ vertices, that is, the total number of sectors whose angle is not flat is precisely $2 s+t$. We define a matching between the vertices of P and the set of segment endpoints and forks (with multiplicity) in each disk D_{v} independently for every vertex v of T. If v is not a fork, then D_{v} contains $\operatorname{deg}(v)$ vertices of P and $\operatorname{deg}(v)$ segment endpoints. If v is a fork of multiplicity 1 , then D_{v} contains $\operatorname{deg}(v)-1$ vertices of P and $\operatorname{deg}(v)-2$
segment endpoints. Finally, if v is a fork of multiplicity 2, then D_{v} contains $\operatorname{deg}(v)$ vertices of P and $\operatorname{deg}(v)-2$ segment endpoints. In all cases, there is a one-to-one correspondence between the vertices in P lying in D_{v} and the segment endpoints and forks (with multiplicity) in D_{v}. Consequently, the number of vertices in P equals the sum of the multiplicities of all forks plus the number of segment endpoints, which is $2 s+t$, as required.

Next, we relate point sets to covering trees.
Lemma 5 Let S be a finite set of points in the plane, not all on a line. Then there exists an $\varepsilon>0$ such that if S is contained in a simple polygon P with m vertices and $\operatorname{area}(P) \leq \varepsilon$, then S admits a noncrossing covering tree T and a partition of the edges into pairwise noncrossing segments such that $2 s+t \leq m$.

Proof. Let $m \geq 3$ be an integer such that for every $k \in \mathbb{N}$, there exists a simple polygon P_{k} with precisely m vertices such that $S \subset \operatorname{int}\left(P_{k}\right)$ and area $\left(P_{k}\right) \leq \frac{1}{k}$. The real projective plane $P \mathbb{R}^{2}$ is a compactification of \mathbb{R}^{2}. By compactness, the sequence $\left(P_{k}\right)_{k \geq 3}$ contains a convergent subsequence of polygons in $P \mathbb{R}^{2}$. The limit is a weakly simple polygon P with precisely m vertices (some of which may coincide) such that $S \subset P$ and $\operatorname{area}\left(P_{k}\right)=0$. The edges of P form a set of pairwise noncrossing line segments (albeit with possible overlaps) whose union is a connected set that contains S. In particular, the union of the m edges of P form a noncrossing covering tree T for S. The transitive closure of the overlap relation between the edges of P is an equivalence relation; the union of each equivalence class is a line segment. These segments are pairwise noncrossing (since the edges of P are pairwise noncrossing), and yield a covering of T with a set \mathcal{M} of pairwise nonoverlapping and noncrossing segments. Analogously to the proof of Lemma 4, at each vertex v of T, there is a one-to-one correspondence between the vertices in P located at v and the segment endpoints and forks (with multiplicity) located at v. This implies $2 s+t=m$ with respect to \mathcal{M}.

Construction. We use the point set constructed by Dumitrescu et al. [3]. We review some of its properties here. For every $k \in \mathbb{N}$, they construct a set of $n=2 k$ points, $S=\left\{a_{i}, b_{i}: i=1, \ldots, k\right\}$. The pairs $\left.\left\{a_{i}, b_{i}\right\}(i=1, \ldots, k\}\right)$ are called twins. The points a_{i} $(i=1, \ldots, k)$ lie on the parabola $\alpha=\{(x, y): y=$ $\left.x^{2}\right\}$, sorted by increasing x-coordinate. The points b_{i} $(i=1, \ldots, k)$ lie on a convex curve β above α, such that $\operatorname{dist}\left(a_{i}, b_{i}\right)<\varepsilon$ for a sufficiently small ε, the lines $a_{i} b_{i}$ are almost vertical with monotonically increasing positive slopes (hence the supporting lines of any two twins intersect below α). For $i=1, \ldots, k$, they also
define pairwise disjoint disks $D_{i}(\varepsilon)$ of radius ε centered at a_{i} such that $b_{i} \in D_{i}(\varepsilon)$. Furthermore, (1) no three points in S are collinear; (2) no two lines determined by the points in S are parallel; and (3) no three lines determined by disjoint pairs of points in S are concurrent. Finally, the x-coordinates of a_{i} ($i=1, \ldots, k$) are chosen such that (4) for any four points $c_{1}, c_{2}, c_{3}, c_{4}$ from S, labeled by increasing x corrdinate, the supporting lines of $c_{1} c_{4}$ and $c_{2} c_{3}$ cross to the left of these points.

Analysis. Let S be a set of $n=2 k$ points defined in [3] as described above, for some $k>1$. Let \mathcal{M} be a set of pairwise noncrossing line segments in the plane whose union is connected and contains S.

In particular, if T is a noncrossing covering tree for S, then any partition the edges of T into pairwise noncrossing segments could be taken to be \mathcal{M}.

A segment in \mathcal{M} is called perfect if it contains two points in S; otherwise it is imperfect. By perturbing the endpoints of the segments in \mathcal{M}, if necessary, we may assume that every point in S lies in the relative interior of a segment in \mathcal{M}. By the construction of S, no three perfect segments are concurrent; so we can define the set Γ of maximal chains of perfect segments; we call these perfect chains. We rephrase two lemmas from [3] using this terminology.

Lemma 6 [3, Lemma 7] Let $p q$ be a perfect segment in \mathcal{M} that contains one point from each of the twins $\left\{a_{i}, b_{i}\right\}$ and $\left\{a_{j}, b_{j}\right\}$, where $i<j$. Assume that p is the left endpoint of $p q$. Let s be the segment in \mathcal{M} containing the other point of the twin $\left\{a_{i}, b_{i}\right\}$. Then one of the following four cases occurs.

Case 1: p is the endpoint of a perfect chain;

Case 2: s is imperfect;
Case 3: s is perfect, one of its endpoints v lies in $D_{i}(\varepsilon)$, and v is the endpoint of a perfect chain;
Case 4: s is perfect and p is the common left endpoint of segments $p q$ and s.

Lemma 7 [3, Lemma 9] Let $p q$ be a perfect segment in \mathcal{M} that contains a twin $\left\{a_{i}, b_{i}\right\}$, and let q be the upper (i.e., right) endpoint of $p q$. Then q is the endpoint of a perfect chain.

Denote by s_{0}, s_{1} and s_{2}, respectively, the number of segments in \mathcal{M} that contain 0 , 1 , and 2 points from S. A careful adaptation of a charging scheme from [3, Lemma 4] yields the following result, where t is the number of forks (with multiplicity) in \mathcal{M}.

Lemma $8 s_{2} \leq 8 s_{0}+9 s_{1}+4(t+1)$.
The combination of Lemma 8 and $n=s_{1}+2 s_{2}$ yields the following lemma.

Lemma 9 Let S be a set of $n=2 k \geq 4$ points from [3]. Then every covering tree T of S satisfies $2 s+t \geq(20 n-8) / 19$.

We are now ready to prove the main result of this section.

Theorem 10 For every odd integer $m \geq 5$, there exists a finite set of m-colored points in the plane such that every perfect rainbow polygon has at least $(20 m-28) / 19$ vertices.

Proof. Let $n=m-1$. We construct the point set $S=S_{1} \dot{\cup} S_{2}$ in general position as follows. Let S_{1} be the set of $n=2 k \geq 4$ points from [3], where each point has a unique color. We can prove that there is an $\varepsilon>0$ such that if there is a simple polygon of area at most ε with $(20 m-8) / 19$ vertices that contains S_{1}, then S_{1} admits a noncrossing spanning tree and a partition of its edges into segments such that $2 s+t \leq(20 m-8) / 19$.

Let S_{2} be the union of two disjoint $\varepsilon /(2 n)$-nets for the range space of triangles, that is, every triangle of area $\varepsilon /(2 n)$ or more contains at least two points in S_{2}. All points in S_{2} have color m. Now suppose, for the sake of contradiction, that there exists a perfect rainbow polygon P with x vertices where $x<$ $(20 m-28) / 19$. Triangulate P arbitrarily into $x-2$ triangles. The area of the largest triangle is at least $\operatorname{area}(P) /(x-2)$. Since this triangle contains at most one point from S_{2}, we have area $(P) /(x-2) \leq \varepsilon /(2 n)$, and so $\operatorname{area}(P) \leq \varepsilon$. By the choice of ε, S_{1} admits a noncrossing spanning tree and a partition of its edges into segments such that $2 s+t<(20 m-8) / 19$. This can be proved to be a contradiction, which completes the proof.

References

[1] S. Bereg, F. Hurtado, M.Kano, M. Kormand, D. Lara, C. Seara, R. Silveira, J. Urrutia, and K. Verbeek, Balanced partitions of 3-colored geometric sets in the plane Discrete Applied Math., 181 (2015) 21-32
[2] S. Bereg, M. Kano, Balanced line for a 3-colored point set in the plane, Electron. J. Combin., 19 (2012) 33.
[3] A. Dumitrescu, D. Gerbner, B. Keszegh, C. D. Tóth, Covering paths for planar point sets, Discrete \mathcal{G} Computational Geometry, 51:2 (2014) 462-484.
[4] M. Kano and J. Kynčl, The hamburger theorem, Computational Geometry: Theory and Applications, 68 (2018) 167-173.

[^0]: *Email: dflorespenaloza@ciencias.unam.mx. Research supported by the grant UNAM PAPIIT IN117317
 ${ }^{\dagger}$ Email: mikio.kano.math@vc.ibaraki.ac.jp. Research supported by JSPS KAKENHI Grant Number 16K05248
 ${ }^{\ddagger}$ Email: leomtz@im.unam.mx. Research supported by the grant ANR-17-CE40-0018 of the French National Research Agency ANR (project CAPPS).
 §Email: david.orden@uah.es. Research supported by project MTM2017-83750-P of the Spanish Ministry of Science (AEI/FEDER, UE).

 『 Email: jtejel@unizar.es. Research supported by MINECO project MTM2015-63791-R and Gobierno de Aragón under Grant E41-17R (FEDER).
 ${ }^{\|}$Email: csaba.toth@csun.edu. Research supported by NSF awards CCF-1422311, CCF-1423615, and DMS-1800734.
 **Email: urrutia@matem.unam.mx. Research supported by UNAM project PAPIIT-IN102117
 ${ }^{\dagger \dagger}$ Email: bvogt@ist.tugraz.at. Research supported by the Austrian Science Fund within the collaborative DACH project Arrangements and Drawings as FWF project I 3340-N35.

