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Abstract
Automated Case Elicitation (ACE) enables case-based rea-
soning (CBR) systems to automatically acquire knowledge
through real-time exploration and interaction with environ-
ments. CBR is an explainable AI methodology, where deci-
sions are based on previous encounters. ACE combined with
CBR continues learning as it is being deployed, and produces
specific cases that can be reviewed by humans, unlike pre-
trained large language models (LLMs) that learn by training
offline on prior data. ACE and CBR may be useful methods
to gather training data for use with generative AI, or to help
them to adapt on the fly. This research explores ACE’s po-
tential by applying it to chess and conducting extensive ex-
periments against Stockfish, the world’s highest rated chess
engine. An ACE agent was developed that combines random
exploration with shallow alpha-beta search for novel game
states. Results over 1000+ games showed the ACE player de-
feated Stockfish in nearly 10% of games—a notable achieve-
ment given Stockfish’s extreme strength. Notably, the ACE
agent required only 0.1 seconds per game compared an aver-
age of 8 minutes for Stockfish, while still gradually improv-
ing its win rate through accrued experience. Detailed analyses
revealed how the relaxation of ACE’s case matching criteria
along with selective retention of useful cases enabled accu-
mulation of strategic chess knowledge. The research provides
valuable insights into ACE’s proficiency for knowledge dis-
covery in complex, adversarial domains. It lays groundwork
for integrating ACE, an unsupervised CBR learner, with mod-
ern deep learning techniques like neural networks and large
language models to combine the strengths of symbolic and
subsymbolic AI. By demonstrating ACE’s ability to extract
strategic knowledge against world-class opponents, this work
highlights its potential for impact across gaming, autonomous
systems, and other complex problem-solving domains.

1 Introduction
LLMs have achieved impressive performance with minimal
knowledge acquisition effort in many problem domains but
typically depend on large pre-trained data sets to achieve
it (Leake 2023). Conclusions are based on generalizations,
require offline retraining on new information, and function
as “black boxes” as their reasoning processes are opaque
(Leake 2023). They do not capture many important types
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of information behaviors, such as retention of long-term
memories and specific facts, and propose statistical asser-
tions (Hammond and Leake 2023), which is a significant
problem for the reliability, interpretability, transparency,
and explainability of information provided (Leake 2023;
Talaei Khoei, Ould Slimane, and Kaabouch 2023). Model
performance must be balanced with comprehensibility to
gain meaningful insights into the model’s reasoning, en-
abling informed decisions and accountability (Talaei Khoei,
Ould Slimane, and Kaabouch 2023). Additionally, attention
to the model metrics is important, as the progressive im-
provements in deep learning models have significantly in-
creased their number of parameters, latency, and resources
required to train. (Menghani 2023; Sojka 2022).

CBR is a knowledge-based reasoning and learning
methodology (Watson 1996) inspired by human cognition
that adapts prior cases of prior experiences, to solve new
problems. CBR systems are particularly well suited to the
tasks of both knowledge discovery and knowledge exploita-
tion, due to the ease with which they can identify a novel sit-
uation (i.e. one that is not in the case base) and store that sce-
nario for further reuse (Powell and Hastings 2006). The CBR
process is naturally interpretable and explainable, can learn
from few examples, and provides inertia-free lazy learning
(Leake 2023). CBR is a general high-level process that de-
fines a set of tasks, but for which the needed functionality
can be implemented using various technologies, both neu-
rally inspired and symbolic (Leake and Crandall 2020).

The main four steps in the CBR methodology are re-
trieval, reuse, revision and retention (Lopez de Mantaras,
McSherry, and et al. 2005). The reasoning part of CBR fol-
lows from case adaptation and provides the ability to trans-
form solutions to new contexts (Leake and Crandall 2020).
CBR retrieves similar cases to be reused to solve a new prob-
lem. It uses case adaptation to revise existing cases to align
with the new problem, and then it retains the new cases for
future retrieval, reuse, and revision. Case-based reasoners
are lazy learners, retaining raw cases (or cases with limited
processing) to re-use them (Leake and Crandall 2020).

CBR systems can handle many problems that LLM do
not do well, such as provide facts, capture and provide rel-
evant information, make inferences and remember (Ham-
mond and Leake 2023; Lopez de Mantaras, McSherry, and
et al. 2005). Using CBR may provide opportunities to im-



prove LLMs to leverage the strengths of both (Hammond
and Leake 2023). Recent research in this area focuses on
the CBR methodology as the means to guide both LLMs
and the interactions with them (Hammond and Leake 2023;
Leake and Crandall 2020).

When CBR is used for guiding the design of deep learn-
ing systems, it can be implemented as part of the model it-
self (Leake and Crandall 2020). Adding a CBR process that
reasons and learns from single cases could help the LLM
learn from limited data (Leake and Crandall 2020). When
adding CBR to the LLM, there are three possibilities for im-
plementing adaptation (Leake and Crandall 2020): add an
explicit case retrieval phase for “pre-packaged” cases; gen-
erate cases by a reconstructive process; or explicitly retrieve
cases with an added adaptation phase after solution gener-
ation, when no existing case matches.

Automatic case elicitation (ACE) (Powell, Hauff, and
Hastings 2005; Kommuri, Powell, and Hastings 2005; Pow-
ell, Hauff, and Hastings 2004) is an adaptation technique
that can be used within a case-based reasoning (CBR) sys-
tem. It uses reinforcement learning (Kaelbling, Littman, and
Moore 1996; Sutton and Barto 1998; Shakya, Pillai, and
Chakrabarty 2023), acquires knowledge automatically and
without supervision through repeated real-time exploration
and interaction with its environment. When ACE encounters
a situation which is sufficiently distinct from previous expe-
rience, it applies a sequence of new actions at random until a
change in the environment is observed. ACE does not utilize
separate training and testing phases, but instead continually
improves its performance through repeated exposure to its
environment. Due to ACE’s core philosophy of not requir-
ing pre-coded domain knowledge (e.g. rules or cases) for
its primary reasoning and discovery processes, the ultimate
goal is to have ACE be a general methodology for automatic
knowledge discovery in complex or unknown domains for
which an ACE system can explore its domain and receive
feedback on actions that it has taken (Powell and Hastings
2006). While it works without guidance from pre-coded do-
main knowledge, it uses domain knowledge to evaluate the
success of a solution (Floyd and Esfandiari 2009). Cases
created during a winning game gain positive reinforcement,
whereas losing games have their cases reinforcement values
decreased (Powell, Hauff, and Hastings 2004).

Automatically discovering knowledge for a chess play-
ing agent is a challenging, non-trivial problem (Silver et al.
2018). For example, chess-playing LLMs can suggest board
moves based on their existing training, and can be fine tuned
to do even better by training offline on prior games. How-
ever, this training isn’t done while games are being played as
the generative models aren’t adaptable and have only a small
context “window” that isn’t saved. ACE and CBR may be
useful methods to gather training data for use with an LLM,
or to help it to adapt on the fly. To explore this concept,
this research performs an empirical study of an ACE-based
chess agent connected through XBoard (GNU 2024) to play
against Stockfish (Yang 2024), currently the strongest chess
engine available to the public (with Elo ratings over 3400).

Section 2 provides a discussion of related work. Section
3 gives a brief description of the ACE algorithm. Section 4

sets forth an experimental evaluation in which various ver-
sions of ACE were evaluated against Stockfish. Section 5
details the results of our experimentation, which shows that
the ACE player combined with alpha-beta search performs
reasonably well against the best chess game, Stockfish. Sec-
tion 6 provides future work and a conclusion.

2 Related Work
2.1 Chess Engines
According to (Maharaj, Polson, and Turk 2022), Stockfish
and LCZero represent two competing paradigms in the race
to build the best chess engine. The Stockfish chess engine
(Yang 2024) is an open source program written in C++.
Its search component is based on alpha-beta pruning (Sla-
gle and Dixon 1969; Knuth and Moore 1975) with iterative
deepening. For its evaluation function, Stockfish will go as
deep as the framework allows it time to perform, and can
look at over 70 million positions per second (Silver et al.
2018). When the time expires, it returns the best move it has
found so far. Everything that it finds is stored in a hashtable,
cached for potential future use. The next iteration of the eval-
uation function, it will start with the moves stored in the
hashtable.

The LCZero project (LCZero 2024) was created via
crowd computing to reproduce the Google DeepMind, non-
public work of AlphaZero (Silver et al. 2018; Tomasev et
al. 2020). These are general purpose reinforcement learn-
ing (RL) algorithms that can learn near-optimal strategies
for any rule set from scratch, without any human supervi-
sion, by continually learning from its own experience, play-
ing against itself many millions of times. LCZero has far
surpassed the original strength of AlphaZero due to its ad-
ditional training and improvements (Maharaj, Polson, and
Turk 2022), and has won in competitions with Stockfish
(chess.com 2024).

Several of the RL chess approaches were analyzed by
(Hu 2023), which notes that the depths of RL are vast. Be-
cause these approaches are not naturally explainable, work
has been done to attempt to gain insight into the chess con-
cepts learned (McGrath et al. 2022). The analysis is possible
because in chess, deep, expert human knowledge is explic-
itly available. Using these approaches in contexts without
this would be much harder to analyze.

The work of (Maharaj, Polson, and Turk 2022) implies
that Stockfish is currently the better tool for studying deep
puzzles, and finds that the Stockfish engine has better search,
but LCZero has better evaluation. Stockfish currently has
Elo ratings over 3400.

2.2 Related CBR Applications
Several papers have described the application of CBR to
chess including Flinter and Keane (1995) and Sinclair
(1998) who each use CBR for chess play by automatically
generating case libraries from sets of pre-existing grandmas-
ter games. Cases in ACE as reported in (Powell, Hauff, and
Hastings 2005; Powell and Hastings 2006) differ signifi-
cantly from these approaches in that cases are not derived
from a set of grandmaster games, but instead originate from



actual interaction with the environment and include a snap-
shot of the environment with no compiled features.

Results in Powell et al. (2005) and Neto and Julia (2018)
suggest in the domain of checkers, experience can substi-
tute for the inclusion of pre-coded model-based knowledge,
and that exploration of a problem domain is crucial to the
performance of ACE. Initial testing in the domain of chess
(Kommuri, Powell, and Hastings 2005) revealed that expe-
rience alone, without the ability to adapt for differences be-
tween new and previous cases, is insufficient in complex do-
mains. To decrease the complexity of the state space, Powell
and Hastings (2006) introduced an alpha-beta search (ABR)
algorithm into the ACE framework. Their results suggested
that experience gained by ACE through the process of explo-
ration, with a case memory refined through reinforcement
learning, can lead to an improvement over alpha-beta search
alone and that relaxations to the case matching component
in order to encourage exploration can lead to additional im-
provements (Powell and Hastings 2006). Moral et al. 2020
investigated adaptations of ACE on the Truco card game,
and found that the alternative case learning strategies were
able to play better when compared to agents based on a case
base initially collected with human players.

A distant, but related approach is seen in (Samuel 1959;
1967), which describes the use of rote-learning and looka-
head in the game of checkers. The approach requires that the
game must have at least one intermediate goal, as opposed
to ACE which has no such requirement, and instead utilizes
only the final success rating of the interaction with its envi-
ronment. In addition, ACE uses a process of exploration to
augment and improve its knowledge.

Leake (2023) discusses the opportunities for combin-
ing CBR with neural networks to leverage both paradigms.
Hoffman and Bergman (2022) used CBR to improve the op-
timization of hyperparameters in machine learning models.
The case base is then used to retrieve hyperparameter vec-
tors given a query vector and to make decisions whether to
proceed with this query or abort and sample another vector.

CBR researchers have explored many machine learning
techniques for acquiring case adaptation knowledge (Ye,
Leake, and Crandall 2022). A CBR approach that like ACE,
does not use human-generated cases, is CBGen (Borck and
Boddy 2017), a genetic algorithm-based approach. ROAD
(Leake and Ye 2019), uses heuristics to guide multi-step
adaptations, with each adaptation chosen in the context of
adaptations applied previously. An approach to handling
situations when no case matches are available for expan-
sion is the Expansion-Contraction Compression (ECC) ap-
proach (Leake and Schack 2018), which precedes compres-
sion with adaptation-based exploration of previously un-
seen parts of the problem space to create “ghost cases” and
exploits them to broaden the range of cases available for
competence-based deletion. An approach to handling the
case adaptation process in game playing was described in
(Miranda, Sanchez-Ruiz, and Peinado 2019), where control
was given to a human player when the CBR game-playing
bot reached game states that were not well represented by
cases in its case base, then the CBR bot regained control
when the game states were known again. Their results, ap-

plied to Pac-Man, showed that by using interactive learn-
ing the amount of human intervention decreases rapidly, the
case base needed to achieve reasonable imitation is consid-
erable smaller than that used in a non-interactive approach
and the resulting agent outperforms other agents using non-
interactive CBR. Finally, Bach et al. (2014) presented a
clustering-based method for capturing cases in time series
sensor data. In this approach, the domain expert validates
the cases suggested by the system.

3 Automatic Case Elicitation
This research aims to determine the value of experience, in
the form of cases exploration using CBR and ACE within the
domain of chess, when playing against a top opponent. The
reader is referred to Powell et al. (2005) for an indepth look
at ACE. Briefly, ACE can be described as a learning tech-
nique in which a CBR system automatically acquires knowl-
edge in the form of cases from scratch during real-time trial
and error interaction with its environment without reliance
on pre-coded domain knowledge (e.g. rules or cases). At the
end of each interaction, a probabilistic reinforcement learn-
ing approach rates the effectiveness of each case (acquired or
stored) based on the final success of the interaction, provid-
ing a means for an ACE system to learn and improve from
experience. For implementation purposes, a case contains an
observation or snapshot of the environment, the action taken
in response to the observation, and a rating of the success of
the applied action in meeting a goal. It will fail horribly early
on while it learns, but gains competence with experience.

The primary reasoning module, Ace, operates on the se-
quence of observations (O1 through On) made during inter-
action with the environment and completes at the point at
which the effectiveness of the interaction can be determined
(e.g. in chess, the effectiveness of an interaction will be de-
termined at the completion of a game). For each observation
of the environment (Oi), the system selects and applies ac-
tions (A) suggested by the Decision function and the case
library until a change in the environment is observed.

The function Decision recurses through the set of cases
which match the current situation (in decreasing order by
rating) and returns the action recommended by the first case
whose rating is above a randomly chosen value. If the set
of matching cases is exhausted, Decision chooses an action
(one which might eventually be found to be entirely ineffec-
tive or illegal) at random.

Upon the completion of the interaction, Evaluate is called
to update the ratings of each applied case. New cases begin
with a rating of 0.5 and tend either toward 1.0 (highly suc-
cessful) or 0.0 (completely ineffectual) as the system gains
experience. Ace closes with a call to Store to commit the
changes to the case library.

4 Experimental Methodology
This research focused on playing the best implementation
of ACE, or MACE (Modified ACE) version 2 from (Powell
and Hastings 2006) against the Stockfish (Yang 2024) chess
engine. Stockfish version 14.1 was selected due to ease of
installation through the Linux package manager. The pack-



age documentation suggests that the latest version (16) does
not offer significantly improved capabilities.

MACE begins with an empty case base containing no
chess knowledge. To handle novel game states not in its case
base, MACE employs the traditional ABR search to a shal-
low depth of three. These learned experiences build the case
base.

When facing a board state, MACE selects a move by it-
erating through a set of all matching cases ordered by rat-
ing (with ratings between 0.4-1.0). For each case, a random
number between 0.0-1.0 is generated, which if lower than
the case rating, the case is selected, otherwise the next case
is considered. If no case is selected, i.e., the system has en-
countered a novel situation, MACE invokes ABR search to
generate a move. By using ABR to recommend potentially
good moves in unfamiliar positions, MACE balances fo-
cused search with randomized exploration. As the case base
grows through experience, MACE can increasingly rely on
matched cases and decreasingly on shallow ABR search for
move decisions.

The systems played each other through XBoard (a graph-
ical user interface for chess) (GNU 2024) using a modified
version of code distributed with TIELT (Aha and Molin-
eaux 2004). Figure 1 shows an XBoard screenshot of the
MACE agent competing against Stockfish during a match.
MACE is shown in black and completely eliminated all but
the Stockfish king. MACE lost the first 56 games before able
to accomplish this. MACE consumed only three seconds of
overall play time, and Stockfish used 7:38 minutes. How-
ever, MACE was unable to efficiently close out the game
and played to a draw due to exceeding the number of moves
allowed per game. Through experimentation, this was found
to be a common issue. It was discovered that the board eval-
uation was subtracting 10k points for MACE losing a king,
but wasn’t adding 10k points for taking a king. Although
MACE might eventually make a winning move, the number
of moves was naturally higher due to this lack of focus. This
was addressed, so the underlying alpha-beta search acted
more reliably in novel end game situations. The improved
version of MACE was then used in the experimentation de-
scribed below.

The experiments were designed to determine:

1. the value of experience in the domain of chess through a
combination of ACE and alpha-beta search,

2. verify that ACE playing from scratch is a valid approach
against the de facto top computer chess player,

3. understand the limitations as well as parameters in imple-
menting ACE in this manner, and

4. the effect of learning from an opponent in a complex game
environment such as chess.

For experimentation, the following approaches were used
to play against Stockfish:

1. ABMACE: An alpha-beta MACE with no case library.

2. ExactMACE: An alpha-beta MACE, with an added case
library, where only cases that were part of a winning game
were given a rating of 1 and saved. If a case was part of a

Figure 1: Screenshot of a Chess Match Between MACE2
and Stockfish.

losing game, it was dropped. Thus, cases that led to fail-
ures were not saved. This algorithm is referred to as ’Ex-
act’ as the strings/boards must match exactly to be reused.

3. ExactMACEDrop: An exact alpha-beta MACE, which
preserves bad cases, so the system would not use the case
again. Cases with a rating below 0.1 are typically cases
(bad choices) toward the end of the game. It is important
for the system to“remember” truly bad cases as shown
in (Boulmaiz, Reignier, and Ploix 2023). However, cases
with ratings between 0.1 and 0.5 were dropped from the
library, to save room and lower the number of cases that
need to be evaluated, as the search space is so large.

4. RelaxedMACE: Similar to ExactMACE, it had a case li-
brary where cases that were part of a winning game were
given a rating of 1 and saved, and cases that were part of
a losing game were dropped. However, this version also
used a relaxed matching criterian of < 3 meaning that
boards that are different by fewer than 3 pieces were con-
sidered a match.

5. RelaxedMACEDrop: A relaxed MACE algorithm with
preserved bad cases, so the system would not use the
case again, but still dropping cases with relatively low rat-
ings. Several variations were tried, using ratings between
a range of values, such as dropping cases with values be-
tween 0.1 and 0.5, to save room and lower the number
of cases that need to be evaluated. The relaxed matching
used in these versions also ranged from three to seven.
The six versions of the RelaxedMACEDrop used were:

• Relaxed match < 7, drop cases (0.1 <= x < 0.4)



• Relaxed match < 3, drop cases (0.1 <= x < 0.4)

• Relaxed match < 5, drop cases (0.1 <= x < 0.4)

• Relaxed match < 3, drop cases (0.1 <= x < 0.5)

• Relaxed match < 5, drop cases (0.1 <= x < 0.5)

• Relaxed match < 3, drop cases (0.2 <= x < 0.5)

Besides ABMACE and ExactMACE, the other algorithms
rated cases using a modified distance measure from (Powell
and Hastings 2006). The philosophy follows that of a self-
driving car - in the event of a crash, the most recent actions
were the most likely culprits (i.e., incorrect decisions lead-
ing to a negative outcome). Ratings for cases start with a 0.5
rating. A final winning move receives a 1.0 rating with a final
losing move receiving a 0.0 rating. Intermediate moves are
updated proportionally (toward 1.0 for a winning game or
toward 0.0 for a losing game) based on their distance from
the end of the game. Thus, moves made toward the begin-
ning of the game, which are very distant from the end of the
game are updated by only a small amount.

5 Results and Discussion
Figure 2 shows a comparison of the average winning per-
centages for each experimental approach when playing
against Stockfish for 1000 games. The best performing ap-
proach was RelaxedMACEDrop with relaxed matching < 3,
and drop cases (0.1 <= x < 0.5). This variation ap-
proached a 10% win ratio with its success rate still trend-
ing upward somewhat after 1000 games. This level of per-
formance was repeatable in that running the experiment
multiple times produced similar results. Future exploration
is needed to determine how many games are required to
achieve the best performance for this variation.

Figure 2: Averaged Win Percentages of various MACE al-
gorithms playing against Stockfish in a series of 1000 chess
matches.

Figure 2 perhaps reveals some potential areas for im-
provement if the early gains could be preserved and built
upon for some of the versions. Or perhaps the early jumps in
win percentages simply show that early performance can be
somewhat erratic. In general, the steep upward slopes show
where MACE is doing well, indicating that it is figuring out
a successful strategy, followed by a drop in performance,
perhaps by not properly leveraging or remembering what it
has already learned.

In addition to the top performing version of Relaxed-
MACEDrop, the variations listed in the prior section were
explored to determine the impact of parameter adjustments.
As shown in Table 1, these variations produced different suc-
cess rates suggesting that fine tuning these parameters could
lead to further improvements.

Algorithm Avg
Win Pct

1 ABMACE 0.0630
2 ExactMACE 0.0730
3 ExactMACEDrop, dropped cases (0.1 <= x < 0.5) 0.0610
4 RelaxedMACE, match < 3 0.0735
5 RelacedMACEDrop match < 7, drop cases (0.1 <= x < 0.4) 0.0620
6 RelacedMACEDrop match < 3, drop cases (0.1 <= x < 0.4) 0.0700
7 RelacedMACEDrop match < 5, drop cases (0.1 <= x < 0.4) 0.0765
8 RelacedMACEDrop match < 3, drop cases (0.1 <= x < 0.5) 0.0930
9 RelacedMACEDrop match < 5, drop cases (0.1 <= x < 0.5) 0.0705

10 RelacedMACEDrop match < 3, drop cases (0.2 <= x < 0.5) 0.0791

Table 1: Average Win Percentage of the various reasoning
approaches evaluated in the experiments.

Key takeaways from these results are:

1. The addition of rudimentary cases (approach 2) beyond
ABR search (approach 1) leads to an increase in perfor-
mance. This suggests that memory in the form of cases is
beneficial.

2. In comparing approaches 4 and 8 (with case matching
fixed at < 3), the addition of a limited case dropping
mechanism can lead to a further increase in performance
in certain configurations. This suggests that it might be
beneficial to forget prior experience in some situations.
However, in comparing approaches 2 and 3, or approaches
4 and 6, it appears that narrowing the case library in cer-
tain configurations can cause performance to drop, so an
improper range can have the opposite effect.

3. In comparing approaches 3, 8 and 9 (with the drop range
fixed at (0.1 <= x < 0.5)), it appears that relaxing the
case matching somewhat can provide an increase in per-
formance, as long as it’s not increased too much. This sug-
gests that some creativity or exploration in game play is
beneficial, but relaxing the case matching too much can
cause actions which are less applicable to be applied.

Figure 3: Best MACE algorithm playing against Stockfish in
a series of 1000 chess matches.



It was observed that MACE will go through spurts with
a much higher success rate, followed by losing a number of
games. This behavior can be somewhat seen in Figure 3 and
more clearly in Figure 4. For the best configuration, success
was sometimes seen very early where it might win 3 games
in the first 10, which is impressive. Further research needs
to be conducted to determine how MACE can best leverage
prior learned strategies and build on momentum, rather than
losing it, and having a drop in performance. Adjustments to
the previously discussed parameters are likely to help, but
perhaps additional mechanisms need to be explored.

Figure 4: Win percentage of the best MACE algorithm play-
ing against Stockfish over the last 100 chess matches.

Given a longer period of exploration and experience,
MACE was able to successfully learn how to retrieve and
apply non-exactly matching cases. The fact that MACE
demonstrated its top performance in longer matches is a key
result and suggests that the matching component can be re-
laxed to a certain extent, and that a period of exploration
and refined experience can overcome early misapplications
of actions and ultimately lead to successful actions and so-
lutions not originally provided by alpha-beta search. This
finding further validates the claim that an exploratory agent
can successfully find and exploit actions which would not be
suggested by pre-compiled search mechanisms.

MACE is incredibly fast and has a case library which can
be inspected (which neural nets do not have). Stockfish is
very slow. MACE uses only about 0.1 seconds per game as
compared with Stockfish would often takes 8 minutes for a
game, meaning that MACE consumes 99% less time than
Stockfish.

In summary, the results suggest several things. First, the
primary result is that experience through the use of ACE
backed by alpha-beta search for novel situations can lead
to an improvement in performance in the domain of chess
against a top-rated opponent. Second, it appears that keeping
both positive and negative cases assists MACE in its explo-
ration and ultimately improves its effectiveness given suffi-
cient interaction with its environment.

6 Future Work and Conclusion
Several experimental adjustments are planned. This includes
saving the “forgotten” dropped cases in a separate file, and
then seeing if MACE comes back to them again. Early cases
might have an unfair rating while MACE is learning. An-
other statistic to capture in the future is how many times it

actually uses a case from the case library. Given the com-
plexity of the state space, it is likely low, particularly later
in a game. Initial exploration found that the first few moves
were often reused.

Rating is learned by experience - over time it is learned
which moves were successful in the past, and successful
moves are reused. Is MACE learning on its own the strength
of this method or is it discovering already known expert in-
sights into the quality of a move? A review of the case li-
brary and the ratings of moves for comparison with known
insights by chess experts, is needed.

Currently, matching in MACE is a simple string compar-
ison. Future exploration is needed to see if MACE could be
improved through a more sophisticated matching approach,
e.g., training using a neural net or other technique. Also, if
the matching is relaxed, should an adaptation component be
trained to better leverage prior experience? For example, if a
new board matches a prior somewhat different case from the
case library because it somehow would have a similar inher-
ent strategy or choice, what action needs to be taken in the
new situation? Would it take a couple of actions to get it on
the “winning” path of the prior solution? Another weakness
of the case library is that the cases are not linked in any way.
Future work is needed to determine if those should be tied
together in some way. Conceptually, it might be viewed as
an N-dimensional web. So, for a specific case, how can it get
there, and where might it go?

With the MACE algorithm being able to adapt in real
time, it is possible to leverage it to train an LLM, which
are normally trained offline. This could be done by ether
training from scratch or fine tuning them with a low-rank
adapter, which will require an added step for the training
of an LLM. Perhaps MACE could work hand in hand in
real time to help with explanations of why certain moves
are considered good? A weakness of many AIs is that they
are not explainable. With CBR and ACE, experts can look at
the case library and see how the knowledge is used. Future
work is needed to train an ACE system on an LLM, which
would require figuring out how to interface with the LLM
and also “training” the LLM with a prompt that tells it to
focus on playing chess at a very high level and compare the
performance of such a system with the prior ACE attempts.

This research introduced the concept of using ACE/CBR
to shape the deep learning pipeline. It advocates for using
this approach as an added step in the learning/training pro-
cess as an adaptation phase after solution generation. As a
first step into studying this approach, this research applied
ACE/CBR in chess, playing against Stockfish, the de facto
strongest chess engine available to the public. An ACE agent
was developed that combines random exploration with shal-
low alpha-beta search for novel game states. Results over
1000+ games showed the ACE player defeated Stockfish in
nearly 10% of games—a notable achievement given Stock-
fish’s extreme strength, while consuming 99% less time than
Stockfish. Results indicate the success of an unsupervised
CBR learner can lead to superior performance in chess. Re-
sults also indicate that ACE and CBR combined with gener-
ative AIs may lead to improvements in solutions.
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