
EasyChair Preprint
№ 2197

Accelerating Lattice Boltzmann Method by Fully
Exposing Vectorizable Loops

Bin Qu, Song Liu, Hailong Huang, Jiajun Yuan, Qian Wang and
Weiguo Wu

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 18, 2019



Accelerating Lattice Boltzmann Method by
Fully Exposing Vectorizable Loops

Bin Qu, Song Liu(�), Hailong Huang, Jiajun Yuan, Qian Wang, and
Weiguo Wu(�)

School of Computer Science & Technology,
Xi’an Jiaotong University,

Xi’an Shaanxi 710049, China
{qbqbqb,hhl15015970612,plusss,Rebeccamango}@stu.xjtu.edu.cn

(�){liusong,wgwu}@mail.xjtu.edu.cn

Abstract. Lattice Boltzmann Method (LBM) plays an important role
in CFD applications. Accelerating LBM computation indicates the de-
crease of simulation costs for many industries. However, the loop-carried
dependencies in LBM kernels prevent the vectorization of loops and gen-
eral compilers therefore have missed many opportunities of vectorization.
This paper proposes a SIMD-aware loop transformation algorithm to ful-
ly expose vectorizable loops for LBM kernels. The proposed algorithm
identifies most potential vectorizable loops according to a defined de-
pendence table. Then, it performs appropriate loop transformations and
array copying techniques to legalize loop-carried dependencies and makes
the identified loops automatically vectorized by compiler. Experiments
carried on an Intel Xeon Gold 6140 server show that the proposed al-
gorithm significantly raises the ratio of number of vectorized loops to
number of all loops in LBM kernels. And our algorithm also achieves a
better performance than an Intel C++ compiler and a polyhedral op-
timizer, accelerating LBM computation by 147% and 120% on average
lattice update speed, respectively.

Keywords: lattice boltzmann method, auto vectorization, performance,
SIMD, loop transformation algorithm

1 Introduction

Lattice Boltzmann Method (LBM) [8] is a numerical simulation of physical phe-
nomena. It is one of the most important CFD methods and is widely used for
single-phase/multiphase flow, kinetics of surface and kinetics of crystallization
and so on. LBM simulation plays an important role in aviation, water conser-
vancy and thermal engineering and so on. Hence, accelerating the computation
of LBM leads to the decrease of computing simulation costs for many industries.
Previous studies on LBM computing are mainly about simulation algorithm.
Qian et al proposed a Lattice Bhatnagar-Gross-Krook (LGBK) model [20] to



2 Q. Bin et al.

reduce computation by replacing collision matrix with single relaxation time co-
efficients. So far, LGBK is one of the fastest LBM models based on uniform grid
scheme. As the complexity of simulation grows, the number of grids increases
rapidly, which results in massive storage and temporal overhead. Therefore, later
studies present many large-eddy simulation methods based on nonuniform grid
scheme [16] to reduce spacial and temporal complexity.

Since the first generation of commercial vector processor — Pentium II is
released in 1996 [21], vector computing becomes a necessary function of mod-
ern processors, especially at the age when AI applications are rapidly growing.
Meanwhile, hardware vendors have also designed many SIMD instruction set-
s (also known as intrinsic instructions) for programmers to implement vector
computing in their codes, such as MMX, SSE and AVX. More conveniently, ma-
jor modern C/C++ and Fortran compilers provide auto vectorization function
that automatically translates appropriate loops to SIMD instructions. Because
of the natural data-level parallelizability, it is valuable to accelerate LBM by
using vector computing. In terms of software running on general purpose pro-
cessors, previous studies on optimization of vector computing are mainly about
data organization and data layout schemes. Struct-of-Array (SoA) scheme [1,22]
and data alignment [14] are the most common techniques that are applied for
SIMD optimization. However, the loop-carried dependency (a statement in one
iteration of a loop depends on a statement in a different iteration of the same
loop) [9,11] roosted in LBM kernels is against the rule of parallel and vector com-
puting, and thus it prevents auto-vectorization for the innermost loops of LBM
kernels. Unfortunately, the data organization and data layout optimizations can
not solve this problem.

The LBM kernels, as the hot spots of program, generally consist of multiple
nested loops (space dimensional loops) within a time dimensional loop. Loop
transformations are considered as effective techniques to optimize LBM codes.
In recent decade, the polyhedron theories [5, 7, 12, 13, 17, 24] have been rapidly
developed to boost the rise of many optimizer frameworks that guide performing
efficient loop transformations. These transformations enable the parallel execu-
tion of loop codes with dependency preservation. In previous studies, the objec-
tives of loop transformations are mainly about exploiting parallelism for outer-
dimensional loops, minimizing synchronization and enhancing data locality, but
vectorization for innermost loops (vectorizable loop in a nested loop) is rarely
considered. Due to the phase-ordering problem, some affine schedule algorithms
in optimizer frameworks even transform the innermost loop to a non-vectorizable
loop, which seriously wastes the computing power of vector units and is adverse
to computing performance. A few studies focus on SIMD optimization based on
polyhedron model. Kong et al. proposed a polyhedral compiling framework [15]
which aims for integrated data locality, multi-core parallelism and SIMD execu-
tion. In this framework, loop codes are blocked and plain codes in loop blocks are
translated to SIMD codelets (code blocks). Experiments demonstrate that this
framework achieves times of speedup than previous loop transformation meth-



Accelerating LBM by Fully Exposing Vectorizable Loops 3

ods. However, they do not present any clear algorithm to guide automatic SIMD
codelet generation.

In this paper, we propose a novel SIMD-aware loop transformation (SLT)
algorithm which identifies the plain loops that have potentiality to be vector-
ized and guides these loops to be transformed into vectorizable loops for LBM
kernels. The identification is based on dependency analysis on a defined depen-
dency table. This algorithm is easier to understand than the polyhedron-based
loop transformation method since it does not require much knowledge of con-
vex analysis and linear programming. The SLT algorithm has been validated
for LBM kernels on an Intel Xeon Gold 6140 server which has processors with
the Skylake microarchitecture and supports AVX-512 SIMD instruction set. Our
algorithm can detect much more potentially vectorizable loops than Intel C++
compiler and a state-of-the-art polyhedral optimizer - PLuTo [4], and thus it
can significantly accelerate the computation of LBM codes. Besides, since LBM
is a kind of typical stencil computation, the proposed algorithm is also suitable
for any other LBM-like numerical computations, such as FDTD, Gauss-Seidel
iteration and convolutional neural network. In summary, this paper makes the
following contributions.

– We propose a novel SIMD-aware algorithm which can identify all possible
potential vectorizable loops that may be missed by compilers and polyhedral
optimizers due to the loop-carried dependencies within LBM kernels. The
identification is based on dependency analysis on a defined dependency table.

– The proposed algorithm can guides the identified loops to automatically
perform loop transformations and array copying techniques to generate new
LBM kernels with compiler-identifiable vectorizable loops. The algorithm
has a polynomial-time solution.

– Experimental results demonstrate that the proposed algorithm can signifi-
cantly raise the ratio of number of vectorized loops to number of all loops
in the LBM kernels and achieves a better performance than a polyhedral
optimizer PLuTo.

The rest of the paper is organized as follows. Section 2 presents related work
about LGBKmodel and auto vectorization. Section 3 illustrates the details of our
SIMD-aware loop transformation algorithm. Section 4 presents the experimental
results and analysis. Finally, section 5 concludes this paper and points out the
future work.

2 Related Work

2.1 LGBK Model

LGBK model is one of the most popular LBM models. Previous work [18] has
revisited the basic principle of LGBK. LGBKmodel includes DnQbmodels where
a particle is collided with b surrounding particles (including itself) in an n-
dimensional space, such as D2Q9 model and D3Q19 model. Generally, in the



4 Q. Bin et al.

LGBK model, the procedure of a single time step of LBM is divided into two
phases:

– Collision

f∗
i (x, t) = fi(x, t)−

1

τ
[fi(x, t)− f

(eq)
i (x, t)], (1)

– Streaming (or propagation)

fi(x+ ei∆t, t+∆t) = f∗
i (x, t), (2)

where i is the direction of particle velocity; x is the location of particle; t is
current time step; ∆t is a time slot; ei is the particle velocity in direction i; τ is
relaxation time; fi(x, t) is the distribution function of particle in direction i; and
f∗
i (x, t) is the equilibrium distribution function after collision. In D3Q19 model,
i ∈ [0, 18], the directions of particle velocity ei are from e0 to e18 (as shown

in Figure 1). In equation (1), the equilibrium distribution function f
(eq)
i (x, t) is

defined as

f
(eq)
i (x, t) = wiρ[1 +

3eiu

c2
+

9(eiu)
2

wc4
− 3u2

2c2
], (3)

where ρ denotes fluid density, u denotes fluid velocity, and c denotes lattice
speed. And in D3Q19 model, the weighing factor wi is defined as

wi =


1
3 , i = 0
1
18 , i = 2, 4, 6, 8, 9, 14
1
36 , i = 1, 3, 5, 7, 10, 11, 12, 13, 15, 16, 17, 18.

(4)

Obviously, the computation of LGBK model is suitable for parallel execution.
However, in LGBK model, a lattice references its neighboring lattices, which in-
dicates loop-carried dependencies that prevent auto vectorization for loop codes.
In this paper, we use the D3Q19 LGBK model to illustrate and validate our al-
gorithm for LBM codes.

e
16 e

12

e
7

e
14

e
3

e
11

e
9

e
15

e
6

e
1

e
13

e
18

e
2

e
5

e
8

e
4

e
10

e
17

Fig. 1. Particle velocities of D3Q19 model.



Accelerating LBM by Fully Exposing Vectorizable Loops 5

2.2 Auto Vectorization

Auto vectorization is a commonly-used technique embedded in most modern
compilers. When this technique is activated in compilation, it scans each loop
in LBM kernels and tries to translate vectorizable loops into SIMD instructions.
Since not all kinds of loops are vectorizable, a compiler that supports auto vec-
torization must identify vectorizable loops based on certain features. If a loop
can be automatically vectorized, it must satisfy the following conditions [2,15,25]

1. Countable: the loop trip count must remain constant in the duration of the
loop.

2. Single entry & exit: the loop must be a perfect loop with only one entry
and one exit.

3. Containing straight-line code: branches are not permitted, but the if {...}
statement is permitted as long as it can be implemented as masked assign-
ments.

4. Innermost loop of a nest: the loop must be an innermost loop of a nest
or a one-dimensional loop.

5. Without function calls: no function calls in loop body.

In addition, if a loop contains any loop-carried dependencies, parallel exe-
cution of multiple iterations may lead to error results. Hence, vectorizable loop
does not allow the existence of loop-carried dependency. Most previous loop
transformation methods are effective to both preserve dependencies and imple-
ment parallel execution by exploiting pipeline/wavefront parallelism. However,
the transformed innermost loops are usually uncountable and are with multiple
entries & exits and branches. Therefore, they can not be vectorized by compilers.

The expected performance of vectorization should also be considered, and it
helps to decide whether vectorization is profitable. Inappropriate data organiza-
tion, such as Array-of-Struct (AoS) and unaligned data, may lead to unsatisfied
performance of vectorization. Trifunovic et al. have proposed a vectorization cost
model to estimate speedup [23]. The cost model computes the expected speedup
by comparing the total execution time of vectorized loops with the execution
time of scalar loops. The cost model is also applied in modern compilers. If the
expected speedup of a vectorizable loop is not greater than one, the loop will
not be vectorized by compiler.

3 SIMD-aware Loop Transformation (SLT) Algorithm

For simplicity, the loop referred is related to the innermost loop of a nested
loop and the dependency referred is related to the loop-carried dependency of
innermost loop without specification. All pseudo codes are written in C-language-
like format.



6 Q. Bin et al.

3.1 Representation of Loop Domain

We use a triple (l, i, s) to represent the domain of each loop of innermost loops,
where l denotes the sequence number of one loop of innermost loops, i denotes
the iteration variable of current loop and s denotes the sequence number of
a statement in innermost loops. For instance, Figure 2 shows an example of
innermost loops. There are 2 innermost loops and 3 statements in the example.
Given that i = 2, then triple (1, 2, 1) denotes statement S1 in innermost loop
L1 and triple (2, 2, 3) denotes statement S3 in innermost loop L2.

for ...

for ...

{

L1: for(i=1;i<=4;i++)

S1: B[i]=A[i+1];

L2: for(i=1;i<=4;i++)

{

S2: A[i]=A[i+1];

S3: C[i]=A[i];

}

}

Fig. 2. Example of innermost loops.

Let x t(lt, it, st) and x s(ls, is, ss) respectively denote the target and source
iteration instances of a loop-carried dependency among innermost loops, the
dependence vector d of the loop-carried dependency is defined as

d ≡ x t − x s = (∆l,∆i,∆s). (5)

The loop-carried dependencies are detected based on Bernstein Conditions [6].

Theorem 1 (Bernstein Conditions). Given two references, there exists a
dependency between them if the three following conditions hold

1. they reference the same array (cell);
2. one of this access is a write;
3. the two associated statements are executed.

According to Bernstein Conditions, we can find out all dependence vectors of
loop-carried dependencies and construct a dependence table with these vectors.
The dependence table is used for identification of vectorizable loops and guidance
of loop transformations. For instance, Table 1 shows the dependence table D of
the example of Figure 2.

3.2 Identification of Vectorizable Loops

L.N Pouchet has pointed out that no dependence between points of a hyperplane
indicates parallelism on the hyperplane [19]. In Figure 2, loop L1 can not be



Accelerating LBM by Fully Exposing Vectorizable Loops 7

Table 1. Dependence table D of example loops.

Dependency Type x s(ls, is, ss) x t(lt, it, st) d(∆l,∆i,∆s)
d1: S1(RHS)→S2(LHS) anti (1, i, 1) (1, i+ 1, 2) (0, 1, 1)
d2: S2(RHS)→S2(LHS) anti (1, i, 2) (1, i+ 1, 2) (0, 1, 0)
d3: S2(LHS)→S3(RHS) flow (1, i, 2) (2, i, 3) (1, 0, 1)

vectorized, while loop L2 is vectorizable. Iterations of loop L1 can not be parallel
executed due to the dependencies d1 and d2 (as shown in Table 1) between points
of hyperplane [1, 0, 0] · [l, i, s]T = 1. Based on Pouchet’s work, the constrains of
vectorizable loop can be summed up as Lemma 1.

Lemma 1 (Constrains of Vectorizable Loop). The lth innermost loop is
vectorizable if ∀d(0,∆i,∆s) ∈ D(ls = l, lt = l):

∆i = 0.

A similar goal is to find dependency that prevents vectorization (illegal de-
pendency) or not (legal dependency). The features of these two kinds of depen-
dencies can be summed up as Lemma 2 and Lemma 3.

Lemma 2 (Illegal Dependency). A dependency ∀d(∆l,∆i,∆s) ∈ D prevents
vectorization if

∆l = 0 and ∆i ̸= 0.

Lemma 3 (Legal Dependency). A dependency ∀d(∆l,∆i,∆s) ∈ D does not
prevent vectorization if

∆l ̸= 0 or ∆i = 0.

Based on Lemma 1, we can identify vectorizable loops. For potentially vector-
izable loops, we can find out the illegal dependencies that prevent vectorization.
Then we try to transform illegal dependencies to legal dependencies by modifying
∆l.

3.3 Loop Transformations for Vectorization

Statement Rearrangement Statement rearrangement is a considerable way
to transform a potentially vectorizable loop to a vectorizable one. It is able
to modify ∆l of illegal dependency and does not incur uncountable loop trip,
multiple entries & exits and branches which dose not satisfy the requirements
of auto vectorization. For instance, to legalize dependency d1 in Table 1, we
can perform statement rearrangement on loop L1 and move statement S2 to L2.
Hence, d1 is legalized to (1, 1, 1) and loop L1 becomes vectorizable. The example
codes after the rearrangement are shown in Figure 3. If statements in the last
loop need to be rearranged, we create a new loop and move statements to the
new loop.



8 Q. Bin et al.

for ...

for ...

{

L1: for(i=1;i<=4;i++)

S1: B[i]=A[i+1];

L2: for(i=1;i<=4;i++)

{

S2: A[i]=A[i+1];

S3: C[i]=A[i];

}

}

Fig. 3. Example loops after rearrangement.

Array Copying Statement rearrangement is unable to legalize the dependency
whose source statement and target statement are the same (∆s = 0). To solve
this problem, we need to separate write operation and read operations on the
same array into different statements. Therefore, we should perform array copying
[10] before performing statement rearrangement to ensure more dependencies can
be legalized.

We use a buffer array to replace the left side of a statement and create
a following statement that reads data from the buffer array and writes it to
original array. For instance, the example loops after performing array copying
on statement S2 are shown in Figure 4. The original statement S2 is divided into
statements S2 and S3. Dependency d2 becomes (0, 1, 1) and it can be legalized
by further performing statement rearrangement.

for ...

for ...

{

L1: for(i=1;i<=4;i++)

{

S1: B[i]=A[i+1];

S2: buf[i]=A[i+1];

S3: A[i]=buf[i];

}

L2: for(i=1;i<=4;i++)

S4: C[i]=A[i];

}

Fig. 4. Example loops after array copying.

However, to preserve dependency, array copying should not be performed on
the statement whose read operation depends on its written value in previous
iteration. The dependence vector of the corresponding dependency is like

d(0,∆i, 0),∆i < 0.

The expected speedup of array copying should also be considered, since array
copying doubles the complexity of computation to gain profit from vectorization.



Accelerating LBM by Fully Exposing Vectorizable Loops 9

The expected speedup of array copying is roughly calculated by

speeduparray copying =
speedupvectorization

2
(6)

where the speedupvectorization is estimated by compiler. If speeduparray copying ≤
1, array copying will be not launched.

Algorithm Guiding Loop Transformations The procedure of performing
loop transformations can be divided into two phases — array copying and state-
ment rearrangement. The detail of the procedure is shown in Algorithm 1.

Algorithm 1: SIMD-aware Loop Transformation

Input:
Plain LBM kernel codes
Output:
Transformed codes

1 Scan input codes and generate dependence table D
2 while ∃d(0, ∆i, 0) ∈ D and ∆i > 0 do
3 Try to find the first dependency like d(0,∆i, 0) ∈ D,∆i > 0 and its

source/target statement S
4 if such S is found then
5 if speeduparray copying(S) > 1 then
6 /* Perform array copying */
7 Use a buffer array to replace the written array of S and create

a new statement where the buffer array is read next to S
8 Update D

9 end

10 end

11 end
12 while ∃d(0, ∆i,∆s) ∈ D and ∆i ̸= 0 and ∆s ̸= 0 do
13 Try to find the first dependency like d(0,∆i,∆s) ∈ D,∆i ̸= 0,∆s ̸= 0

and its target statement St

14 if such St is found then
15 if speedupvectorization(St) > 1 then
16 /* Perform statement rearrangement */
17 Move St to the next loop (if the next loop does not exist,

create a new one)
18 Update D

19 end

20 end

21 end

The input of the algorithm is plain LBM kernel codes and the output is trans-



10 Q. Bin et al.

formed codes. The algorithm is able to legalize most dependencies except de-
pendencies with d(0,∆i, 0) where ∆i < 0. Since many loops with illegal depen-
dencies will not be analyzed and further transformed for vectorization by most
general compilers, a variety of vectorization opportunities have been missed.
Whereas, our algorithm can effectively avoid this case and generate more vec-
torizable loops. Therefore, we achieve the acceleration of LBM computing by
taking full use of vector units on processors. In addition, Algorithm 1 is not only
suitable for optimizing LBM, but also suitable for other LBM-like computation.

Algorithm 1 is a polynomia-time solution. Given that there are n statements
in a plain code, the temporal complexity of generating a dependence table D,
scanning each d in D, updating D, performing array copying and performing
statement rearrangement are T1 = O(n), T2 = O(n), T3 = O(1), T4 = O(n) and
T5 = O(n), respectively. Hence, the total temporal complexity of Algorithm 1 is

T = max(T1, T2, T3 × T4, T3 × T5) = O(n)

which indicates that the algorithm is a polynomial-time solution for SIMD-aware
loop transformation problem.

4 Experiments

4.1 Experimental Setup

We carried out experiments on an Intel(R) Xeon(R) Gold 6140 server. The test
server has 36 cores with Skylake microarchitecture and it supports the most ad-
vanced SIMD instruction set AVX-512. The LBM benchmark is openLBMflow [3]
based on LGBK D3Q19 model. We divided the benchmark into 4 different ver-
sions: baseline-no-vec (baseline benchmark without auto-vectorization compiler
option), baseline-vec (baseline benchmark with auto-vectorization compiler op-
tion), Pluto (codes generated by PLuTo and with auto-vectorization compiler op-
tion) and SLT (codes transformed by our SLT algorithm with auto-vectorization
compiler option). The compiler is Intel C++ Compiler version 19.1.

4.2 Comparison of Ratio of Vectorized Loops

The vectorization reports generated by compiler provide detailed information
about the number of loops and the number of auto-vectorized loops by compiler
for four tested versions of LBM kernel codes. Based on the information, we
calculated the ratio of number of vectorized loops to number of all loops (RVL).
Table 2 shows the vectorization information of each version of benchmark.

One-quarter of innermost loops in baseline version of codes is vectorized.
That is, even with no optimization, the RVL of baseline-vec reaches 25%. The
PLuTo optimizer performs pipeline/wavefront parallelism to legalize loop-carried
dependencies, and the RVL of Pluto reaches 50%. Since the polyhedron-based
transformations incur uncountable, multiple entries & exits and branched loops,
half innermost loops of Pluto can not be vectorized by compiler. As our SLT



Accelerating LBM by Fully Exposing Vectorizable Loops 11

Table 2. Vectorization information

Benchmark # of loops # of vectorized loops RVL
baseline-no-vec 4 0 0%
baseline-vec 4 1 25%

Pluto 4 2 50%
SLT 53 52 98%

algorithm created new loops to legalize loop-carried dependencies, the number
of loops has been increased. However, the majority of transformed loops are
vectorized due to the advantages of our algorithm which maintains the new
loops satisfying the auto-vectorization conditions. After all, 98% of loops in the
version of SLT codes are automatically vectorized by compiler.

Theoretically, the update speed of LBM kernels is positively correlated with
the value of RVL. Therefore, the descending order of four versions of benchmarks
sorted by update speed should be: SLT > Pluto > baseline-vec > baseline-no-vec.

4.3 Performance Comparison

We tested the update speed of million lattice updates per second (MLUPS) and
the speedup of four versions of LBM codes to evaluate the performance of the
proposed SLT algorithm. Different grid sizes and numbers of threads are used
in our tests. The grid sizes are 64× 64× 64, 128× 128× 128, 192× 192× 192,
256× 256× 256 and 320× 320× 320, respectively. And the numbers of threads
are 8, 16, 24 and 32, respectively. The vectorization of loops was automatically
realized by compiler with AVX-512.

Figure 5 shows the results of update speed comparison. It is clear that the
SLT achieves the fastest update speed for all kinds of test codes in Figure 5. The
maximum update speed is about 56 MLUPS with grid size of 64×64×64 and 16
threads in our tests. And the average update speed of SLT is about 36 MLUPS
for all test codes, which is 174%, 147% and 120% faster than the average update
speed of baseline-no-vec, baseline-vec and Pluto, respectively. According to the
RVL values in Section 4.2, the results also indicate that the update speed of LBM
codes is positively correlated with the RVL values. We can also observe that the
update speed decreases along with the growth of grid sizes in Figure 5. This
is because we do not perform any other optimizations on tested codes except
automatic vectorization of compiler. And the limitation of memory bandwidth,
i.e. the “memory wall” issue, has arisen when grid sizes are growing. However,
the solution to the memory optimization is beyond the scope of this paper.

The speedups are calculated by respectively comparing the execution time of
baseline-vec, Pluto and SLT with the execution time of baseline-no-vec. Figure
6 shows the results of speedup comparison. The results are similar to the update
speed.



12 Q. Bin et al.

643 1283 1923 2563 3203

grid sizes

0

10

20

30

40

50

60

u
p
d

a
te

 s
p

e
e

d
 (

M
L
U

P
S

)

baseline-no-vec

baseline-vec

Pluto

SLT

(a) # of threads = 8

643 1283 1923 2563 3203

grid sizes

0

20

40

60

u
p

d
a

te
 s

p
e

e
d

 (
M

L
U

P
S

)

baseline-no-vec

baseline-vec

Pluto

SLT

(b) # of threads = 16

643 1283 1923 2563 3203

grid sizes

0

20

40

60

u
p

d
a

te
 s

p
e

e
d

 (
M

L
U

P
S

) baseline-no-vec

baseline-vec

Pluto

SLT

(c) # of threads = 24

643 1283 1923 2563 3203

grid sizes

0

20

40

60

u
p

d
a

te
 s

p
e

e
d

 (
M

L
U

P
S

) baseline-no-vec

baseline-vec

Pluto

SLT

(d) # of threads = 32

Fig. 5. Update speeds comparison.

643 1283 1923 2563 3203

grid sizes

0

2

4

6

u
p

d
a

te
 s

p
e

e
d

 (
M

L
U

P
S

) baseline-vec

Pluto

SLT

(a) # of threads = 8

643 1283 1923 2563 3203

grid sizes

0

2

4

6

u
p

d
a

te
 s

p
e

e
d

 (
M

L
U

P
S

) baseline-vec

Pluto

SLT

(b) # of threads = 16

643 1283 1923 2563 3203

grid sizes

0

2

4

6

u
p

d
a

te
 s

p
e

e
d

 (
M

L
U

P
S

) baseline-vec

Pluto

SLT

(c) # of threads = 24

643 1283 1923 2563 3203

grid sizes

0

2

4

6

u
p

d
a

te
 s

p
e

e
d

 (
M

L
U

P
S

) baseline-vec

Pluto

SLT

(d) # of threads = 32

Fig. 6. Speedups comparison.



Accelerating LBM by Fully Exposing Vectorizable Loops 13

The speedups of SLT are much higher than the speedups of baseline-vec and
Pluto for all tested codes. SLT achieves an average speedup of 3.1 in our tests,
which is 186% and 145% higher than the average speedups of baseline-vec and
Pluto, respectively. The downtrend of speedups is also observed in Figure 6 when
grid sizes and the number of threads increase. As explained before, the memo-
ry bandwidth becomes the major performance bottleneck and the performance
profit from vectorization decreases. Besides, when the number of threads grows,
the contention of memory bandwidth exacerbates the problem and leads to a
further decline of speedup. However, despite of these factors, the experimental
results can demonstrate that our SLT algorithm is effective to accelerate LBM
computation by fully exposing vectorizable loops.

5 CONCLUSION

In this paper, we propose a SIMD-aware loop transformation algorithm to ac-
celerate the computation of LBM codes by making much of vectorization. The
proposed SLT algorithm is able to identify most potential vectorizable loops that
are ignored by general compilers based on a defined dependence table. And it
also provides a solution to transform these loops into automatically identifiable
vectorizable loops by compilers, which performs array copying and statement
rearrangement for LBM kernels. Compared with polyhedron-based loop trans-
formation techniques, SLT algorithm maintains the conditions of vectorization
for loops. Experimental results show that SLT algorithm can significantly raise
the ratio of number of vectorized loops to number of all loops for LBM kernels.
And our algorithm gets better performance than a polyhedral optimizer and the
Intel C++ compiler in vectorization. It also indicates that the proposed algo-
rithm should be effective in the acceleration of other LBM-like computations.

In future work, we will combine loop tiling techniques and SLT algorithm to
further enhance data locality and reduce the adverse impact of memory band-
width. We will also apply SLT algorithm to other LBM-like applications to mine
the potential of vectorization power on modern processors.

Acknowledgement This work was supported in part by the National Key Re-
search and Development Program of China under Grant No. 2016YFB0201800,
the National Natural Science Foundation of China under Grant No. 91630206
and 61672423.

References

1. Aos and soa, accessed 1 April 2019. https://en.wikipedia.org/wiki/AOS and SOA
2. Intel c++ compiler 19.0 developer guide and reference, accessed 6 June 2019.

https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-
vectorization-and-loops

3. openlbmflow, accessed June 15, 2019. https://sourceforge.net/projects/lbmflow



14 Q. Bin et al.

4. Pluto - an automatic parallelizer and locality optimizer for affine loop nests, ac-
cessed 7 June 2019. pluto-compiler.sourceforge.net

5. Acharya, A., Bondhugula, U.: PLUTO+: near-complete modeling of affine trans-
formations for parallelism and locality. In: Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP 2015, San
Francisco, CA, USA, February 7-11, 2015. pp. 54–64 (2015)

6. Bernstein, A.J.: Analysis of programs for parallel processing. IEEE Transactions
on Electronic Computers (5), 757–763 (1966)

7. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral program optimization system. In: ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI) (Jun 2008)

8. Chen, S., Doolen, G.D.: Lattice boltzmann method for fluid flows. Annual review
of fluid mechanics 30(1), 329–364 (1998)

9. Devan, P.S., Kamat, R.: A review–loop dependence analysis for parallelizing com-
piler. International Journal of Computer Science and Information Technologies
5(3), 4038–4046 (2014)

10. Di, P., Ye, D., Su, Y., Sui, Y., Xue, J.: Automatic parallelization of tiled loop
nests with enhanced fine-grained parallelism on gpus. In: 2012 41st International
Conference on Parallel Processing. pp. 350–359. IEEE (2012)

11. Du, X., Kuang, D., Ye, Y., Li, X., Chen, M., Du, Y., Wu, W.: Comparative study
of distributed deep learning tools on supercomputers. In: International Conference
on Algorithms and Architectures for Parallel Processing. pp. 122–137. Springer
(2018)

12. Feautrier, P.: Some efficient solutions to the affine scheduling problem. i. one-
dimensional time. International journal of parallel programming 21(5), 313–347
(1992)

13. Feautrier, P.: Some efficient solutions to the affine scheduling problem. part ii.
multidimensional time. International journal of parallel programming 21(6), 389–
420 (1992)

14. Feng, Y., Tang, J., Wang, C., Xie, J.: Cuapss: A hybrid cuda solution for allpairs
similarity search. In: International Conference on Algorithms and Architectures for
Parallel Processing. pp. 421–436. Springer (2018)

15. Kong, M., Veras, R., Stock, K., Franchetti, F., Pouchet, L., Sadayappan, P.: When
polyhedral transformations meet SIMD code generation. In: ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’13, Seattle,
WA, USA, June 16-19, 2013. pp. 127–138 (2013)

16. Krafczyk, M., Tölke, J., Luo, L.S.: Large-eddy simulations with a multiple-
relaxation-time lbe model. International Journal of Modern Physics B 17(01n02),
33–39 (2003)

17. Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization
with affine transforms. In: Proceedings of the 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. pp. 201–214. ACM (1997)

18. Liu, S., Zou, N., Cui, Y., Wu, W.: Accelerating the parallelization of lattice boltz-
mann method by exploiting the temporal locality. In: 2017 IEEE International
Symposium on Parallel and Distributed Processing with Applications and 2017
IEEE International Conference on Ubiquitous Computing and Communications
(ISPA/IUCC). pp. 1186–1193. IEEE (2017)

19. Pouchet, L.N.: Interative Optimization in the Polyhedral Model. Ph.D. thesis, U-
niversity of Paris-Sud 11, Orsay, France (Jan 2010)

20. Qian, Y., d’Humières, D., Lallemand, P.: Lattice bgk models for navier-stokes
equation. EPL (Europhysics Letters) 17(6), 479 (1992)



Accelerating LBM by Fully Exposing Vectorizable Loops 15

21. Shanley, T.: Pentium Pro and Pentium II system architecture. Addison-Wesley
Professional (1998)

22. Tran, N.P., Lee, M., Choi, D.H.: Memory-efficient parallelization of 3d lattice boltz-
mann flow solver on a gpu. In: 2015 IEEE 22nd International Conference on High
Performance Computing (HiPC). pp. 315–324. IEEE (2015)

23. Trifunovic, K., Nuzman, D., Cohen, A., Zaks, A., Rosen, I.: Polyhedral-model
guided loop-nest auto-vectorization. In: 2009 18th International Conference on
Parallel Architectures and Compilation Techniques. pp. 327–337. IEEE (2009)

24. Xue, J.: Loop tiling for parallelism, vol. 575. Springer Science & Business Media
(2012)

25. Zhang, W., Zhang, L., Chen, Y.: Asynchronous parallel dijkstras algorithm on intel
xeon phi processor. In: International Conference on Algorithms and Architectures
for Parallel Processing. pp. 337–357. Springer (2018)


	Accelerating Lattice Boltzmann Method by Fully Exposing Vectorizable Loops

