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Fig. 1. Examples of tampered images that have undergone different tampering tech-
niques. From left to right are the examples showing manipulations of copy-move
(Adding missiles), splicing (Fake person) and removal (Missing person).

Therefore, it is of primordial importance to develop forensic methods to val-
idate the integrity of an image. For this reason, over the years, the forensic
community has developed several techniques for image authenticity detection
and integrity assessment [25, 12]. Among the many investigated forensic issues,
great attention has been devoted to camera model identi�cation [17, 18].

Indeed, detecting the model of an image source camera can be crucial for
criminal investigations and legal proceedings. This information can be exploited
for solving copyright infringement cases, as well as indicating the authors of
illicit usages. Each camera model performs peculiar operations on image at ac-
quisition time (e.g. di�erent JPEG compression schemes, proprietary algorithms
for Color Filter Array demosaicing, etc.). It leaves on each picture character-
istic footprints which are exploited by the proposed approaches. Some authors
in [22, 29] have used co-occurrence statistics in di�erent domains coupled to a
variety of supervised classi�cation techniques. Most existing techniques use local
parametric models of an image or handcraft features to provide su�cient pixel
statistics.

Combining forensic methodologies and recent advancements established by
deep learning techniques in computer vision, some researchers [29, 7, 2, 1] have
proposed to learn camera identi�cation features by using convolutional neural
networks (CNN). The advantage of CNN is that they are capable of learning
classi�cation features directly from data, hence, they adaptively learn the cumu-
lative traces induced by camera components.

While all of these methods have been very promising, CNN in their current
form tend to learn only features related to image content. However, most images
can experience unpredictable changes caused by content manipulations or geo-
metric distortions such as lossy compression, noising, resizing and / or �ltering,
both before and after the possible alteration. It is therefore essential that tam-
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improve the accuracy for detection and classi�cation tasks by training on a
great amount of data in order to learn characteristic features directly from the
data itself.

2.2 Convolutional Neural Networks

Recent advances in deep learning have led to better performance because of
the ability to learn extremely powerful image features with convolutional neural
networks (CNN). In the late 1980s, CNN were �rst proposed by LeCun et al.
[21] with the recognition of handwritten letters as an extended version of neural
networks (NN). In 2012, with the availability of high-performance computing
systems, such as GPUs or large-scale distributed clusters, CNN have become a
widely used research tool. Thus, AlexNet [19], GoogLeNet [27] and ResNet [14]
for example have become very popular CNN architectures because of impressive
accuracy improvements for image classi�cation and localization tasks.

In the last few years, many researchers showed a growing interest in image
manipulation detection by applying di�erent computer vision and deep-learning
algorithms [29, 23, 7, 8, 5, 1]. In 2016, Bayar et al. [3] used the CNN and developed
a new form of convolutional layer that is speci�cally designed to learn the manip-
ulated features from an image. In this work, CNN are trained to detect multiple
manipulations (Median �ltering, Gaussian blurring, Additive white Gaussian
noise, resizing) applied to a set of unaltered images. In [9], it is shown that
both CNN and Long short-term memory (LSTM) based networks are e�ective
in exploiting re-sampling features to detect tampered regions. The robustness
against post-processing is not evaluated and it proposes in the future to detect
image forgeries. The work in [4] examines the inuence of several important
CNN design choices for forensic applications, such as the use of a constrained
convolutional layer or �xed high-pass �lter at the beginning of the CNN. In [7,
8], two techniques are combined for image tampering detection and localisation,
leveraging characteristic footprints left on images by di�erent camera models.
Firstly, it exploits a convolutional neural network (CNN) to extract characteris-
tic camera model features from image patches. These features are then analysed
by means of iterative clustering techniques in order to detect whether an im-
age has been forged, and localise the a�ected region. Other methods are bound
to speci�c problems as detecting speci�c tampering cues such as double-JPEG
compression [2, 1], re-sampling and contrast enhancement [30]. A deep learning
approach to identify facial retouching was also proposed by [24]. Recently, Huh
et al. [15] propose a learning algorithm for detecting visual image manipulations
that is trained only using a large dataset of real photographs. This model has
been applied to the task of detecting and localising image splices.

While all of these methods have been very promising, CNN in their current
form tend to learn only features related to image content. However, most images
can experience unpredictable changes caused by content manipulations or geo-
metric distortions such as compression, noising, and resizing. So it is essential
that the tampered image detection algorithms need to take into account the
robustness faced with these manipulations.
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3 Proposed Method

In this section, we present our global framework which procures a robust solution
for camera model identi�cation and tampering image detection. The motivation
of our work comes from the fact that most images are acquired on the inter-
net. Among them, there is a signi�cant proportion that has undergone some
transformations such as lossy compression, noising, resizing and / or �ltering,
both before and after a possible alteration. It is therefore essential that tam-
pered image detection algorithms strong robustness faced with these di�erent
manipulations. As compression is the most common and relevant type of post-
processing when people share pictures on the internet, our experiments focus on
this manipulation.

This work is divided in two parts as shown on Figure 2. In the �rst one, we
detail our deep learning approach to identify camera models. The following part
details how it is included in a global framework to obtain robustness against
compression for tampering image detection.

Fig. 2. The pipeline of our framework including the camera model identification learn-
ing phase and the tampering image detection method

3.1 Camera model identification

In this part, we will focus on camera model identi�cation which is the main
contribution of this paper (left part of Figure 2). The possibility of detecting
which camera model has been used to shoot a speci�c picture is of importance
for many forensic tasks as criminal investigations and trials. In the case a deeper
source identi�cation (e.g. use of footprints left on images for tampering detec-
tion and localization), camera model identi�cation (CMI) can be considered an
important preliminary step. The most e�ective methods for this task are based
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on deep learning approaches. They extract distinctive features from the images
of interest and use them to train a classi�er. This approach requires a dataset
of labelled images. In the next subsections, we detail each component of our
framework presented on Figure 2.

Image transformations: The �rst and most important step for a deep learning
strategy framework is the quality of the input data with respect to the desired
application. As the objective is to detect image tampering on images shared on
the internet, the trained CNN model needs to be fed with images that undergo
similar transformations as any user could achieve such as lossy compression,
noising, resizing and / or �ltering. Thus, all original images have to be duplicated
with transformed versions of itself. Experiments will show this step is of great
importance to obtain good performance.

Patches extraction: As state-of-the-art methods [4, 8] for camera model clas-
si�cation gives promising results with small image patches, we also divide our
image in small patches (64×64 pixels) as the second step of our robust framework
for camera model identi�cation. Indeed, the use of small image patches instead
of full-resolution images better characterizes camera models in a reduced-size
space. In order to avoid selecting overly dark or saturated regions, a threshold is
used to exclude all patches containing saturated pixels. Each patch inherits the
camera model label of its image before feeding the CNN.

Convolutional neural networks for camera model identification: Given
its great potential, deep learning has become inevitable for camera model iden-
ti�cation. In this section, we exploit convolutional neural networks (CNN) to
extract characteristic camera model features from image patches. The �rst CNN
architecture speci�cally dedicated to camera model identi�cation has been pro-
posed in [7]. In this work, we use a similar network. This choice is motivated
with the aim to achieve a high camera model attribution accuracy with a fairly
small network architecture. Note that modifying the used CNN is not in the
scope of this paper.

The used network contains 11 layers namely 4 convolutional layers, 3 max-
pooling layers, 2 fully-connected layers, 1 ReLU layer and 1 Softmax layer. Image
patches are fed into the CNN through an input layer, also known as the data
layer. The structure of the CNN architecture is described in Table 1:

Training: The training architecture is characterized by 340, 462 parameters,
learned through Stochastic Gradient Descent on batches of 128 patches. Mo-
mentum is �xed to 0.9, weights decay is set to 7.5.10−3 while the learning rate
is initialized to 0.015 and halves every 10 epochs. As trained CNN model M , we
select the one that provides the smallest loss on validation patches within the
�rst 50 training epochs.
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Table 1. Structure of the CNN architecture [7]. N is the number of training classes

Layer Input size Kernel size Stride Num. �lters Output size

Conv1 64 × 64 × 3 4 × 4 1 32 61 × 61 × 32
Pool1 61 × 61 × 32 2 × 2 2 - 31 × 31 × 32
Conv2 31 × 31 × 32 5 × 5 1 48 27 × 27 × 48
Pool2 27 × 27 × 48 2 × 2 2 - 14 × 14 × 48

Conv3 14 × 14 × 48 5 × 5 1 64 10 × 10 × 64
Pool3 10 × 10 × 64 2 × 2 2 - 5 × 5 × 64
Conv4 5 × 5 × 64 5 × 5 1 128 1 × 1 × 128

Full1 (ReLU) 1 × 1 × 128 - - 128 128

Full2 (Softmax) 128 - - N N

Classification: The problem of camera model identi�cation consists in detect-
ing a model L (within a set of known camera models) used to shoot an image
I. When a new image I is under analysis, the camera model is estimated as
follows: a set of K patches is obtained from image I as described above. The last
layer (Softmax) assigns a label to each patch. The predicted model for image I
is obtained through majority voting on existing labels.

3.2 Tampering image detection

Here, we briey present the method for image forgery detection and localization
in case of images generated through composition of pictures shot with di�erent
camera models. In this scenario, we draw inspiration from [8] by considering that
pristine images are pictures directly obtained from a camera. Conversely, forged
images are those created by taking patches of a pristine image, and pasting them
on images with di�erent camera models. Under these assumptions, the proposed
method is devised to estimate whether the totality of image patches comes from
a single camera (i.e. the image is pristine), or some portions of the image are
not coherent with the rest of the picture in terms of camera attribution (i.e. the
image is forged). If this is the case, a localization of the forged region is also
done.

The proposed method is described on the right part of Figure 2. A tampered
image I is �rst divided into non-overlapping patches. Each patch P is fed as
input to a pretrained CNN to extract a feature vector f of Ncams elements
corresponding to a number of cameras. This information is given as input to the
clustering algorithm that estimates a tampering mask. The �nal output M is a
binary mask, where black parts indicate patches belonging to the pristine region
and white ones indicate forged patches. If no (or just a few) forged pixels are
detected, the image is considered as pristine.

4 Experiments

In this section, we present our exhaustive experiment results. After detailing the
experiment setup including chosen datasets and evaluation criteria, we propose
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a preliminary study highlighting the importance of compression as image manip-
ulation technique. Then, we detail the performance of our framework for camera
model identi�cation and tampering image detection.

4.1 Experiment Setup

Test datasets: Dresden dataset [13] is a publicly available dataset suitable for
image source attribution problems. Dresden contains more than 13, 000 images
of 18 di�erent camera models. Note that we selected only natural JPEG photos
from camera models with more than one instance. This dataset is split into a
training, validation, and evaluation sets, denoted DT, DV and DE respectively.

To evaluate tampering detection algorithm, we use the image sets proposed
in [8]. These two separate sets of altered data represent a set of "known" data
from DE images and an "unknown" dataset which contains images from another
8 camera models not included in the CNN training phase. The objective of using
those sets is to study the di�erences in performance when using "known" and
"unknown" cameras. Both sets contain 500 pristine images and 500 tampered
images generated following the process given in [8].

Finally, to evaluate the inuence of compression, all images from the chosen
datasets are compressed with di�erent factor qualities (FQ): 90%, 80% and 70%.
The trained CNN with those FQ are named CNN90, CNN80, CNN70 and CNNm
respectively for 90%, 80%, 70% and mixed compressed data.

Evaluation criteria: To evaluate the camera model identi�cation performance,
we use the average accuracy obtained with a majority voting. We evaluate detec-
tion performance on both "known" and "unknown" datasets in terms of accuracy,
receiver operating characteristic (ROC) curves and Area Under the ROC Curve
(AUC). These statistics are commonly known and used, they identify clearly the
di�erence between the performance of studied approaches.

4.2 Influence of compression on CMI:

In this section we propose our preliminary study that highlights the importance
of manipulation process on the CMI accuracy of our framework denoted CNNm
compared to the one proposed by Bondi et al. [8].

Table 2. Influence of JPEG compression on Camera Model Identification

Accuracy Original QF: 90% QF: 80% QF: 70%

Bondi et al. [7] 0.91 0.19 0.12 0.12
CNNm 0.82 0.80 0.75 0.72

To make this robustness assessment, we consider the original images of the
Dresden Test dataset (DT) using a JPEG compression with quality factor val-
ues ranging from 70 to 100 with a step of 10. Table 2 shows the inuence of the
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that are commonly used by any user sharing images. We test our framework on
the compression quality factor manipulation and show that our approach glob-
ally outperforms existing literature approaches. Our study emphasizes the fact
that discriminant features from compressed images are harder to retrieve. Our
future work will take this aspect into account to guarantee similar performance
or very compressed data. We will also investigate neural network activation nodes
to better understand the artifacts that help identifying camera models.
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