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Abstract

Edge detection is a basic and fundamental feature in image processing domain. Dilation of edge filters kernels has proven to
bring benefits for the edge detection operation by permitting to filter out noise and to take in consideration a bigger region of
the image when processing. Numerous techniques were used in the past for finding edge features, one of the most common used
being finding features in lower level scale of the image pyramid. Now, naturally, we want to investigate if our dilating of the filter
kernels bring similar benefits as finding edges in a lower scale pyramid level.
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I. INTRODUCTION

An edge in a image is one of the most basic features
and has been intensively researched in the Computer Vision
universe. A variety of mathematical methods have been used to
identify points in which the image brightness changes sharply
or has discontinuities. This is a fundamental tool in image
processing, image analysis, machine vision and computer
vision, particularly in the areas of feature detection and feature
extraction.

Standard edge detection filters are built for highlighting
intensity boundary changes in the near neighborhood image
regions. The most frequently used methods can be found in:
[Prewitt, 1970], [Sobel and Feldman, 1973], [Scharr, 2000].
Those filters are used in many computer vision algorithms
which rely on edge detection for applications such as face
recognition, target recognition, obstacle detection, image com-
pression and many others.

In [Adelson et al., 1984] are presented two methods of edge
detection over different pyramid levels. In the first approach
the target patterns are constructed at several high pyramid
levels, and each is convolved with the original image. In the
second approach, a single copy of the target is convolved
with copies of the image reduced in scale, see Figure 1. This
is similar with what we want to present in this paper, by
considering the target pattern as the edge detection operator.
But even if we use a different pyramid level to determine them,
ultimately we would like to bring them back in original level
so we can use the results.

In this paper, we will analyze and compare the dilation of

filters defined in the previous work [Bogdan et al., 2020] and
the reconstruction approach for all considered filters. We try
here the experimental proof of the hypothesis that dilating
a 3x3 filter with a factor of 1 is similar with applying the
same filter in the immediately lower scale pyramid level. This
hypothesis stands because in both cases the region we take in
consideration to find edges isn’t anymore an 3x3 matrix but
a 5x5 matrix. We can continue this logic of dilating with a
factor of two, which is similar with applying the operation
at two levels difference. Feature extraction in lower pyramid
scale level is a common practice in the domain because of the
benefits of lower computation resources needed and the loss
of details.

In section II, we will present the necessary information and
background for our experiments and simulations. In section
III,we show the steps used to bring the edge maps that we
found in lower scale pyramid level back to initial level and we
highlight first visual results using a controlled set of images.
Furthermore, we present the results on a natural image data
set using standard filters (in section IV) and by using Canny
algorithm (in section V). Also, in both sections we present
the equivalence of dilated filters and the reconstructed lower
pyramid level result in details.

II. PRELIMINARIES

Dilated filters

In a previous work [Bogdan et al., 2020], we define dilation
of a filter as an expansion of the original filter by a factor.
By dilating the kernels, we propose to increase the distance
between the pixels, distance which influences the result of the



Fig. 1. Methods of working in different scales [Adelson et al., 1984].

convolution. This expansion induces the possibility of finding
stronger intensity changes in the image on a bigger region of
interest. When we dilate the kernels, we are filling the newly
added positions with 0s. In order to highlight our definition
on a filter,we will use the Sobel filter (Figure 2) from [Sobel
and Feldman, 1973] and the dilation in Figure 3 and Figure
4.

1 0 −1
2 0 −2
1 0 −1

 1 2 1
0 0 0
−1 −2 −1


Fig. 2. Sobel Gx and Gy kernels
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Fig. 3. Sobel 5× 5 dilated Gx and Gy filterss
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Fig. 4. Sobel 7× 7 dilated Gx and Gy filters

In the visual and statistical comparisons, we observe that
dilating the filters, rather than extending them, helps to find
more edge pixels than the standard filters. Another benefit
worth mentioning of dilating is the fact that the number of
operations doesn’t increase with the dilating factor.

Pyramid Level Operations

From [Adelson et al., 1984], we can find operations regard-
ing scaling between levels of the image pyramids. In Equation
1 the REDUCE operation is presented and in Equation 2 we
can find the EXPAND operation, where Gl represents the

image at level l and Gl,k represents the image obtained by
expanding Gl k times; w(m,n) is the weighting function that
is used for the REDUCE operation.

Gl(i, j) =
∑
m

∑
n

w(m,n)Gl−1(i, j)(2i+m, 2j + n) (1)

Gl,k(i, j) = 4
∑
m

∑
n

Gl,k−1(
2i+m

2
,
2j + n

2
) (2)

The Laplacianpyramid or bandpass pyramid, presented in
Equation 3, is a bypass of the image transformation through
scales of the pyramid and it holds the details(edges) that we
lose in the REDUCTION process. In order to be able to
RECONSTRUCT the image in the future, we preserve the
details in the LAPLACE PYRAMID. Image reconstruction is
presented in Equation 4.

Ll = Gl − EXPAND[Gl+1] (3)

RECONSTRUCTED[Gl] = Ll + EXPAND[Gl] (4)

Gradient operators

In this paper, we will use the following first order derivative
operators for our analysis: [Prewitt, 1970], [Kirsch, 1971],
[Sobel and Feldman, 1973], [Scharr, 2000], [Kawalec-Latała,
2014], [Kroon, 2009], details for the gradient for x axis only
can be seen in Figure 5.
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Fig. 5. Gx kernels

We will consider in the following the standard equation
where the gradient components, Gx and Gy, are used to define
the gradient magnitude |G| in Equation 5.

|G| =
√
Gx2 +Gy2. (5)

From [Woods, 2011], we use the following steps to convolve
filters with a source image in order to obtain the edge map:
Step 1 Convert the image to gray-scale.
Step 2 Reduce the noise in the source image by applying the

Gaussian filter, in order to obtain smoother values.
Step 3 Applying the filters by convolving the gray-scale im-

age with their kernels on the x and y axes and then
applying Equation 5).



Step 4 Each pixel, which has an intensity value higher or
equal to a threshold, will have its value set to MaxV alue
(e.g. 255), else to 0, therefore the edges will be repre-
sented by the white pixels.

Step 5 Thinning the edges to one pixel width.

Canny edge operator

The Canny edge detection algorithm [Canny, 1986] which
is a widely known and used edge detection algorithms, has
the following summarized steps:
Step 1 Convert the image to gray-scale.
Step 2 Reduce the noise in the source image by applying the

Gaussian filter, in order to obtain smooth values.
Step 3 Applying the filters by convolving the gray-scale im-

age with their kernels on the x and y axes.
Step 4 Non-maximum suppression, for edge thinning of the

obtained results.
Step 5 Edge tracking by hysteresis using double threshold.

From [Xu et al., 2011], we were inspired to process the
threshold using he maximum pixel intensity in the input
image and applying the formula from Equation 6. Th is the
upper threshold, Tl is the lower threshold and max(input) is
the maximum pixel intensity in the input image. From our
experiments, the best results were obtained with the fixed
weights values wh = 0.7 and wl = 0.3.

Th = max(input)× wh (6)
Tl = Th × wl

Benchmarking the edge operators

We use BSDS500 [Arbelaez et al., 2011] for highlighting
the evaluation results. This dataset contains natural images that
have been manually segmented, that serve as ground truth for
the benchmark. The benchmark [Arbelaez et al., 2011] uses
500 test images, which are split in 3 different sets, each having
at least 5 human segmented boundary ground-truth images. For
evaluating the images generated from algorithms to the ground
truth images, the Corresponding Pixel Metric (CPM) algorithm
[Prieto and Allen, 2003] is used. This metric is reliable for
correlating similarities with a small localization error in the
detected edges. The metric first finds an optimal matching of
the pixels between the edge images and then estimate the error
produced by this matching.

P =
TP

TP + FP
. (7)

R =
TP

TP + FN
. (8)

F −measure =
2 ∗ TP

2 ∗ TP + FP + FN
. (9)

For each image, we compute the following metrics, defined
in [Sasaki, 2007]: Precision (P), Recall (R) and F-measure or

F1-score (F1). For computing the metrics, we should consider:
TP (True Positive) represents the number of matched edge
pixel; FP (False Positive) the number of edge pixels which
are incorrectly highlighted; FN (False Negative) the number
of pixel that have not been detected. Precision, Equation 7,
represents the probability of a resulting edge pixel is a true
edge pixel. Recall, Equation 8, represents the probability that
a true edge pixel is detected, where the two quantities are used
to compute F-measure (F1-score) by applying the Equation 9.

III. EXPANDING EDGE MAPS

In this section, we will present the steps we used to
reconstruct an edge map produced in a lower scale level
pyramid, considering the original image being level zero. For
a better illustration of the results we have used five synthetic
grey-scale images presented in Figure 6, similar to the work
we found in [Guizhen et al., 2007].

Fig. 6. Synthetic grey-scale test images

Applying the edge detection algorithm from [Canny, 1986]
using the edge operator [Sobel and Feldman, 1973] with a
dilation factor of 1, we obtain the results presented in Figure
7. And we also apply the same edge detector algorithm
on pyramid level one but without any dilation, results are
presented in Figure 7.

Fig. 7. Rows: Canny using Sobel dilated 5x5 results on synthetic images on
L0, Canny using Sobel 3x3 on synthetic images on L1

The first experiment we did was to REDUCE the results
of Canny using Sobel dilated 5x5 filter from level zero to
level one and compare them with the results of Canny using
Sobel 3x3 filters on level one. In order to observe the actual
differences better, we applied a threshold on the reduced image
of value 60 so we can eliminate the false edge pixels. We can
observe in Figure 8 the result of REDUCE operation. In Figure
9, we present the edge pixels found only by applying Canny
with Sobel 3x3 and the edge pixels found only by applying
Canny with Sobel Dilated 5x5. In calculating of the difference
between the edge maps, we considered an offset of one pixel in
any direction, offset that is caused by the reduction operation.



Our intuition, that dilation in pyramid level zero is equiva-
lent with applying the original operator in pyramid level one,
was confirmed by the difference in the results which can be
noticed in Figure 9. By observing Figure 9, we can see the
extra edges that the dilated filter actually found.

Fig. 8. Canny using Sobel dilated 5x5 on synthetic images on L0 reduced to
L1

Fig. 9. Rows: edge pixels found only by Canny using Sobel 3x3 on L1; edge
pixels found only by Canny using Sobel dilated 5x5 on L1

There are many variants in literature that are using different
image levels for feature detection and reconstruction to initial
level. For the purpose of our comparison, we chose three
different variants of expanding the edge map:

V1 Expanding the edge image from level 1 to level 0.
V2 Reconstructing the edge image from level 1 to level 0.
V3 Intersect the expanded edge maps from level 1 with edge

map from level 0.

In the following, we detail the enumerated variants of trans-
forming an edge map from level one to level zero pyramid.

Fig. 10. Rows: Edge map pixels expanded from L1 using Variant 1; Edge
map pixels expanded from L1 using Variant 2; Edge map pixels expanded
from L1 using Variant 3

Variant 1

In this variant, we consider just expanding starting from an
edge map in the first pyramid level, approach described in the
following steps:
Step 1 EXPAND the edge map using Equation 2.
Step 2 Transform each edge map pixel value to 255, we can

do this step because it is not significant at this point if it
is an strong or weak edge.

Step 3 Apply the thinning algorithm presented in [Guo and
Hall, 1989] to remove the excess edge points caused by
the expansion.

The results of this variant of reconstructing the Canny
resulted edge map to level zero on the synthetic images are
presented in Figure 10.

Variant 2

Similar to [Lai et al., 2017], where the images are re-
constructed for a Deep Laplace Network, we consider the
following steps to expand the result of Canny Sobel 3x3 on
level one to level zero:
Step 1 EXPAND the image using Equation 2.
Step 2 Calculate the Laplace Pyramid for level zero using

Equation 3.
Step 3 Intersect the expanded image and Laplace Pyramid

image. We do the intersection instead of an reunion of
pixels to avoid adding edge pixels that were discovered
by the Laplace pyramid but not by Canny on level one.

Step 4 Apply the thinning algorithm [Guo and Hall, 1989]
because of the expansion we tend to have 4 pixels width
edges and we desire one pixel edges.

The results of this variant of reconstructing the Canny
resulted edge map on level zero on the synthetic images are
presented in Figure 10.

Variant 3

Similar to [Wang et al., 2018] and [Liu et al., 2019], where
the edge map is fused by averaging the expansions from
different levels, we consider the following steps to transform
the result of Canny Sobel 3x3 on level one to level zero:
Step 1 EXPAND the edge map using Equation 2.
Step 2 Calculate the edge map on level zero.
Step 3 Intersect the expanded edge map from level one and

edge map on level zero . We do the intersection instead
of an reunion of pixels to avoid adding edge pixels that
were discovered by Canny done on level zero and not by
Canny on level one.

The results of this variant of reconstructing the Canny
resulted edge map on level zero on the synthetic images are
presented in Figure 10.

The presented variants are recursively repeated for each
level we want to expand from. In Figure 11 we present the
results for the three variants when expanding from level two to
level zero of the image pyramid and using 7× 7 dilated filter
in level 0 for comparison. We can notice from this comparison
that the dilation factor n of a filter and its application on an



image is equivalent to applying the standard filter directly on
the pyramid level Ln of the same image.

As we expected looking over the results from this section,
we can observe that we obtain similar results from reconstruct-
ing the edge map or dilating the filters. Of course, we have
applied this in a control data set and in the next section we
want to use the variants we exposed in a bigger natural set of
images.

Fig. 11. Rows: Canny using Sobel dilated 7x7 on synthetic images on L0;
Canny using Sobel 3x3 on synthetic images on L2; Edge map pixels expanded
from L2 to L0 using Variant 1; Edge map pixels expanded from L2 to L0
using Variant 2; Edge map pixels expanded from L2 to L0 using Variant 3

IV. FILTER CONVOLUTION RESULTS

The following section consists of comparisons between the
results of convolving an image with the dilated filters and
the result of expanding a convolution on a lower scale level
of pyramid. We consider the filters [Prewitt, 1970], [Kirsch,
1971], [Sobel and Feldman, 1973], [Scharr, 2000], [Kawalec-
Latała, 2014], [Kroon, 2009] presented in Section II. The
results of filter edge detection using Equation 5 are shown
in Figure 12.

In Figure 13 and Figure 14, we can see the visual results of
the three reconstruction variants we presented in Section IV.

Visual comparison of the results have shown that the results
are similar between the expanded variants results and the
dilatation results. This maintenance of the trend in the results
from section III is encouraging. In order to understand better
the results, we are going to evaluate the results by using the
BSDS500 benchmark from [Arbelaez et al., 2011], for details
see Section II. We have used as data set for this evaluation
all 500 images that the Benchmarks offers. The results of the
benchmark process can be observed in Table I.

Fig. 12. Edge Filter Operator results. Columns are: original image, 3x3 kernel
filter, 5x5 dilated filter, 7x7 dilated filter. Rows: Sobel, Prewitt, Kirsch, Scharr,
Kayyali, Kroon

Fig. 13. Edge Filter Operator reconstructed from L1. Columns are: 3x3
kernel on L1, reconstructed using Variant 1, reconstructed using Variant 2,
reconstructed using Variant 3. Rows: Sobel, Prewitt, Kirsch, Scharr, Kayyali,
Kroon

From the statistical data, we can observe that the metrics



Fig. 14. Edge Filter Operator reconstructed from L2. Columns are: 3x3
kernel on L2, reconstructed using Variant 1, reconstructed using Variant 2,
reconstructed using Variant 3. Rows: Sobel, Prewitt, Kirsch, Scharr, Kayyali,
Kroon

Variant 3x3 Dilated 5 V1 L1 V2 L1 V3 L1 Dilated 7 V1 L2 V2 L2 V3 L2
R 0.688 0.663 0.571 0.687 0.595 0.659 0.425 0.642 0.595

Sobel P 0.439 0.496 0.566 0.488 0.540 0.518 0.584 0.435 0.540
F1 0.536 0.568 0.568 0.571 0.566 0.580 0.492 0.519 0.566
R 0.687 0.661 0.571 0.685 0.593 0.662 0.426 0.641 0.593

Prewitt P 0.441 0.500 0.567 0.490 0.544 0.518 0.583 0.435 0.544
F1 0.538 0.569 0.569 0.572 0.567 0.581 0.492 0.518 0.567
R 0.687 0.658 0.574 0.688 0.594 0.643 0.432 0.644 0.594

Kirsch P 0.441 0.500 0.568 0.491 0.544 0.529 0.587 0.437 0.544
F1 0.537 0.568 0.571 0.573 0.568 0.580 0.497 0.521 0.568
R 0.686 0.660 0.571 0.688 0.595 0.657 0.425 0.643 0.595

Scharr P 0.437 0.493 0.565 0.487 0.538 0.516 0.584 0.435 0.538
F1 0.534 0.565 0.568 0.570 0.565 0.578 0.492 0.519 0.565
R 0.378 0.357 0.300 0.476 0.280 0.393 0.223 0.502 0.280

Kayyali P 0.422 0.472 0.517 0.444 0.501 0.498 0.544 0.407 0.501
F1 0.399 0.407 0.380 0.460 0.359 0.439 0.316 0.449 0.359
R 0.686 0.660 0.571 0.688 0.595 0.656 0.424 0.643 0.595

Kroon P 0.437 0.493 0.565 0.487 0.538 0.515 0.584 0.434 0.537
F1 0.534 0.564 0.568 0.570 0.565 0.577 0.492 0.519 0.565

TABLE I
EDGE FILTERS RESULTS

are similar between the dilated edge operators and the recon-
structed version from the lower levels. The most important
results that we can see from Table I is that the dilatation
results have similar by using less computational resources.
There are also another two observations which we can notice
from those numbers. First, by looking to the F1 scores, we can
observe that for different operators we can obtain equivalence
with different variant expansions (e.g. F1 dilated 5x5 Sobel
is similar with V1 L1 Sobel expansion, but with V3 L1 for
Kirsch expansion). Second, it seems that in most of the cases
the precision is better in the reconstructed lower scale level
than the direct dilation application, but it is explainable due

to the noise reduction of the pyramid levels.

V. CANNY SIMULATION RESULTS

Now, we present the comparisons between the results of
the Canny algorithm using filters both presented in II and the
result of expanding a on a lower level of pyramid presented
in section IV. Visual results can be observed in Figure 15
and the expansion results in Figure 16 and Figure 17. We can
observe the expected equivalence from all visual comparison
with slight differences in the expansion variants.

Fig. 15. Canny Edge results. Columns are: original image, 3x3 kernel filter,
5x5 dilated filter, 7x7 dilated filter. Rows: Sobel, Prewitt, Kirsch, Scharr,
Kayyali, Kroon

Because of the nature of the Canny algorithm, it is pre-
dictable that applying it on a lower scale pyramid level has
benefits. Images on this levels tend to lose details that can
be considered noise when we talk about edges or contour
detection. As we can see from the visual comparison the result
of the algorithm applied on a different level than the original
tend to highlight more significant edges. But, we can observe
a continuity related to the results trend between the edge maps
obtained in pyramid level zero.

Similar to Section IV, we compared statically the Canny
results and Table II, we can observe the benchmark output for
all the operators using dilation or lower scale pyramid level
expansions.

If we look upon the results from Table II, we can observe
that the precision is better in case of reconstructed variants
that translates in a better hit rate of edge pixels produced
by the algorithm. But similar we can observe a better recall
when we talk about dilated filters that translate into a better
accuracy in detecting edge pixels. This shows similar F1 scores



Fig. 16. Canny Edge reconstructed from L1. Columns are: 3x3 kernel on L1,
reconstructed using Variant 1, reconstructed using Variant 2, reconstructed
using Variant 3. Rows: Sobel, Prewitt, Kirsch, Scharr, Kayyali, Kroon

Fig. 17. Canny Edge reconstructed from L2. Columns are: 3x3 kernel on L2,
reconstructed using Variant 1, reconstructed using Variant 2, reconstructed
using Variant 3. Rows: Sobel, Prewitt, Kirsch, Scharr, Kayyali, Kroon

obtained by the reconstructed variants and dilated ones. If we
look on Canny using Scharr, we can see a small improvement

Variant 3x3 Dilated 5 V1 L1 V2 L1 V3 L1 Dilated 7 V1 L2 V2 L2 V3 L2
R 0.467 0.596 0.320 0.380 0.336 0.599 0.242 0.336 0.336

Sobel P 0.535 0.537 0.709 0.639 0.689 0.556 0.771 0.563 0.689
F1 0.499 0.565 0.441 0.477 0.452 0.577 0.369 0.421 0.452
R 0.281 0.411 0.170 0.202 0.173 0.415 0.124 0.166 0.173

Prewitt P 0.616 0.620 0.785 0.732 0.781 0.643 0.853 0.635 0.781
F1 0.386 0.494 0.280 0.316 0.283 0.504 0.216 0.263 0.283
R 0.700 0.731 0.516 0.745 0.527 0.795 0.353 0.674 0.527

Kirsch P 0.372 0.383 0.464 0.408 0.455 0.377 0.519 0.394 0.455
F1 0.486 0.503 0.489 0.527 0.489 0.512 0.420 0.497 0.489
R 0.940 0.957 0.833 0.912 0.899 0.955 0.613 0.840 0.899

Scharr P 0.265 0.282 0.399 0.321 0.333 0.300 0.472 0.332 0.333
F1 0.413 0.436 0.539 0.475 0.486 0.457 0.533 0.476 0.486
R 0.459 0.715 0.246 0.381 0.277 0.788 0.154 0.339 0.277

Kayyali P 0.412 0.377 0.534 0.469 0.515 0.372 0.593 0.452 0.515
F1 0.434 0.494 0.337 0.421 0.360 0.505 0.244 0.387 0.360
R 0.996 0.994 0.929 0.980 0.986 0.989 0.679 0.907 0.986

Kroon P 0.179 0.203 0.268 0.217 0.209 0.215 0.335 0.243 0.209
F1 0.304 0.337 0.416 0.356 0.345 0.354 0.448 0.383 0.345

TABLE II
CANNY RESULTS

regarding the precision (e.g. from 0.282 with Dilated 5x5 to
0.399 with variant 1 in level L1) but we can see a decrease on
the recall side with the same amount for the same experiments.
This implies a similar overall F1 score and results that provide
the equivalence that we expected.

VI. CONCLUSIONS AND FUTURE WORK

From the experiments and evaluation done in this paper, we
can conclude that in most cases, using dilated filters produces
similar results as processing at lower scale level and expanding
it. Of course, there are benefits when extracting features in
lower levels, but we should take in consideration the additional
computational steps that appear when we desire to bring edge
map back to the initial level.

The results we obtain are encouraging because with a simple
dilating operation, we can avoid doing multiple processing
steps for eliminating undesired noise from the image. Added
with the runtime benefit we show in [Bogdan et al., 2020],
we can say that a system using dilated filters has a notable
resource gain. The effects of the results are represented by an
improvement of the entire system in which an edge detection
algorithm is used.

As a future work, one can consider a more complex expan-
sion of the lower pyramid levels edge maps, by using Hierar-
chical Chamfer Matching as in [Borgefors, 1988], [You et al.,
1995], [Zhang et al., 2009], to obtain the same equivalence
results for dilated filters.
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