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Abstract

This paper presents a new Iterated Semi-Greedy Algorithm (ISGA) for the 0-1 Quadratic
Knapsack Problem. The proposed ISGA is easier to implement, runs faster, and produces
comparable results than state-of-the-art methods. Computational evaluation is performed over
a benchmark with large instances of 1000 and 2000 objects.
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1 Introduction
Problems in the operations research area consist in finding an optimal configuration (subset or
permutation) according to an optimization criteria. When the problem is considered NP, the size
of the search space grows exponentially, and neither enumerative nor exact methods are capable
of solving large instances. Under those circumstances, the use of approximate heuristic methods is
necesary to produce good quality solutions within a reasonable computational time.

The Quadratic Knapsack Problem (QKP) is a combinatorial optimization problem, and it belongs
to the NP problems class. The best metaheuristic method for the QKP in the literature is a GRASP+T
proposed by Yang, Wang, and Chu [4]. In this paper we present a simple Iterated Greedy Algorithm
that is easier to implement, and reaches similar results. The rest of the paper is organized as follows:
The next section defines the QKP. Section 3 reviews the best methods in the literature. Section 4
describes the proposed Iterated Semi-Greedy Algorithm. Section 5 shows computational results.
Section 6 presents our concluding remarks and hints our next research steps.

2 The Quadratic Knapsack Problem
The Quadratic Knapsack Problem (QKP) is a nonlinear combinatorial optimization problem with
many applications in multiple discipline areas. Given a capacity-constrained knapsack and a set
of candidate objects, where each object has a positive weight and produces a profit if selected,
we must select a subset of objects to fill the knapsack, trying to maximize the overall profit, and



without surpassing the knapsack capacity constraint. In the QKP, there is a pairwise profit besides
the profit produced by each independent object.

The 0-1 Quadratic Knapsack Problem was introduced by Gallo, Hammer, and Simeone [2].
Let us assume that the knapsack’s capacity is c and there are n candidate objects, that wi and pii
respectively are the weight and the profit of object i ∈ [n], and that pij is the pairwise profit of two
objects i ∈ [n] and j ∈ [n] (i 6= j). Let the binary string X = (x1, . . . , xn) represent a solution,
where the binary variable xi determines whether the object i is in the knapsack or not. Then, a
mathematical definition for the 0-1 QKP is

maximize f(X) =
∑
i∈[n]

∑
j∈[n]

pijxixj , (1)

subject to
∑
i∈[n]

wixi ≤ c, (2)

xi ∈ {0, 1}, ∀i ∈ [n], (3)

where Equation (1) is the profit function to be maximized, Equation (2) ensures the weight capacity
limit of the knapsack.

3 Literature review
Julstrom [3] proposes 4 methods for the 0-1 QKP: two greedy heuristics and two genetic algorithms
(GA). The greedy heuristics build solutions by inserting objects in the knapsack in a non-increasing
order of their value densities. The GAs encode efficiently selections of objects as binary strings, and
produce only strings with a total weight that do not surpasses the knapsack’s capacity. One GA does
not use information about the values associated with the objects in the knapsack, the other embeds
greedy techniques to produce better results. These methods were tested with small instances (with
100 and 200 objects).

Yang, Wang, and Chu [4] propose a Greedy Randomized Adaptive Search Procedure
(GRASP+T) followed by a tabu search for the 0-1 QKP. Their algorithm iterates over three main
steps: a construction phase, a local search, and updating the best so far. The construction phase
builds up an initial solution by iteratively inserting the most frequent object among the best fitted
objects. The local search explores feasible solutions using shift and swap neighbourhoods. At
each iteration, it updates the best solution so far if the local minimum is better. Finally, a simple
tabu search algorithm is performed over the best solution so far. It searches the shift and swap
neighbourhoods, accepting worse solutions while forbidding the elimination of recently included
objects. The prohibitions are ignored if a move leads to a better solution.

Their construction phase uses two priority rules to select an object j ∈ R(S) to be inserted into
the knapsack. Let set S represent the objects in the knapsack (object i is in the knapsack if xi = 1).
The first priority rule is a non-increasing order of the greedy function

f2(S, j) =
obj(S) +

∑
i∈S pij + pjj

sw(S) + wj
, ∀j ∈ R(S), (4)

where set R(S) has only objects that fit into the knapsack (an object j fits into the knapsack if
xj = 0 and it does not exceed the capacity sw(S) +wj ≤ c), sw(S) is the total weight of the objects
in S, wj is the weight of object j, obj(S) is the objective function of the current solution S, and pii
and pij are the aforementioned profit values. Their construction phase picks a random number of
objects with that priority rule, and uses the frecuency of the objects in the knapsack as a second
priority rule to select most frequent object among the best fitted objects.



Other methods for the 0-1 QKP include a global harmony search algorithm [1] and a dynamic
programming [5]. Not all of their results are directly comparable because they used different
instances. We consider that the best method is the GRASP+T of Yang, Wang, and Chu [4], and we
compare our computational results to theirs in Section 5.

4 An Iterated Semi-Greedy Algorithm for the 0-1 QKP
An Iterated Greedy Algorithm (IGA) is a simple but effective method that can be used to solve
the 0-1 QKP. The initial solution is produced with a greedy constructive heuristic (described in
Section 4.1) and then it is improved by a local search (described in Section 4.3). When an initial
solution is ready, the IGA iterates over two main steps: A greedy perturbation phase, and an
optional improvement phase (same local search). This paper proposes an Iterated Semi-Greedy
Algorithm (ISGA) for the 0-1 QKP, that performs a semi-greedy perturbation phase (described in
Section 4.2). At the end of each iteration, the best solution so far is replaced with the current
solution if there is an improvement; otherwise, the current solution rolls back to the best solution
so far. The stop criterion for the ISGA is 4n iterations, where n is the number of objects.

4.1 Greedy Constructive Heuristic
The greedy constructive heuristic generates an initial solution by inserting one element at a time
into a partial solution. The element which brings the maximum ratio of benefit over weight is
inserted at each iteration, until no more elements fit into the knapsack. The ratio of benefit over
weight is evaluated with the priority rule f2 of Yang, Wang, and Chu [4] defined in Equation (4).
When a solution is complete, we perform a local search.

4.2 Semi-Greedy Perturbation
The semi-greedy perturbation phase removes d random elements from the knapsack. Then, it
iteratively reinserts into the knapsack a random element among those with best insertion benefit
over the profit function. This is repeated until no more elements fit into the knapsack.

The insertion benefit that an object j produces when it is inserted into the partial solution S is

∆f(S, j) =
∑
i∈[n]

pijxi + pjj , ∀j ∈ R(S). (5)

Then the semi-greedy perturbation randomly inserts an object j that has an insertion benefit
∆f(S, j) ≥ p ∗ max∆, where max∆ = maxj∈R(S) ∆f(S, j) is the maximum insertion benefit, and
parameter p cuts a percentage from the value of max∆. Consequently, a value of p = 100% is
equivalent to a greedy perturbation, and a value of p = 0% is equivalent to a random perturbation.

4.3 Local Search
This improvement method explores the swap neighbourhood; i.e. it swaps an element in the
knapsack with one out of it, respecting the capacity limit, and looking for an improvement in
the profit function.

5 Computational Results
5.1 Experimental Methodology
The ISGA was implemented in C++11, compiled with the GNU C++ compiler version 4.8.5 (Red
Hat 4.8.5-4) with optimization level 3, and run on a PC with an Intel(R) Xeon(R) CPU E5-2680
v4 processor running at 2.40 GHz, and with 64 GB of main memory, using only one core for each
experiment.



Table 1: ARD (in thousandths) for the calibration of parameters p and d.

p d

(%) 1 2 3 4

50 2.561 2.120 3.350 4.284
55 1.621 1.918 3.530 4.509
60 2.624 1.834 3.260 4.207
65 2.565 2.455 3.442 4.339
70 2.811 2.285 3.437 4.448
75 2.066 2.534 3.379 4.418
80 2.709 2.732 3.342 4.460
85 2.200 2.645 3.600 4.588
90 1.949 2.305 3.150 4.517
95 2.261 2.187 2.789 4.638

100 4.586 4.357 4.824 5.159

Those experiments were developed in the Center for High Computational Performance of
the Peruvian Amazon from “Instituto de Investigaciones de la Amazonía Peruana” (IIAP). More
information : http://iiap.org.pe/manati.

Section 5.3 compares our results to those of Yang, Wang, and Chu [4]. We have tested the ISGA
on the same instances tested by Yang, Wang, and Chu [4] (with 1000 and 2000 objects). The ISGA
tests were replicated 100 times on each instance, to match the experiments of Yang, Wang, and
Chu [4].

We present the quality of the results as the relative deviation RD = (f∗ − f)/f∗ from the best
values f∗ reported by Yang, Wang, and Chu [4], and as the average relative deviation (ARD) for
groups of instances and test replications.

5.2 Calibration of Parameters
The ISGA has two parameters: parameter d determines the number of elements to be deleted in
the perturbation phase, and parameter p determines which percentage of max∆ is used as limit to
randomly select the next object for the knapsack. We test parameter d ∈ {1, 2, 3, 4} and parameter
p ∈ {50%, 55%, . . . , 100%}. We randomly selected one instace from each group with 1000 objects
for the calibration. Instances 1000_25_6, 1000_50_4, 1000_75_7, and 1000_100_3 were selected.
Table 1 shows the ARD values for each parameter level. There is not a clear tendency for any
isolated parameter. The best ARD of 1.621 (highlighted in gray) is achieved with p = 55% and
d = 1, thus we set these values for the rest of the experiments.

5.3 Experimental Results
ISGA and GRASP+T show similar results, with an overall average relative deviation of 0.354
thousandths for instances with 1000 objects, and 0.071 for instances with 2000 objects. Tables 2
and 3 show the best solution found for each instance by GRASP+T and ISGA in 100 replications,
and the corresponding minimum and average relative deviations, dividing the instances with 1000
and 2000 objects. Negative RD values indicate that ISGA finds better results than GRASP+T. ISGA
finds a better result in all replications for instance 1000_100_6, and in 87% of the replications for
instance 2000_100_2. ISGA finds the same results than GRASP+T for half of the instances (22
with 1000 objects and 19 with 2000 objects). Tables 2 and 3 also show the average runtime for
GRASP+T and ISGA. GRASP+T has an overall average runtime of 288 seconds, and ISGA of 94

http://iiap.org.pe/manati


Table 2: Best profit, RD (in thousandths), and average runtime for each instance with 1000 objects.

Best Solutions ISGA’s RD Avg. Time

Instance GRASP+T ISGA Minimum Average GRASP+T ISGA

1000_25_1 6172407 6172239 0.027 0.056 29.41 8.49
1000_25_2 229941 229941 0.000 0.359 32.98 18.74
1000_25_3 172418 172418 0.000 0.219 21.66 13.79
1000_25_4 367426 367426 0.000 0.000 26.11 13.38
1000_25_5 4885611 4885158 0.093 0.117 37.69 23.45
1000_25_6 15689 15689 0.000 4.859 8.18 15.83
1000_25_7 4945810 4944857 0.193 0.226 36.51 23.12
1000_25_8 1710198 1710198 0.000 0.098 71.21 19.07
1000_25_9 496315 496315 0.000 0.000 30.03 13.96
1000_25_10 1173792 1173792 0.000 0.148 58.93 20.30

1000_50_1 5663590 5663590 0.000 0.034 50.74 15.93
1000_50_2 180831 180824 0.039 0.039 1.44 16.60
1000_50_3 11384283 11384283 0.000 0.022 31.86 11.26
1000_50_4 322226 321593 1.964 2.277 22.06 14.46
1000_50_5 9984247 9984155 0.009 0.055 40.83 13.58
1000_50_6 4106261 4106261 0.000 0.068 58.08 16.32
1000_50_7 10498370 10498286 0.008 0.038 33.43 11.68
1000_50_8 4981146 4980460 0.138 0.223 116.29 22.23
1000_50_9 1727861 1727756 0.061 0.105 52.77 12.30
1000_50_10 2340724 2340579 0.062 0.147 95.28 14.72

1000_75_1 11570056 11570018 0.003 0.047 64.00 14.59
1000_75_2 1901389 1901389 0.000 0.143 32.47 11.16
1000_75_3 2096485 2092253 2.019 2.147 39.86 13.78
1000_75_4 7305321 7305315 0.001 0.076 55.09 13.47
1000_75_5 13970240 13969984 0.018 0.043 37.39 15.22
1000_75_6 12288738 12288738 0.000 0.029 33.44 14.36
1000_75_7 1095837 1094190 1.503 1.630 23.16 13.06
1000_75_8 5575813 5575813 0.000 0.097 68.47 15.59
1000_75_9 695774 695774 0.000 0.205 22.68 15.89
1000_75_10 2507677 2507677 0.000 0.128 47.32 11.92

1000_100_1 6243494 6243494 0.000 0.049 72.01 14.09
1000_100_2 4854086 4854086 0.000 0.065 84.84 15.09
1000_100_3 3172022 3172022 0.000 0.112 47.06 13.26
1000_100_4 754727 754727 0.000 0.138 23.63 12.37
1000_100_5 18646620 18646540 0.004 0.018 39.15 11.65
1000_100_6 16018298 16020049 -0.109 -0.081 41.58 13.46
1000_100_7 12936205 12936205 0.000 0.020 44.50 10.88
1000_100_8 6927738 6927671 0.010 0.059 96.05 13.64
1000_100_9 3874959 3874959 0.000 0.032 52.28 11.97
1000_100_10 1334494 1334494 0.000 0.101 23.63 12.06



Table 3: Best profit, RD (in thousandths), and average runtime for each instance with 2000 objects.

Best Solutions ISGA’s RD Avg. Time

Instance GRASP+T ISGA Minimum Average GRASP+T ISGA

2000_25_1 5268188 5268117 0.013 0.054 516.57 272.57
2000_25_2 13294030 13292445 0.119 0.147 330.73 229.96
2000_25_3 5500433 5500213 0.040 0.131 800.13 276.27
2000_25_4 14625118 14625118 0.000 0.016 346.89 213.25
2000_25_5 5975751 5975058 0.116 0.182 738.33 302.87
2000_25_6 4491691 4491691 0.000 0.000 474.60 188.25
2000_25_7 6388756 6388756 0.000 0.023 558.21 215.65
2000_25_8 11769873 11768743 0.096 0.124 446.95 248.12
2000_25_9 10960328 10958714 0.147 0.175 449.81 248.60
2000_25_10 139236 139236 0.000 0.000 109.79 129.84

2000_50_1 7070736 7067526 0.454 0.608 474.32 192.28
2000_50_2 12587545 12587545 0.000 0.054 534.87 209.61
2000_50_3 27268336 27268336 0.000 0.000 308.88 122.34
2000_50_4 17754434 17754320 0.006 0.061 782.66 212.22
2000_50_5 16805490 16805288 0.012 0.066 1490.22 195.57
2000_50_6 23076155 23076155 0.000 0.025 460.09 165.85
2000_50_7 28759759 28757686 0.072 0.099 714.18 149.07
2000_50_8 1580242 1580242 0.000 0.331 165.18 124.23
2000_50_9 26523791 26523476 0.012 0.040 342.12 151.20
2000_50_10 24747047 24747047 0.000 0.000 408.39 134.33

2000_75_1 25121998 25121998 0.000 0.023 807.05 152.68
2000_75_2 12664670 12664670 0.000 0.036 510.05 175.47
2000_75_3 43943994 43943599 0.009 0.017 276.39 132.31
2000_75_4 37496613 37496600 0.000 0.023 354.13 114.39
2000_75_5 24834948 24834904 0.002 0.032 684.33 184.03
2000_75_6 45137758 45137758 0.000 0.000 306.47 101.73
2000_75_7 25502608 25502608 0.000 0.022 490.14 139.69
2000_75_8 10067892 10067892 0.000 0.032 344.83 124.24
2000_75_9 14171994 14171584 0.029 0.088 532.06 186.63
2000_75_10 7815755 7815755 0.000 0.072 325.22 135.00

2000_100_1 37929909 37929909 0.000 0.018 435.71 123.51
2000_100_2 33647322 33648033 -0.021 -0.010 791.51 194.28
2000_100_3 29952019 29951979 0.001 0.019 1489.29 145.66
2000_100_4 26949268 26949020 0.009 0.045 710.79 156.64
2000_100_5 22041715 22041691 0.001 0.020 752.02 188.74
2000_100_6 18868887 18868860 0.001 0.043 548.19 142.13
2000_100_7 15850597 15850594 0.000 0.012 578.18 145.54
2000_100_8 13628967 13628967 0.000 0.071 374.07 136.28
2000_100_9 8394562 8394562 0.000 0.063 304.31 114.95
2000_100_10 4923559 4923559 0.000 0.088 200.05 131.32



seconds. Taking into account that our platform is a factor of 1.39 faster, our algorithm runs in a
corresponding time or less.

6 Conclusions
This paper presented a new Iterated Semi-Greedy Algorithm (ISGA) for the 0-1 QKP. ISGA is easier
to implement, runs faster, and produces similar results than the state-of-the-art GRASP+T of Yang,
Wang, and Chu [4].

Our next research includes two aspects: to study the inclusion of the simple tabu search
proposed by Yang, Wang, and Chu [4] to replace the local search, and to study priority rules
for the elimination of objects in our perturbation phase. We believe those changes might improve
our current results.
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