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A NOTE ON THE BEAL CONJECTURE

FRANK VEGA

Abstract. Around 1637, Pierre de Fermat famously scribbled, and claimed
to have a proof for, his statement that equation an + bn = cn has no posi-
tive integer solutions for exponents n > 2. The theorem stood unproven for
centuries until Andrew Wiles' groundbreaking work in 1994, with a notable
caveat: Wiles' proof, while successful, relied on modern tools far beyond Fer-
mat's claimed approach in terms of complexity. Combining short and basic
tools, we were able to prove the Beal conjecture, a well-known generalization of
Fermat's Last Theorem. The present work potentially o�ers a solution which
is closer in spirit to Fermat's original idea.

1. Introduction

Fermat's Last Theorem, �rst stated by its namesake Pierre de Fermat in the
17th century, it claims that there are no positive integer solutions to the equation
an+bn = cn, whenever n ∈ N is greater than 2. In a margin note left on his copy of
Diophantus' Arithmetica, Fermat claimed that he had a proof which the margin was
too small to contain [1]. Later mathematicians such Leonhard Euler and Sophie
Germain made signi�cant contributions to its study [2, 3], and 20th contributions
by Ernst Kummer proved the theorem for a speci�c class of numbers [4]. However,
a complete solution remained out of reach.

Finally, in 1994, British mathematician Andrew Wiles announced a proof for
Fermat's Last Theorem. His was a complex and multifaceted work, drawing on ad-
vanced areas of mathematics such as elliptic curves which were beyond the purview
prevalent in Fermat's heyday. After some initial errors were addressed, Wiles' work
was hailed as the long-awaited proof of the Theorem [5] and described as a �stun-
ning advance� in the citation for Wiles's Abel Prize award in 2016. It also proved
much of the Taniyama-Shimura conjecture, subsequently known as the modularity
theorem, and opened up entire new approaches to numerous other problems and
mathematically powerful modularity lifting techniques [6]. The techniques used by
Wiles are ostensibly far from Fermat's claimed proof in terms of extension, com-
plexity and novelty of tools used−many of which were only available during the
20th century.

In 1993, Andrew Beal, an American amateur mathematician and banker, for-
mulated a conjecture while exploring generalizations of Fermat's Last Theorem.
Beal �rst publicly presented the conjecture, along with a $5000 prize for a proof or
counterexample. This prize has since been raised several times and is currently held
by the American Mathematical Society (AMS) at $1 million. The Beal conjecture

Date: July 3, 2024.
2020 Mathematics Subject Classi�cation. Primary 11D41, 11A41; Secondary 11D04, 11B65.
Key words and phrases. Fermat's Equation, Prime Numbers, Linear Diophantine Equations,

Binomial Theorem.

1



2 FRANK VEGA

states that if the equation Ax + By = Cz holds, where A, B, C, x, y, and z are
all positive integers with x, y, and z greater than 2, then A, B, and C must share
a common prime factor − in other words, there are no solutions to the aforemen-
tioned equation if A, B, and C are pairwise coprime [7]. The statement generalizes
Fermat's, which arises as a special case whenever x = y = z.

Recent years have witnessed signi�cant advancements in tackling the Beal con-
jecture, as evidenced by works such as [8, 9, 10]. For instance, Peter Norvig, a
Google research director, performed a computational search for counterexamples
and ruled out their existence for x, y, z ≤ 7 and A,B,C ≤ 250000, as well as for
x, y, z ≤ 100 and A,B,C ≤ 10000 [11]. Our proposed proof of the Beal conjecture
precludes any counterexamples from existing regardless of the range considered.
Consequently, we present what we contend is a correct and short proof for Fermat's
Last Theorem. The degree of actual closeness it might have with Fermat's own can
only be speculated upon, but in our view simplicity was of paramount importance
and we have deliberately eschewed techniques and results that were not available
in the 17th century.

2. Background and ancillary results

Notation 2.1. As usual,
(
n
k

)
stands for the binomial coe�cient; d | n stands for

integer d divides integer n; and we denote by gcd(a, b), the greatest common divisor

of a, b, i.e. the positive generator of the ideal (a, b) ⊂ Z or equivalently the common
divisor of a, b that is divided by all common divisors thereof.

The following results are immediate. Firstly we have the Binomial Theorem [12],
which for every n ∈ Z≥0 describes the distributive expansion of the nth power of
the binomial x+ y in any commutative ring (R,+, ·):

(1) (x+ y)n =

(
n

0

)
· xn · y0 +

(
n

1

)
· xn−1 · y1 + . . .+

(
n

n

)
· x0 · yn.

Proposition 2.2 ([13]). p ∈ N is prime if and only if p |
(
p
k

)
for all integers

0 < k < p.

Z is trivially an integral domain (e.g. [14, Ch. II �1]) hence:

Proposition 2.3 (Cancellation property on Z). For any a, b, c ∈ Z, a ̸= 0 and

a · b = a · c imply b = c.

Proposition 2.4 ([15]). Let a, b, c ∈ N greater than 1. If a, b are coprime (i.e. gcd (a, b) =
1) and a = b · c, then a | c.

Lemma 2.5. The solutions (x, y) for the Diophantine equation

(2) a · x+ b · y = c · x+ d · y,
where the integer coe�cients satisfy d ̸= b, a ̸= c and a · b · c · d ̸= 0, are

(x, y) =

(
k · d− b

gcd (d− b, a− c)
, k · a− c

gcd (d− b, a− c)

)
, k ∈ Z.

Proof. It is well known and very easily proven [16, Theorem 2.1.1] that if (x0, y0)
is a particular solution to Diophantine equation Ax + Bx = C, then the general
solution of this equation is

x = x0 + k · B

gcd (A,B)
, y = y0 − k · A

gcd (A,B)
, k ∈ Z.
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In the equation resulting from (2), we have A = a − c, B = b − d, C = 0 and
particular solution (x0, y0) = (0, 0), and the Lemma follows immediately. □

3. Main Result

Lemma 3.1. Let a, b, c be pairwise distinct integers such that

{±1, 0} ∩ {a, b, c, a− b, a− c, c− b, a+ b} = ∅

and p, q and r be three prime integers, not necessarily distinct. If

p | gcd (a+ b, c) , q2 | gcd (c− b, a) , r2 | gcd (c− a, b) ,

then c = a+ b or max {gcd (a, b) , gcd (a, c) , gcd (b, c)} > 1.

Proof. Our hypotheses can be written as

a+ b = p · u,(3)

c− b = q · v,(4)

c− a = r · w,(5)

c = p · U,(6)

a = q · V,(7)

b = r ·W,(8)

with u, v, w, U, V,W ∈ N. Two immediate conditions linking these numbers arise.
Firstly, (7) combined with (3) (resp. (6) combined with (4)) yield

q · V + b = p · u, p · U − b = q · v,

which added together become

(9) p · U + q · V = p · u+ q · v ⇒ p · (u− U) + q · (v − V ) = 0.

Secondly, and similarly, (8) combined with (3) (resp. (6) combined with (5)) yield

a+ r ·W = p · u, p · U − a = r · w,

thus

(10) p · U + r ·W = p · u+ r · w ⇒ p · (u− U) + r · (w −W ) = 0.

Subtracting (10) from (9) entails

(11) q · |v − V | = r · |w −W | = p · |u− U | ,

which will come handy later on.
Let G = {gcd (a, b) , gcd (a, c) , gcd (b, c)}. At this juncture, we claim:

(i) 0 ∈ {u− U, v − V,w −W} if and only if {u− U, v − V,w −W} = {0};
(ii) u = U , v = V and w = W if and only if c = a+ b;
(iii) (u− U) · (v − V ) · (w −W ) ̸= 0 implies maxG > 1.

Let us prove these statements. (i) is the easiest to address: an identity between
any of u, v, w and its upper-case counterpart yields trivial cancellations of terms in
(9) and (10) and thus the remaining two required identities, on account of the fact
that Z is an integral domain. The other implication is trivial.

Let us prove (ii). Necessity is obvious: a+b = c and (3), (6) imply p·U = p·u and
the remaining identities v = V,w = W follow from (i). Su�ciency holds because
v = V implies a = q · V = q · v = c− b, thus c = a+ b.
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Let us prove (iii). Assume that u − U, v − V,w − W ̸= 0 and maxG = 1, and
we will arrive to a contradiction. Lemma 2.5 and (9), (10) imply the existence of
k, k′ ∈ Z such that

p = k · v − V

gcd(v − V,U − u)
= k′ · w −W

gcd(w −W,U − u)
,(12)

q = −k · u− U

gcd(v − V,U − u)
,(13)

r = −k′ · u− U

gcd(w −W,U − u)
,(14)

Primality and (12) imply |k| , |k′| ∈ {1, p} which leads to four cases.

Case 1: |k| = |k′| = p. (13) and (14) imply p divides, hence equals, q, r, absurd.
Case 2: |k| = 1, |k′| = p. (14) implies p | r, thus p = r, contradiction.
Case 3: |k| = p, |k′| = 1. (13) implies p | q, thus p = q, contradiction again.
Case 4: |k| = |k′| = 1. Then (11), (12), (13), (14) become

|v − V | · gcd (w −W,u− U) = |w −W | · gcd (v − V, u− U)(15)

r · gcd (w −W,u− U) = q · gcd (v − V, u− U) ,(16)

|v − V | · q = |w −W | · r.(17)

Domain cancellation Proposition 2.3 and our hypothesis u− U, v − V,w −
W ̸= 0 imply that (15)−(17) result in

q | gcd (w −W,U − u) , r | gcd (v − V,U − u) .

Since q2 | gcd (c− b, a) and r2 | gcd (c− a, b), we can infer that q | v − V
and r | w − W . Certainly, we can further deduce that if q divides both
v and V , and r divides both w and W , then these initial preconditions
(q2 | gcd (c− b, a) and r2 | gcd (c− a, b)) necessarily imply that q | v − V
and r | w −W . Hence, it is enough to show that

q · r · k0 = gcd (w −W, v − V,U − u)

where k0 ∈ N under the assumption that q ̸= r (q = r implies a contradic-
tion). Let's divide (11) by q · r · k0 to obtain

(18) q · |v − V |
q · r · k0

= r · |w −W |
q · r · k0

= p · |u− U |
q · r · k0

.

In virtue of (18) and the fact that |w−W |
q·r·k0

, |v−V |
q·r·k0

, |u−U |
q·r·k0

∈ N should be

pairwise coprime (otherwise we get a contradiction), then we deduce that

|v − V |
q · r · k0

| p, |w −W |
q · r · k0

| p

by Proposition 2.4 which also means that

(19) |v − V | = |w −W | = p · q · r · k0.

Finally, (17) and (19) imply that q = r (a �nal contradiction).

Condition (ii) and the hypothesis in (iii) are all-encompassing and mutually exclu-
sive on account of (i). □

Theorem 3.2. The Beal conjecture is true.
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Proof. Assume otherwise, i.e. identityAx+By = Cz holds for someA,B,C, x, y, z ∈
N such that x, y, z > 2 and A,B,C are pairwise coprime. We can assume that
A,B,C > 1 in virtue of the already-proven Catalan conjecture [17]. Let p, q, r be
di�erent prime numbers such that p | C, q | A and r | B

Case 1: p is odd. Binomial formula (1) and Proposition 2.2 allow us to rewrite the
equation Ax +By = Cz as

(Ax +By)
p
= Cpz ⇒ a+ b+ p ·Ax ·By · k = c,(20)

(Cz −By)
p
= Apx ⇒ a = c− b+ p · Cz ·By · n,(21)

(Cz −Ax)
p
= Bpy ⇒ b = c− a+ p · Cz ·Ax ·m,(22)

where a = Ax·p, b = By·p and c = Cz·p and k,m, n ∈ Z. This implies that
k > 0 because all the binomial summands that it arises from are strictly
positive; this in turn entails n,m ̸= 0. Thus a + b − c is divisible by p on
account of (20). We have p | a + b (due to (20) and p | c) and (21), (22)
and Proposition 2.4 imply

(23) a+ b− c = p · Cz ·By · n = p · Cz ·Ax ·m hence Ax | n and By | m,

which in turn implies q2 | c−b from (21) (because q2 | n from (23) and q2 | a)
and r2 | c − a from (22) (because r2 | b and r2 | m due to (23)). Natural
numbers a, b, c, p, q, r thus ful�ll the hypotheses of Lemma 3.1. The number
c cannot be equal to a+b because that would imply n = m = k = 0 in (20),
(21), (22) which we know is not true as seen in the previous paragraph. Thus
by elimination Lemma 3.1 impliesmax {gcd (a, b) , gcd (a, c) , gcd (b, c)} > 1,
but this contradicts our hypothesis that A,B,C, hence a, b, c, are pairwise
coprime.

Case 2: p = 2. Then q, r are odd, and (20)−(22) can be replaced by

(Ax +By)
q
= Cqz ⇒ −a′ = −c′ + b′ + q ·Ax ·By · k′,(24)

(By − Cz)
q
= −Azq ⇒ c′ = a′ + b′ + q ·By · Cz · n′,(25)

(Cz −Ax)
q
= Bqy ⇒ b′ = −a′ + c′ + q · Cz ·Ax ·m′,(26)

for a′ = −Cz·q, b′ = By·q and c′ = −Ax·q. The rest of the proof is similar to
that of Case 1. Again, k′ > 0 because it arises from a binomial sum with
positive summands, hence n′,m′ ̸= 0 as well. Thus a′ + b′ − c′ is divisible
by q on account of (24). q | a′ + b′ due to (25) and q | c′, and (24) and (26)
imply

(27) a′ + b′ − c′ = −q ·Ax ·By · k′ = q · Cz ·Ax ·m′ hence Cz | k′ and By | m′,

which in turns imply p2 | k′ and r2 | m′, hence p2 | c′ − b′ (because of
(24) and p2 | a′) and r2 | c′ − a′ (because of (26) and r2 | b′). All in
all, a′, b′, c′, p′, q′, r′ (i.e. p′ = q, q′ = p and r′ = r) once again ful�ll the
hypotheses of Lemma 3.1 and the exact same argument used in Case 2

ensues.

In conclusion, assuming the given natural numbers A, B, and C are pairwise co-
prime leads to a contradiction. □
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4. Conclusion

This paper presents a short and concise proof of the Beal conjecture. We have
shown that if equation

Ax +By = Cz,

holds with integer exponents x, y, z > 2, then A,B,C must share a nontrivial com-
mon factor. This had remained an open problem ever since it was �rst proposed by
Andrew Beal in 1993. This successful proof of his eponymous conjecture vindicates
the aforementioned potential of simple tools as applied to di�cult problems.

This accomplishment contributes to resolves a longstanding problem in Num-
ber Theory (i.e. Fermat's Last Theorem), �rst posed by Pierre de Fermat nearly
387 years ago. Our proof leverages the vast history of mathematical attempts to
tackle this Theorem, o�ering a simpler and shorter approach compared to previous
methods.

This is the bona �de con�rmation that the wealth of tools available in Fermat's
days was indeed enough to prove his seminal result, and it opens exciting avenues
for further exploration. The techniques developed here show promise for application
to similar Diophantine equations and other problems in Number Theory and, by
extension, Abstract Algebra.
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